The Information Discovery Gr

A Distributed Search Engine Framework

Goal: build a decentralized, distributed search engine framework

- no single point of failure
- · not controlled by any one administration or corporation

Design challenge:

· scalable, robust, and adaptable to changing topic popularity

Approach:

• partition the search space by **semantic topic** using a hierarchical taxonomy

• generic topics are higher up, more specific topics are lower

IDG directory adapts to changing topic popularity: *science* manager is overloaded new manager from with too many pool of free managers is data sources activated and assigned the topic physics data sources more

Associate topics with locations to reduce heartbeat bandwidth:

- implemented using Parsec language
- Excite search engine trace over 24 hours; approx. 2.5 million queries, 537,000 unique users (IP addresses)

specific to physics are

moved to new manager

- queries hashed into a manually-built taxonomy based on Yahoo directory
- to simulate data source registration, queries treated as data sources

Future work:

- measure effects of enhancements: system-wide "Hot Topics" cache, cross-references, duplicate query detection
- other trace data: UCLA traffic, more traces needed!

- > IDG is framework for dencentralized, distributed search engine
- semantic taxonomy provides intuitive browsing
- > design addresses scalability, adaptability, and robustness

Nelson Tang (tang@cs.ucla.edu) and Lixia Zhang (lixia@cs.ucla.edu) http://irl.cs.ucla.edu/IDG/