The Information Discovery Graph

Nelson Tang
September 19, 2000

Overview

- The Information Discovery Graph (IDG)
 - Scalable, robust, distributed information directory
 - Rendezvous data sources with clients
 - Low search time, low network overhead

The Plan

- Background
- Previous & Current Work
- Original IDG Design
- New IDG Design
- Current Status & Future Work

Goals for Good Information Discovery Tool

- Search or browse semantic content
- Handle short- and long-lived information resources
- Low search time
- Low network usage
- Robust
- Scalable

Background

- Amount of online information growing
- Locating relevant information difficult
- Current existing ad-hoc tools
 - Focus on specific niche
 - Low precision (low relevance)
 - Poor scalability
The Plan
- Background
- Previous & Current Work
- Original IDG Design
- New IDG Design
- Current Status & Future Work

Previous & Current Work
- Harvest
- Web search engines
- SAP and sdr
- Peer-based data sharing
- DNS

Harvest
- Early effort at information discovery
- Replicated system of indexed content
- Designed for relatively static content, not dynamic data
- Centrally built index database

Web Search Engines
- Central database of web pages
- URLs from manual registration, crawling
- Difficulty in relevance (page ranking)
 - Keyword counting
 - Hyperlink analysis
 - Manual evaluation

Web Search Engines, cont.
- Problems:
 - Central database inherently not scalable
 - Poor crawler coverage
 - Stale entries

SAP and sdr
- Locates MBone multicast sessions
- Sessions announce to single channel
 - Soft state announcement of all sessions
 - Info pushed to clients, no intermediaries
- Controlling overhead
 - Pre-configured bandwidth limit
 - Announcement frequency determined by number of total sessions
- Wait long enough, will hear everything
SAP and sdr, cont.

- Problems:
 - Long startup time
 - Unbounded location time if many announcements are missed
 - Searching only at local receiver
 - More overhead at receiver: memory, computation
 - Not suitable for short-lived sessions

Peer-based Data Sharing

- Peer-to-peer networked file system
- Napster: centralized search, registration
- Gnutella: arbitrary mesh, node-dependent searching
- Freenet: no search capability

DNS

- Distributed database
 - Provides mapping between host name and address
- Robustness and scalability
 - Caching and replication
- Designed for relatively static information
- Lookup engine only
 - No relevance rankings

The Information Discovery Graph (IDG)

- Addresses information discovery goals
- History:
 - Initially part of Semantic Multicast project
 - Two designs
 - Original design: reduce search time
 - New design: reduce network overhead

The Plan

- Background
- Previous & Current Work
- Original IDG Design
- New IDG Design
- Current Status & Future Work

Original IDG Design

- Hierarchical taxonomy
 - Semantic tree
 - Higher = broad topic, lower = specific
 - Use structure to speed up queries
IDG Design, cont.

- Components:
 - Client: users searching for content
 - Data sources: register the content
 - Manager: makes up the directory infrastructure
 - Organization of hierarchy
 - Registration of data sources
 - Handling queries from clients

Semantic Hierarchy

- A manager is responsible for a specific topic
- Related managers organized into a multicast group

Inter-Manager Messages

- Periodic messages between managers:
 - Semantic topic
 - Summary of registered data sources
- Purpose:
 - Share information for handling queries
 - Heartbeat

Data Source Registration

- Query for matching manager
- Register, receive acknowledgement
- Soft-state registration
 - Periodically re-register
 - Avoid stale entries
 - Robustness

Load-Balancing

- Adapt to topic popularity
 - If manager load above a threshold:
 - Split topic, assign to manager from pool of free managers
 - Pass matching data sources to new manager
 - Similarly if manager load below a threshold:
 - Merge the load with parent manager
 - Return the manager to the pool
- IDG hierarchy is fluid
Querying the IDG

- Clients: find the manager with the topic of interest
- Data sources: find the manager to register with
- Top-down search:
 - Start at top
 - Move downward until leaf or match

Querying Example

Caching

- As parts of hierarchy are learned, cache them
 - Upper levels relatively stable, easily cacheable
- Start searches lower in tree, closer to match
 - Keep queries out of top-most group
 - Reduce search time
- Minimize caching overhead
 - "Best-effort" consistency
 - Fall back to starting from the top if the cached structure changed

Caching Example

Robustness

- If a manager fails:
 - Other managers miss heartbeat
 - Another manager takes over failed manager’s topic
 - Topic is known from previous heartbeat
 - Data sources will notice and re-register
 - During periodic re-registration, will notice manager is gone
 - Randomized re-query to find new manager

Analysis of Original Design

- Compared against SAP
- Two metrics studied:
 - Search time
 - Multicast bandwidth overhead
SAP Search Time
- SAP: time to hear all announcements
 - \(N = \text{number of announcements} \)
 - \(\text{interval} = \max(300, N \times \text{ad_size})/\text{limit} \)
- \(ST_{\text{sap}} = N \times \text{interval} \)
- \(\text{linear in number of data sources} \)

IDG Search Time
- IDG: time to find manager and get list
 - \(N = \text{number of total data sources} \)
 - \(B = \text{branching factor (\# of mgs per group)} \)
 - \(D = \text{depth of tree} = \log_6(N) \)
 - \(K = \text{\# of data sources per manager} \)
- \(ST_{\text{idg}} = B^D + K \)
- \(\text{logarithmic in number of data sources} \)

Search Time Comparison

SAP Multicast Bandwidth Usage
- Single global multicast channel
- Pre-configured bandwidth limit
 - SAPv0: default 200 bits/sec
 - SAPv2: default 4000 bits/sec
- \(\text{constant bound} \)

IDG Multicast Bandwidth Usage
- Many global multicast groups
 - \(N = \text{number of total data sources} \)
 - \(K = \text{\# of data sources per manager} = N/K \)
 - \(M = \text{number of managers} = N/K \)
 - \(B = \text{branching factor} \)
 - \(L = \text{per-group bandwidth limit} \)
- \(BW_{\text{idg}} = (M/B)^L \)
- \(\text{linear in number of data sources} \)

Bandwidth Usage Comparison
Performance Summary

- Search time improved
- Too much multicast bandwidth overhead
- Motivation for new IDG design:
 - Reduce global multicast overhead
 - Retain good search time

The Plan

- Background
- Previous & Current Work
- Original IDG Design
 - New IDG Design
- Current Status & Future Work

New IDG Design

- Associate location with semantics
 - Each topic has a location
 - Hierarchy has both topic and location info
- Multicast can now be scoped

New IDG Hierarchy Example

Benefits of New Design

- Multicast messages are now limited to within local area only
 - Local heartbeats instead of global
 - Permits scoped access control
- Data sources configured as global or local scope

Design Issues of New Model

- Data source registration
- Searching the IDG
- Location of semantic subgroups
- Migration
Data Source Registration

- Globally-scoped data sources:
 - Ignore location
 - Register with semantic match
 - Use top-down search
 (same as original IDG design)

Globally-scoped Registration

Locally-scoped Registration

Data Source Registration, cont.

- Locally-scoped data sources:
 - Ignore topic
 - Register with smallest scope enclosing the data source

Locally-scoped Registration

Querying the New IDG

- Top-down
- Bottom-up

Top-down Searching

- Identical to original IDG design
- Ignores location
- Finds globally accessible data sources
Bottom-up Searching

- Query starts at client’s scope, moves upwards towards root
- Ignores semantic topic
- At each step, finds locally-scope data sources that match topic
- Enables scoped-based access control

Bottom-up Searching Example

Hybrid Approach

- Use top-down to get globally accessible information
- Use bottom-up to get locally scope-controlled data
- So, use both together to find both kinds of info for a topic

Forwarding Queries

- A query may take several steps to reach the manager(s) with the desired data
- Existing approaches
 - Forward: resend query, no acknowledgement to client (like IP Routing)
 - Redirect: respond to client with next step, client sends query to next hop (like DNS)
- IDG approach: when a manager gets a query:
 - forward query to next node
 - send acknowledgement to the client
- Helps client discover IDG hierarchy

Forwarding Queries Example

Location of Semantic Subgroups

- Child groups can be far away from the parent manager
- Maintain scoped multicast with proxy
 - Child manager multicasts to group via proxy
Proxy Message Handling
- Proxy acts as relay between remote manager and local multicast group
- Heartbeats:
 - Aggregate and forward to manager
- Queries:
 - Proxy responds for the manager
 - Queries do not need to be forwarded

Proxy Failure Recovery
- Proxy responsible if attached manager fails
 - Signaled by loss of unicast connection
 - Request new manager from remote group’s pool of free managers
 - Establish unicast connection with newly assigned manager
- Similarly, if proxy fails, attached manager requests a new proxy

Migration
- If many group members are proxies:
 - Move location of group to make managers local again
 - Side effect: move towards “hot spot” of data source popularity
 - Use free manager pool at destination

Analysis
- Search time
- Multicast bandwidth overhead

Search Time
- Top-down part: identical
 - Logarithmic in number of data sources
- Bottom-up part: time to walk path to root
 - Logarithmic in number of data sources
- Total search time: sum of top-down and bottom-up parts
 - Logarithmic in number of data sources

System Overhead
- Scalability affected by global multicast, not by local multicast
 - Only top-most group managers are globally distributed
 - So, only heartbeats among top-most managers contribute to global message overhead
 - Constant bound
New IDG Performance Summary
- Search time kept to logarithmic
- Global multicast reduced from linear to constant

Other Sources of Overhead
- Examine other sources of overhead
 - Data source registration overhead
 - Proxy overhead
 - Migration overhead
- Analyze impact on model

The Plan
- Background
- Previous & Current Work
- Original IDG Design
- New IDG Design
- Current Status & Future Work

Current Status & Future Work
- Now: implementing Parsec simulation
- Future:
 - Verify overhead estimates
 - Implement prototype
 - Anticipated issues
 - Differentiate scope and locality
 - Semantic organization of taxonomy
 - Deployment

Differentiating Scope and Locality
- Scope not always matched to physical locality
 - e.g., administrative scoping
- Can different kinds of scoping be used?

Semantic Organization of Taxonomy
- Information is not simple hierarchy
 - Many cross-references
 - Complex taxonomy
- Mesh structure more accurate
 - Multiple parents, multiple children
 - Fanout of queries
Deployment Issues
- Anticipate issues of deploying IDG
 - Who deploys managers for manager pool?
 - Who decides where topics will be assigned?

Manager Deployment
- Motivation to deploy IDG managers
 - Increase chance that popular topic is local
 - Reduce response time for local users
- Top-level managers may need governmental agency backing
 - Minimum deployment
 - Similar to DNS root server deployment

Topic/Location Pairings
- How will topics and locations be initially paired?
 - Doesn’t matter, rely on adaptive migration
 - Ensure migration scheme is efficient

Conclusion
- IDG provides information discovery
 - Search or browse by semantic categories
 - Low search time, low network overhead
 - Robust
 - Scalable
- Goal: develop and deploy IDG as the standard information discovery tool