(c) IEEE, 2015. This is author’s version of this work. It is posted here by permission of IEEE for you personal use. Not for
redistribution. The definitive version was published in the proceedings of IEEE Global Internet Symposium 2015.

RepoSync: Combined Action-Based and Data-Based
Synchronization Model in Named Data Network

Weiqi Shi* and Alexander Afanasyev'
*Electronic Engineering Department, Tsinghua University
TComputer Science Department, University of California, Los Angeles

Abstract—Named Data Networking (NDN) is proposed to
embrace the increasing demands of data-sharing and content
dissemination. This paper proposes a distributed synchroniza-
tion model, RepoSync, to provide accurate and efficient content
synchronization. RepoSync adopts a combination of action-based
and data-based synchronization, where actions are used to record
the modifications of datasets, so as to instruct the sync process.
Moreover, snapshot is introduced as data-based synchronization
to provide the copy of dataset, handling the synchronization of
large scale modifications. Simulations reveal that RepoSync can
provide a promising performance of synchronization under various
network conditions.

I. INTRODUCTION

As the demand of content sharing is increasing rapidly,
datasets maintained by multiple users need to be synchronized
periodically. Current most wildly used synchronization applica-
tions, like Dropbox and Google Docs, maintain a client-server
paradigm, where files should be first uploaded to a centralized
server and then distributed to the users. This centralized pattern
can easily manage the modification to share files and solves
the conflicts, but may suffer from the single-point failure and
other performance issues. The alternative peer-to-peer designs
[1] also contribute to the content sharing, such as BitTorrent
Sync service [2]. However, the peer-to-peer solutions have the
drawbacks of tremendous redundant data and heavily depend
on the overlay network. Besides, they also suffer from limited
resilience to network failure.

Due to the development of Named Data Networking (NDN),
the distributed pattern of synchronization can be realized in a
simpler but more efficient way. Several distributed synchroniza-
tion protocols, including ChronoSync [3] and CCNx Sync [4]
have been proposed. However as network level protocols, they
do not take data removal into consideration. FileSync/NDN [5]
uses snapshot to make a copy of whole dataset and exchanges
it directly among users for synchronization. However, the draw-
back of snapshot is its inefficiency of handling small number
of modifications.

To solve the problems mentioned above, a distributed sync
protocol RepoSync is proposed, which combines action-based
and data-based synchronization. Action-based mechanism is
designed to synchronize each single modification for dataset,
while data-based mechanism is for large-scale modifications.
Actions are introduced to record the modification, including
who changes datasets and what types of changes it makes.
If one user makes a modification to its dataset, an action
will be generated. Action should be propagated to other users
so that they can adopt the same modification. Data-based
synchronization is defined as using snapshot to synchronize
datasets directly. Different from existing works, where snapshot
is directly used to sync the copy of datasets, our snapshot
serves as the back-up of actions and only is used for synchro-
nizing large-scale modifications. Action-based synchronization
can provide efficient and accurate data-sharing for each single

modification, but may generate huge overhead when large-scale
modification is needed and the whole process while be delayed.
Data-based synchronization can efficiently handle the large-
scale modifications but need time to reconstruct the dataset.
Therefore we combine these two paradigms, taking both of
their advantages. RepoSync adopts the synchronization pattern
of ChronoShare [6], [7], which is a distributed synchronization
application based on NDN. In particular, the contributions of
RepoSync can be concluded as follows:

1) RepoSync introduces action-based synchronization, which
provides clear trace of dataset modification and instruct
other users how to make the same modifications.

2) RepoSync employs data-based synchronization, using s-
napshot to efficiently sync large number of modifications
and serve as the back-up of actions.

3) RepoSync combines the action-based and data-based syn-
chronization and takes fully advantages, while avoids
drawbacks of two independent modes.

4) RepoSync also supports efficient data removal during
synchronization process.

The rest of paper is organized as follow. Section II intro-
duces the NDN architecture. Section III describes the details of
RepoSync design. Section IV and V demonstrate the evaluation
and discussion respectively and Section VI concludes the paper.

II. BACKGROUND

In this section, NDN and repo-ng are briefly introduced as
the background of RepoSync, and their features allow us to
easily build the distributed synchronization application.

A. NDN Architecture

Named Data Networking (NDN) [8] is a data-oriented
network architecture. NDN changes the narrow waist layer,
focusing on the data instead of host. Two fundamental compo-
nents, interest packet and data packet, are introduced to fetch
the data with a given name. An interest is sent when there is
a request for a certain piece of data. The interest includes the
name of target data and other necessary information, such as
selectors. It will go through the network until reaches a node
which can provide the data it needs and the data will be traced
back to the requester. The satisfied data should be signed to
prove its integrity and intactness. Hierarchical namespace is
used to distinguish the unique data packet.

When an interest reaches a router, it will be forwarded to a
registered interface based on the forwarding interest base (FIB)
maintained by the router. To record which interface the interest
comes from, each router also maintains a pending interest table
(PIT). Router will add an entry in the PIT once an interest
arrives. When the interest is satisfied, the expected data can
be traced back to the requester with the help of PIT. Along the
way back to the requester, data are cached in content store (CS)

cawka
Typewritten Text
(c) IEEE, 2015. This is author’s version of this work. It is posted here by permission of IEEE for you personal use. Not for
redistribution. The definitive version was published in the proceedings of IEEE Global Internet Symposium 2015.

cawka
Typewritten Text

cawka
Typewritten Text

for same request in the future. The pull based model of NDN
provides the basis for the distributed sync model.

B. repo-ng

RepoSync is designed for repo-ng [9], which is a set of
storage application over NDN. Compared with Content Store,
where data packets in network are temporary stored in cache,
repo-ng provides persistent storage for data object. The unit of
storage is data object and the management scope is based on
NDN name prefix. The purpose of RepoSync is to make sure
every user (repo-ng) in the same network maintains exactly the
same dataset. In repo-ng, data is immutable and there is no
consistency problem for the content.

III. REPOSYNC DESIGN
A. Overview

RepoSync combines action-based and data-based synchro-
nization. For action-based synchronization, each operation that
changes the dataset, including data insertion and deletion, can
generate an independent action. Each action includes following
components: creator name, sequence number, data name and
action type. Creator name is used to specify the creator (user)
who generated this action. It is assumed that each user maintains
a unique name. Sequence number is used to distinguish the
actions generated from a given user. The sequence number
increases with the new generation of actions. Actions can be
uniquely represented by the combination of creator name and
sequence number. For simplicity, we refer action status to the
combination of user’s creator name and its own lastest sequence
number. Data name is used to denote the data which has been
modified and the action type reveals the type of modification
(INSERTED or DELETED).

We assume that if two users apply same actions in an
identical order, they will maintain same datasets. Actions are
generated when operations are made to datasets(different order
of insertion and deletion for same data may have different
consequences). For a given user, its dataset status is based on
the actions generated from all the user in the group. Therefore,
it status can be represented by the root digest, which is the
aggregation of every known user’s action status, since action
status reflects how many actions generated by a certain creator
have been applied (the case of missing or out-of-ordered actions
will be discussed in III-E). To detect status of other users’
datasets, each user periodically sends sync interest, which
carries its lastest root digest.

Following the idea of ChronoSync, a sync tree is used to
record all the known users’ action statuses. Fig. 1 provides an
example of sync tree, where each node represents a digest and
the leaf nodes are the combination of action status and MIN
Seq'. Each leaf node generates a digest from its action status
by using a hash function. To obtain the root digest, the leaf
nodes’ digests are aggregated by the same hash function in a
certain order (e.g. canonical order of creator name). The sync
tree should be updated whenever a user generates, receives and
applies an action.

To record all the applied actions, either generated by itself
or fetched from others, each user maintains an action list
(AL) (Table I). Entry in AL is the pair of <action, root

IMIN Seq is the minimum sequence number currently maintained by the user
from corresponding creator. Previous actions generated from that user may be
replaced by snapshot. Details will be discussed in III-D

Root Digest
Digest 1 Digest 2
Creator UPDATE Last Creator UPDATE Last
Name Seq Seq Name Seq Seq

/Alice 60 40 /Bob 20 10

Fig. 1: An example of Sync Tree
TABLE I: An example of ActionList

Action

creator name | seq data name type digest
/Alice 60 /ndn/route/picl.jpg inserted 0010....
/Bob 20 /ndn/route/pic2.jpg deleted 092a....
/David 50 /ndn/route/pic3.jpg deleted b92a....

digest>, where the root digest is the updated one after the
action is applied. AL can be used to infer whether users are
synchronized. If the digest in the comming sync interest is
same to user’s own root digest, then the user and the one who
sent the sync interest are synchronized. If the digest is same to
user’s previous root digest, it means the one that sent the sync
interest maintains outdated root digest, which is probably due
to action missing. If the digest cannot be recognized, in other
word, the digest is not recorded in the AL, then the user itself
may maintain the outdated root digest.

Besides the action-based synchronization, RepoSync also
adopts a data-based synchronization, where snapshot is in-
troduced. Snapshot can be exchanged directly among users,
helping users to find the difference of datasets. There are
serveral reasons to introduce the snapshot. First, action-based
synchronization might be inefficient to sync large-scale of mod-
ifications, since each action only record one single modification
of the dataset and a huge amount of actions will increase the
overhead of the network and delay the sync process. Snapshot
is necessary when a new user joins in the group, since it needs
to synchronize the whole dataset from others. Also, snapshot
can easily handle the the conflicts after network partition since
datasets are compared directly when necessary. Besides, after
synchronization, actions are useless for synchronized users and
they may take up a lot of memory. Snapshot can replace actions
without losing the information of dataset.

The format of snapshot is illustrated in Table II. Snapshot
maintains the basic info (generator and version number) used to
distinguish from the snapshots generated by others. The main
content of snapshot is the summary of dataset, including the
data name, statuses (INSERTED or DELETED) and version
numbers. INSERTED represents the data that currently exist in
the dataset and DELETED represents the data that have already
been removed. Version number represents how many times a
specific piece of data has been modified (switch from INSERT-
ED to DELETED or vice versa). For example, when a data
packet is first inserted, its version is zero. The version increases
when it is deleted and increases again when it is reinserted.
Version number can solve the conflicts when data have different
status in snapshot and local dataset, since higher version number
implies the updated status. Only when data entries in snapshot
have higher version numbers, the corresponding data in local
datasets will be modified to be consistent with those in snapshot.
Otherwise, the data will remain unchanged.

Besides, to make sure those users who apply the snapshot
can share the same root digest with other users, action statuses

TABLE II: An example of Snapshot

Snapshot Info

generator [version
/Alice [2
Dataset
/ndn/route/picl.jpg INSERTED 0
/ndn/route/pic2.jpg DELETED 1
/ndn/route/pic3.jpg INSERTED 2
Sync Tree
/Alice 60
/Bob 20

/David 50

should also be included in snapshot. In this way, once the
snapshot is received, the sync tree can be updated using the
action status in snapshot to recalculate root digest.

When the snapshot is generated, actions will be removed. If
a request wants to fetch the action that has been removed, it will
get the snapshot back. Otherwise, the action will be returned.
In this way, actions and snapshots can work independently to
serve for the synchronization.

B. Namespace

Since the name of each piece of data in NDN is globally
unique and follows the hierarchical namespace structure, it is
important to build proper naming conventions for data packets
so that corresponding interests can find them conveniently.
Interests can serve for four different functions in RepoSync:
1) notify others with own current root digest (sync interest);
2) fetch the actions or snapshots (fetch interest); 3) serve
for recovery process (recovery interest) and 4) fetch the data
packets (normal interest).

Different types of interests are distinguished by the data they
are trying to fetch. Each type of interests can be used to fetch a
corresponding type of data, for example, sync interests fetch the
sync data and normal interests fetch the normal data packets.
Interests should encode the data name so that they can find
the data. To classify different types of data and corresponding
interests, different naming conventions should be introduced.

For sync interest and sync data, a broadcast prefix (e.g.
/ndn/broadcast) is included so that the sync interest can be
broadcasted to all the users. It is necessary since a user should
be able to propagate its root digest to others when the root
digest is changed. To distinguish from other types of interest,
there is a component “sync” following the broadcast prefix. The
last component is the root digest of the sender, which is used
for notification and comparison with other users’ status.

For fetch interest and fetch data, its namespace follows [10].
A component “fetch” is also included for demultiplexing. The
last component specifies the name of required actions, which is
uniquely represented by the combination of creator name and
its corresponding sequence number.

For recovery interest and recovery data, the name is similar
to the sync interest, but the middle component is replaced by
“recovery” for discrimination. Besides, the unrecognized digest
should be included in the name. Users will only send recovery
interests when it receives a sync interest with unrecognized
digest, and only those users who recognize this digest can
handle this recovery interest (details will be introduced in next
subsection). Therefore, the digest in the last component of the
name is the received unrecognized digest.

TABLE III: Example of different types of name

Type Example name

sync /ndn/broadcast/sync/b92a...

fetch /ndn/route/fetch/David/50
recovery | /ndn/broadcast/recovery/912s...
normal /ndn/route/pic3.jpg

For normal interest and data, the specific name of the data
have already been settled based on the content, and only a
routable prefix should be added in order that interests can find
the users who maintain the data.

C. Synchronization Process

To detect others’ root digest, sync interest with current
root digest is issued and broadcasted to the whole network
periodically. The sync interest will not bring back the sync data
if root digest is the same to other users’ root digest, since no
actions are generated and synchronization is done.

Once new action is generated, the sync interest will be
satisfied since root digest is recalculated and newer than the
root digest in sync interest. Sync data, which records the creator
name and sequence number of all the missing actions, will be
returned back. Once the sync data is received, fetch interest will
be issued to fetch the missing actions using the information
in sync data. After the actions are fetched back, they can
be applied to the datasets. For example, if the action type is
INSERTED with the data name /ndn/route/pic3.jpg, then normal
interest with this name should be issued to fetch the content.
If action type is DELETED with name /ndn/route/picl.jpg, the
data with the same name in dataset should be removed.

The relationship between the root digest in sync interest
(sync root digest) sent by the sender and that maintained by
the receiver (local root digest) reveals whether the sender and
receiver are synchronized. There are three scenarios:

If the two digests are same, synchronization process is done.
In other word, if all the nodes are synchronized in the network,
there should be no different root digest.

If the sync root digest is outdated (same to a previous
local root digest), it means at least the sender misses actions.
Sync data will be generated and returned back to the sender,
providing the information of the missing actions.

If the digest is unrecognized (not same to any previous
local root digests), then it is likely that the receiver misses
some actions. This case often happens in network partition,
where different groups modify datasets separately and generate
their own actions without communicating with other groups.
To obtain the missing actions, recovery interest is issued by the
receiver. Carrying the unrecognized digest, the recovery interest
is broadcasted to whole network. It should be processed by
the users who can recognize this digest, since they are likely
to maintain the most updated datasets. They will return the
recovery data with action statuses of all their known users.
Once receiving the recovery data, the receiver can infer what
actions are missing and then start to fetch them.

It is worth discussing why sync data and recovery data
do not encode all the missing actions directly. Encoding each
action into a unique data packet keeps the integrity of an
action and makes it easy to fetch separately. It is necessary
especially when data packet is mutable. Although current repo-
ng only support immutable data, RepoSync can still be applied
in other shared folder where data packet is mutable. If data

are mutable, the modification of content should be paid more
attention. RepoSync can easily solve this problem by encoding
the information of content modification in the fetch data. When
the fetch data is received by others, it can instruct them how
to modify the content.

switch Interest Type do
case Sync Interest
if sync root digest = local root digest then
| store the sync interest
else
if sync root digest is recognizable then
| return sync data (clue of missing actions)
else
| send recovery interest
end
end
case Fetch Interest
if have the requested action then
| return the action
end
case Recovery Interest
if sync root digest is recognizable then
| return recovery data(status of all users)
end
case Normal Interest
if have the requested content then
| return the requested content
end
endsw
endsw

Algorithm 1: Process Interest Packet

D. Snapshot

Snapshot is introduced to maintain the summary of the
datasets and replace the actions. It can also speed up synchro-
nization of large-scale modifications since the content of dataset
can be compared directly.

Snapshot should be generated periodically after the whole
network has been synchronized for a certain time (denote as
T). The generation of snapshot means that no new actions
are generated and previous actions have not been fetched
within time T. Therefore, these actions should be removed
to reduce the burden of memory. When a user generates a
snapshot and removes all its actions, current action status of
all its known users should be recorded (since creator names
are not changed, only sequence number should be recorded by
MIN Seq). MIN Seq represents the minimum sequence number
currently maintained by the user from corresponding creator.
When a snapshot is generated, MIN Seq is updated by the
lastest sequence number. MIN Seq is necessary, since it can
distinguish those actions that have been removed from the new
generated actions.

Snapshot is not propagated when it is generated. Instead,
it is only used when fetch interests are trying to fetch the
removed actions. Once snapshot is received, the user should
reconstruct its own dataset based on the snapshot. If the data
in snapshot share the same status with corresponding data
in dataset, then nothing should be done. Otherwise, version
number should be compared to avoid conflicts. For a certain
piece of data, lager version number implies more updated status.
Therefore, for a give piece of data, if its version number
in dataset is larger than that in snapshot, then the dataset
should remain unchanged. Otherwise, the data status should

be changed to synchronize with snapshot. Besides, the version
number can also be used to handle the conflict when network
partition happens and different snapshots are generated. When
network partition heals, multiple groups may generate their
own snapshots. Those different snapshots can be exchanged
and datasets can be compared directly.

E. Exceptions and Conflicts

It can be noticed that the chronological order of applying
actions is the basic assumption for RepoSync. Applying actions
in different orders may lead to different datasets. There are two
types of out-of-order actions:

1) Actions generated from different users are out of order
2) Actions generated from same user are out of order.

The scenario 1) may happen when actions are generated
simultaneously from different users and are fetched in different
order, and scenario 2) may exist due to the packet loss or
different link delay. In the following, we will prove that 1)
can be rescued by recovery process and 2) can be prevented by
the sliding window and fast retransmission mechanism.

For 1), applying actions in different order may generate
different root digests, which makes root digest in sync interest
unrecognizable even if two users maintain same actions. In this
case, the recovery process will be triggered. Once recovery data
is received, the user will find that the action statuses recorded
in the recovery data are same to those maintained in its own
sync tree. Then it can assume this unrecognizable sync root
digest is caused by out-of-order actions. It will be recorded to
avoid recovery process being triggered again. For datasets, only
when the out-of-order actions related to same data, datasets are
not synchronized. Therefore, to solve the difference, the action
with the largest creator name (canonical order) will be adopted.

For 2), the sliding window and fast retransmission mecha-
nism are introduced to make sure the actions generated from
a given creator can be fetched in order. Each user maintains
several independent sliding windows, each of which is used
to fetch the action stream generated by one known user. The
window size S determines how many fetch interests can be
issued at the same time. If the action is received in order, a new
fetch interest will be issued. If not, then the out-of-order actions
will wait until the missing actions arrive. If certain actions
are lost and cannot be returned within a certain time (e.g. the
average round trip time), the corresponding fetch interests will
be reissued immediately instead of waiting for interest timeout
(normally is much larger than round trip time). Therefore, this
fast retransmission can reduce the delay caused by packet loss
significantly.

IV. EVALUATION

This section evaluates the performances of RepoSync by
conducting simulations using NS3? with ndnSim [11] model,
which is used to simulate multiple NDN scenarios architecture.

A. Synchronization Delay

Efficiency is important for a synchronization application es-
pecially when it is used in real-time system and communication.
Therefore, in this section, we evaluate the synchronization delay
of RepoSync under various network conditions. The delay is

2ns-3: a discrete-event network simulator for Internet

s:http://www.nsnam.org

system-

4
=Y
1

o
o
1

o
~
1

- 062

J0sE

Data Delivery (%)

_o
2
1

1O UCHNQUISIA BAEINWIND

Percentage Distribution of

‘‘_‘_‘_‘_‘ 1.0

T |w]

099

E o

A 080

1 o

/ H07%
4 (]

- 04
1 0.3 Pipeline Size

o
N
1

1

o2 20 PDF
0.1 =z g 50 PDF

0.1

0.0 —- 0.0 20 CDF

0 20 40 60 80 100 120 140 160 180 200 220
Delay of Data Delivery (ms)

Fig. 2: PDF and CDF of data delivery delay in face of congestion conditions

,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Drop Rate

—0

—_—1%

,,,,,,,, ——5%

P
f
T o ——10%
Cicid b ddd bbbt bl b+ b= b B A ey
' ' 1 1 ' T
T T

T T T T T T T
16 32 64 128 256 512 1024 2048 4096 8192
Delav of Data Deliverv (ms)

Fig. 3: CDF of data delivery delay in face of drop rates

measured from data generation to the data propagation to all
users.

We use a typical topology [12], containing 34 users and
78 links. Each link was assigned measurement-inferred delay
and 100 Mbps bandwidth. We run each scenario 20 times with
1000 data inserted. In each run, the data to be synchronized are
distributed in different users with different distributions.

Fig. 4: Simulation topology

1) Performance with various congestion condition: Firstly,
we evaluate synchronization delay under different congestion
condition. It is important since network conditions vary heavily
in reality. We can use different window sizes to represent
different congestion conditions, since in the situation with less
congestion, more data packets can be transmitted successfully
at the same time. In Fig. 2, PDF reveals the percent of 1000
original data that has been synced and CDF shows the trend
of whole synchronization process. It shows that the congestion
control works well since the percentage of delivery is distributed
uniformly. Under the low congestions, the delay of whole
synchronization is pretty small (around 80ms). However, with
congestion increasing, the total time of synchronization process
increases as well.

2) Performance with packet drop: Next, we conduct the
simulation in the network environment with various per-link
drop rate since in packet loss could cause huge trouble for
synchronization. The cumulated distribution is used to reveal
the percentage of data that have been synchronized. Fig. 3
shows the simulation result. In the case with low drop rate
(19%-5%), curves almost overlap with the curve with no drop,
which suggests that the synchronization process is almost

500data 200data 1000data

b L Eg b

300data 200data 1000data
0s 2s 4s 6s
Number of Data Fig. 5: Simple Topology with Link Failure
3500 : . : . . .

3000 —

2500 —

2000 —

1500

Fig. 6: Recovery Process of Simple Topology

unaffected by the packet drop. The performance of RepoSync
stays unaffected because fast retransmission mechanism (III-E)
can detect the packet loss in a short time and reissue the interest.
In the case with high drop rate (over 10%), the impact of packet
drop cannot be avoided since it may happen in retransmission.
However, the sync process can still finish within tolerable time.

B. Recovery

Recovery process is a key feature of RepoSync, since it is
used to solve issues related to various network failure. Recovery
process makes sure that even in network partition happens, the
synchronization process can still work correctly. Therefore in
this section, two simulation scenarios are conducted to show
the performance of recovery process.

1) Simple Scenario: We first use a small topology with 4
users to reveal how recovery process works. Fig. 4 shows the
whole simulation process, where data are injected in to different
users at different time.

The result is shown in Fig.6. It can be seen that after links
fail, two groups can work separately and get synchronized.
After the links recover, the two groups are connected and the
data inserted separately during the link failure are synchronized
between two groups. The performance proves that RepoSync
can work well in face of network failure.

2) Complex topology and Snapshot: The previous topology
with 34 users is used to show the recovery performance in
complex topology. It is assumed that all the 34 users are
synchronized, maintaining 1000 same data in initial state. At
20ms, 20 new users join in the network, each of which has 100
different data. They are randomly connected to the original 34
users.

In the Fig.7 the CDF reveals the recovery process when
20 users join in the synced group. We compare the recovery
process with and without generating snapshot (simply using
actions). It is obvious that snapshot can speed up the process
significantly. By using the snapshot, each user only needs to
exchange snapshots directly instead of sending multiple fetch
interests to fetch the actions, which also reduces the overhead
of whole network.

C. Deletion

Another important feature of RepoSync is its action design,
which can provide the clear trace of dataset modifications and

CDF of Data Delivery (%)

1.0

0.9

0.8 4

0.7 /

0.6 r

05 Jl

0.4

0.3 e

0.2 i [——without Snapshotl,

01 m [—e—with Snapshot

0.0 T T]
0 20 40 60 80 100 120 140 160

Delay of Data Delivery(ms)

Fig. 7: Recovery Process in Complex Topology
Number of Data

35000 3 - ;

‘ i i i %

! ' —4a— With Snapshot
30000 o \ e ; ! ‘|_—e—Without Snapshot |
25000 - 1 ; l l l i
20000 \ | e ‘ ! ‘
15000 - \ l l \‘\?\‘ ; l 1
10000 - X ; ; : \\-\‘ |
5000 4 l l l l . i

0 100 120

40 60 8
Delay of Data Delivery (ms)

Fig. 8: Total Number of Data maintained in 34 users
support the deletion during synchronization. In this section,
we evaluate the deletion performance with the same 34 users
topology. All the users are synchronized with 1000 same data
at the initial point. At 2s a user removes all the data and these
deletion actions will be propagated to the whole system, which
makes all the other users apply the same actions.

The Fig.8 shows the result, which compares the performance
of deletion processed by snapshot and actions. It is obvious that
both of the two methods can achieve the goal of synchronizing
deletion actions, however, with the help of snapshot, the process
is significantly faster.

V. RELATED WORK

Several synchronization applications have been developed.
CCNx Sync [4] and ChronoSync [3] are developed over NDN
to detect and sync the differences among datasets. However as
network level protocols, they do not take data removal into con-
sideration. Because there is no mechanism to record the mod-
ifications of dataset, the removed data will be falsely regarded
as the missing data and brought back. But for synchronization
applications, any kinds of dataset modifications should be sup-
ported during sync process. The custodian-based information
sharing [13] is proposed, where an addition content object is
introduced to record the deleted data. However, it is limited
in handling network partition and conflicts. FileSync/NDN [5]
synchronize the copy of whole dataset directly and exchanged
it among multiple users. It is efficient in the sync modifications
of large scale datasets but is tedious for small editions, since
snapshot should be compared with whole dataset to locate the
modification.

Apart from the research based on NDN, many other sync
applications were also developed, such as LBFS [14], TAPER
[15] and RSYNC [16], which focus on detecting the difference
of datasets. Compared with these solutions, RepoSync outper-
forms in its efficiency, where it only needs to use the actions or
snapshot to instruct the reconciliation, instead of complex pro-
cedures. Besides, the distributed pattern of RepoSync gets rid of
the single-point failure issues. Current peer-to-peer solutions [1]
often suffer from the limitation of mismatch between overlay
and underlay network, where frequent changes of topological
connectivity (caused by users join and leave) would lead to
inefficiency of sync processes.

VI. CONCLUSION

In this paper, we propose RepoSync, a distributed synchro-
nization model that combines action-based and data-based syn-
chronization. Actions are designed to record the modifications
applied to the datasets and can be fetched by other users, who
can follow the actions to update their own datasets. If every
user shares the same knowledge about all users’ action statuses
and apply same actions in order, then synchronization is done.
Snapshot is introduced as data-based synchronization to provide
a copy of dataset, which is used to efficiently synchronize
large scale of modifications. The motivation of combining
actions and snapshot is to take both of their advantages: small
changes of dataset can be easily fetched in actions and large
scale modification can be synchronized efficiently by snapshot.
Security and Privacy issues are the future work of RepoSync
and will be further discussed. However, we believe the concept
of distributed synchronization in RepoSync will encourage the
appearance of other data-sharing applications.

REFERENCES

[1] S. Androutsellis-Theotokis and D. Spinellis, “A survey of peer-to-peer
content distribution technologies,” ACM Comput. Surv., vol. 36, no. 4,
pp. 335-371, 2004.

[2] “Bittorrent,” http://labs.bittorrent.com/experiments/sync.html.

[3] Z. Zhu and A. Afanasyev, “Let’s chronosync: Decentralized dataset
state synchronization in named data networking,” in 2013 2Ist IEEE
International Conference on Network Protocols, ICNP 2013, Géttingen,
Germany, October 7-10, 2013, 2013.

[4] “Ccnx synchronization protocol,” http://www.ccnx.org/releases/latest/
doc/technical/SynchronizationProtocol.html.

[5] J. B. Jared Lindblom, Ming-Chun Huang and L. Zhang, “Filesync/ndn:
Peer-to-peer file sync over named data networking,” NDN Technical
Report NDN-0012, 2013.

[6] A. Afanasyev, Z. Zhu, and L. Zhang, “The Story of ChronoShare, or
How NDN Brought Distributed Secure File Sharing Back,” NDN, NDN
NDN-0029, February 2015.

[71 Z. Zhu, A. Afanasyev, and L. Zhang, “ChronoShare: a new
perspective on effective collaborations in the future Internet,” Poster,
UCLA Tech Forum 2013, May 2013. [Online]. Available: http:
/Iwww.engineer.ucla.edu/techforum/index.html

[8] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K.
Smetters, B. Zhang, G. Tsudik, D. Massey, C. Papadopoulos et al.,
“Named data networking (ndn) project,” Technical Report NDN-0001,
Xerox Palo Alto Research Center-PARC, 2010.

[9] “Ndn repo-ng” [Online]. Available: https://github.com/named-data/
repo-ng

[10] A. Afanasyev, C. Yi, L. Wang, B. Zhang, and L. Zhang, “SNAMP: Secure
namespace mapping to scale ndn forwarding,” in Proceedings of 18th
IEEE Global Internet Symposium (GI 2015), April 2015.

[11] A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM: NDN simulator
for NS-3,” NDN, Technical Report NDN-0005, October 2012.

[12] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godftrey, “Jellyfish: Networking
Data Centers Randomly,” in 9th USENIX Symposium on Networked
Systems Design and Implementation, 2012.

[13] V. Jacobson, R. Braynard, T. Diebert, P. Mahadevan, M. Mosko, N. H.
Briggs, S. Barber, M. F. Plass, I. Solis, E. Uzun, B. Lee, M. Jang,
D. Byun, D. K. Smetters, and J. D. Thornton, “Custodian-based infor-
mation sharing,” IEEE Communications Magazine, vol. 50, no. 7, pp.
38-43, 2012.

[14] A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-bandwidth net-
work file system,” in SOSP, 2001, pp. 174-187.

[15] N. Jain, M. Dahlin, and R. Tewari, “TAPER: tiered approach for
eliminating redundancy in replica synchronization,” in Proceedings of
the FAST ’05 Conference on File and Storage Technologies, December
13-16, 2005, San Francisco, California, USA, 2005.

[16] A. Tridgell and P. Mackerras, “The rsync algorithm,” TR-CS-96-05, 1996.

