(© 2015 IEEE. This is author’s version of this work. It is posted here by permission of IEEE for you personal use. Not for
redistribution. The definitive version was published in the proceedings of IEEE MASS 2015 Workshop on Content-Centric
Networks 2015.

The Story of ChronoShare, or How NDN Brought
Distributed Secure File Sharing Back

Alexander Afanasyev, Zhenkai Zhu, Yingdi Yu, Lijing Wang, and Lixia Zhang

University of California, Los Angeles TTsinghua University, China

{afanasev, zhenkai, yingdi, lixia} @cs.ucla.edu

Abstract—Information sharing among a group of friends or
colleagues in real life is usually a distributed process: we tell
each other interesting or important news without any mandatory
assistance or approval from a third party. Surprisingly, this is
not what happens when sharing files among a group of friends
over the Internet. While the goal of file sharing is to disseminate
files among multiple parties, due to the constraints imposed by
IP’s point-to-point communication model, most of today’s file
sharing applications, such as Dropbox, Google Drive, etc., resort
to a centralized design paradigm: a user first uploads files to the
server (cloud), and the server (cloud) re-distributes these files to
other users, resulting in unnecessary tussles and inefficient data
distribution paths. To bring the truly distributed file sharing
back into the cyberspace, this paper presents ChronoShare, a
distributed file sharing application built on top of the Named
Data Networking (NDN) architecture. By walking through Chro-
noShare design details, we show how file sharing, as well as many
other similar applications, can be effectively implemented over
NDN in a truly distributed and secure manner.

I. PROLOGUE

In the real world, information sharing among a group of
friends or colleagues is usually done in a distributed fashion:
we discover something interesting and tell it to our friends; our
friends tell their friends, and so on. However, when a group of
friends share files using today’s popular applications, such as
DropBox, Box, Google Drive, etc., the sharing process does
not follow this natural information distribution pattern. Instead,
people have to first upload the files to the server (cloud),
which then re-distributes the uploaded files to the designated
recipients. In the real world, this would be almost equivalent
to living in a dystopian society where a designated officer
keeps records on who is communicating with whom and relays
information from the originator to the recipients.

Why cannot we just replicate the real world information
distribution process in the cyberspace? We believe that the
reasons behind this phenomenon are the shortcomings of
today’s networking technology: IP was designed to solve the
problem of supporting a point-to-point conversation between
two entities. However, the success of the Internet has resulted
in IP being used to serve completely different communication
patterns, such as social networking, content distribution, in-
formation sharing, etc., where users are mostly interested in
obtaining desired data rather than reaching a specific node.
One can even observe an ongoing trend toward reducing de-
pendency on centralized servers. For example, in popular peer-
to-peer file sharing applications such as BitTorrent [1], [2],
one can request desired content from any peer and download

wangljl1@mails.tsinghua.edu.cn

from multiple peers in parallel. However instead of simply
requesting the desired data, these P2P applications still have to
consider selection of specific peers and setting up connections
between peers since they are implemented as overlays on top
of TCP/IP’s point-to-point communication channels, which
may take penalties of inefficient file distribution paths and
redundant data transmissions over the same links.

Named Data Networking (NDN) [3], [4], [5] proposed a new
Internet architecture design. NDN incorporates basic principles
that have made the IP protocol suite widely adopted and
globally scaled, including the hourglass protocol architecture
model and end-to-end principle. At the same time, NDN
completely changes the narrow waist layer to make it better
suited for the emerging communication patterns, focusing on
data instead of data containers (hosts). Each data packet in
NDN is named, cryptographically secured, and delivered to
consumer when, and only when, the consumer requests it
with an Interest packet. Moreover, since each piece of the
data is named and secured, it can be cached anywhere in the
network to satisfy future requests; and as the routers maintain
per-request states, Interests for the same data piece can be
aggregated and the returning data packet are multicast to all
requesting consumers.

These and a number of other features from the NDN
architecture enabled us to design and implement Chrono-
Share, a completely distributed file sharing application. Chro-
noShare design is based on a new communication primitive,
ChronoSync [6], which is briefly introduced in Section II.
Being completely distributed, ChronoShare is agnostic to the
network infrastructure support and is mobile-friendly: users
can seamlessly share files among their devices, regardless of
whether these devices are stationary and connected to the
Internet, or constantly moving and have only intermittent or
ad hoc connectivity. ChronoShare uses NDN’s data-centric
security to keep the provenance of each file and enable access
control to the data.

The rest of the paper tells the story of ChronoShare through
a description of its design decisions and implementation
details, exemplifying how the right architecture can enable
“good old” ways of efficient and truly distributed information
sharing among friends. Our freely available prototype imple-
mentation [7] showed promising results, even though it is still
an open-ended story at the time of this writing, with a number
of research questions yet to be fully answered, which we will
elaborate as we walk through the design of ChronoShare.



shared
dataset

Fig. 1: Maintaining knowledge of a shared dataset

II. A FEW WORDS ABOUT CHRONOSYNC

As a new group communication primitive in NDN, Chro-
noSync [6] enables dataset synchronization among a group
of participants in a completely distributed way. This primi-
tive is the most efficient when (1) the synchronized dataset
consists of a number of sub-datasets, each produced by an
individual participant in the sharing group, and (2) each piece
of data is named sequentially in the participant’s namespace
(Figure 1). This assumption of sequentially numbered datasets
significantly simplifies the task of maintaining the up-to-date
knowledge about the dataset, since each sub-dataset can be
completely represented by the participant’s name prefix plus
the latest sequence number under that name. For example
in Figure 1, a complete knowledge about what dataset was
produced by Alice, which consists of five items /Alice/1,
..., /Alice/5, can be compactly represented as a pair of name
prefix /Alice plus the sequence number 5.

ChronoSync encodes the knowledge about the whole dataset
into a compact crypto digest form (e.g., using SHA256), which
we call the state digest. This digest is carried in a special
“sync” Interest which reaches all participants in a group.
Semantically, a sync Interest is a request for any dataset state
changes that happen since the state represented by the digest.
To reach all the participants in a group, the sync Interests can
be multicasted to all participants directly in small networks or
via multicast overlays in large networks.! When an incoming
sync Interest carries a digest that is the same as the locally
computed one, it indicates the local dataset is identical to the
dataset of the sync Interest’s sender. If the state digest carried
in a received Interest is different but has been seen before,
ChronoSync uses a historical log to find out which of the
recently produced data pieces is missed by the digest sender,
and replies with the missing data; otherwise, ChronoSync
uses a state reconciliation method to resolve the differences.
Eventually, sync Interests from all participants will carry an
identical state digest, indicating that knowledge about the
dataset has been synchronized, and there will be a pending
sync Interest at each participant, awaiting for the new data to
be generated.

ChronoSync assures that participants will be notified about
the changes to the dataset as soon as possible. Note that
ChronoSync focuses solely on facilitating the synchronization

I'The specific design of efficient global-scale participant rendezvous is one
of the open-ended parts in ChronoShare story and is under active research.

of the knowledge about the dataset, leaving the decision of
what to do after new items are discovered to the application’s
discretion: fetch all missing data items, fetch some of the
items, or fetch at a later time when better connectivity becomes
available.

III. CHRONOSHARE DESIGN
A. Design Decisions

There are many ways to implement file sharing in NDN,
with varying level of design complexity and communication
efficiency. A straightforward way is to directly synchronize
the file set of the shared folder [8], in a way similar to many
conventional synchronization applications such as rsync [9].
However, this may not be the best design choice, especially
for file sharing among devices with varying connectivity. In
a typical scenario, when one user modifies multiple files in
a shared folder, it may not be desirable to synchronize all
the modified files with all the group members right away—a
member may be connected via cellular network, it has no rush
to get all the updated files, or may only need one specific file
to edit right away.

ChronoShare chose a different approach, which is to treat
individual user operations on files as streams of “actions,’
where each action specifies which file has been modified
and what changes has been made (new file, updated content,
changed file system permissions, or removing a file).> By
applying actions from all participants in a deterministic order,
in combination with the conflict resolution process described
(see Section III-D2), each ChronoShare user can build the
consistent up-to-date view of the shared folder and, when
desired, fetch all missing files. The main advantage of this
action-based approach is that in typical shared folder usage
scenarios, no matter how many changes a user might have
made to the shared folder, there is a straightforward way to
propagate changes to other participants: others just need to
fetch all the actions from the user and apply these actions
to their folder. Actions by each user form a “stream” of data
items, and the streams from all users of a shared folder form a
dataset that can be synchronized using ChronoSync primitive.

B. System Entities, Roles, and Assumptions

ChronoShare is a general-purpose file sharing application,
where users create or join shared folders on one or more of
their devices (Figure 2). Each shared folder is composed of a
set of files, which were either locally created, or discovered
(and subsequently fetched) via user actions. Locally generated
actions update the knowledge about the actions, which is then
synchronized with remote participants using ChronoSync.

Each of the five types of entities in ChronoShare plays a
different role. A ChronoShare user is the basic security entity.
Each user owns a specific namespace,’ and a public/private

2 Actions are carried in NDN data packets, thus they are named and signed,
automatically adding ownership information for each operation.

3The issue of Internet namespace governance is beyond the scope of this
paper; for now we assume the name ownership is supported in the same way
as DNS/DNSSEC.



User Devices | Folder Actions @ Knowledge ::
about actions: ;
ﬂ ) QG :
» N
:/ 04 b %\/ '
) _
applies discoveréd using
owns manage < <:>
creates update .
. ChronoShare : ChronoSync -

Fig. 2: ChronoShare entities

key pair, which has been certified via an appropriate trust
model (e.g., hierarchical trust model certificate deployed on
NDN testbed [10]). For example, if Alice owns /ucla/Alice
namespace, and UCLA authorizes this ownership, then Alice
can use the key to authorize her devices for the shared folder
by issuing device and shared-folder specific certificates.* This
way, each user can participate in multiple different shared
folders using the same or different devices.

User devices are actual holders of user-authorized shared
folders. The ChronoShare design assumes that each device can
move from one network to another, having only intermittent
Internet connectivity or even only ad hoc connectivity to other
devices, getting disconnected any time, or being completely
shut down at some point.

A user can create per-device sub-namespaces under his/her
own namespace and publishes data. Assuming Alice owns
/ucla/Alice namespace, her desktop can publish data us-
ing /ucla/Alice prefix, while her laptop and iPad can be
publishing data using more specific /ucla/Alice/laptop and
/ucla/Alice/iPad prefixes. In this way, we leverage the
unique feature of NDN to specify authority and provenance
of the data in the data name and secure this authority using
cryptographic signatures, while all cryptographic operations
can be completely automated using a trust schema [11].

C. Data Naming

NDN “smashes” communication layers by directly using
application-defined names to deliver packets across the net-
work. Therefore, data naming in an NDN application needs
to be cross-layer cautious. In other words, because an NDN
network forwards each Interest packet using the data name car-
ried in the Interest, the name should contain some ‘“routable”
(unicast or multicast) prefix (i.e., a longest match lookup of
the name against the router FIB should be able to find a
matching entry). At the same time, when/if an Interest reaches
the data producer, the Interest name should then identify the
appropriate application process to which this Interest should be
delivered. Finally, when the application receives the Interest,
it needs to use the Interest name internally to “route” this
Interest to the right method to return the requested data.

4Trust model and specific tools for certificate handling and verification is
currently under active research; see [11] for our recent results.

ChronoShare @ NDN file name

- folder
| /ucla/Alice/iPad creator name
|
F- @ Jaj /chronoshare app name
I = /alpg /<folder> folder name
! file data type
o ~ .
N— /SUbd'r /subdir%2Fc.jpg file name
@ /c.jpg"- /83 file version
File system SO /<segment> file segment

Fig. 3: Cross-layer design for NDN file names

){“ Action data

type: UPDATE
filename: /subdir/c.jpg

)”\‘“ Action name

/ucla/Alice/iPad creator name

/chronoshare app name file version: 83
/<folder> folder name number of segments: 77
/action data type permissions: 0644

/5 action seq#

Fig. 4: Cross-layer design of action names

ChronoShare uses three types of inter-dependent data and
the corresponding naming schemes for files, actions, and
ChronoSync knowledge about the actions. Below we introduce
each of these datasets, their naming design, and their relations.

1) Files: Files in ChronoShare’s shared folder are split
into segments, each segment forming an NDN data packet
that is named, secured, and can be stored in the database
and effectively transmitted over the network. NDN name of
the file segment consists of seven components as illustrated
in Figure 3: creator’s prefix, application name, folder name,
file data type, file name, file version, and file segment. The
creator prefix guides Interests towards the specified creator and
his device of the desired data, serving also as a permanent
file provenance identifier. The next components identify the
application and application instance on the host with the role
similar to port number in IP, while the rest are used internally
by the application to identify a specific file, its version, and
segment of the file.

2) Actions: Similar to the cross-layer consideration of the
file name structure design, ChronoShare defines action names
consisting of creator’s prefix, application name, folder name,
action data type, and action sequence number (Figure 4). Each
user (or each of his or her device) publishes a “stream” of
actions under user’s (or the device’s) namespace, which iden-
tifies the corresponding ChronoShare application and specific
shared folder instance.

Note that the components of the creator’s name, application
name, and folder name are exactly the same in both the
action and the corresponding file names (compare Figure 3
and Figure 4): the file modification by a user in a shared folder
is always paired with the corresponding action item from this
user in the shared folder. Therefore, the content of the action
does not need to include the full NDN name of the file in the
shared folder, only a relative name of the file in the shared
folder and additional meta information about the revision of
this file (version, size, permissions, etc.). Given an action, the



® Sync Interest name € sync Interest data

/mcast multicast X Node: /ucla/Alice/iPad
/chronoshare app name last action seq#: 5
/<folder> folder name X

/b19cali2... state digest

Fig. 5: Cross-layer design of sync Interest names

implicit relationship between action content and the file name
can be used to construct a full NDN name for data retrieval.

3) Knowledge about actions (ChronoSync): The structure
of the action namespace, with the last component being the
action sequence number, is designed specifically to meet the
data naming requirements of ChronoSync [6]. The remaining
question is the proper naming model for ChronoSync Interests:
a sync Interest should fully represent the state of a specific
shared folder, and it should be able to reach every participant.

Following the guidelines [6], ChronoShare defines a four-
component structure for sync Interests: multicast prefix, ap-
plication and folder name, and dataset digest (Figure 5). The
first component is to ensure that every participant receives the
sync Interest; the middle two ensure that the right instances
of ChronoShare will get the Interest; and the last component
is computed over all user names plus their sequence numbers.
Sync Interests should be small in size and volume, multicasting
them directly (or via multicast overlays in large networks) is
a simple way to achieve the goal of completely distributed
propagation of sync Interests to all participants and synchro-
nization of the knowledge about actions on the shared folder.
As mentioned earlier, after the actions are discovered, actions
and corresponding files can be directly pulled from the data
producers, leveraging the benefits of NDN’s built-in multicast
delivery.

Similar to actions, the content of sync Data does not need to
specify the full names of actions. Instead, sync Data specifies
only action creator’s prefix and action sequence number; the
application and folder fields of the action name can be inferred
from the sync name.

D. Folder and File Operations

ChronoShare assumes that each device runs a local file
manager, which detects file system changes and notifies
ChronoShare to create new actions and distribute them to
remote folders via ChronoSync. On the other direction, actions
discovered by ChronoSync are routed to the file manager, who
applies them to the shared folder and resolves any potential
conflicts, e.g., when different users modify the same file.

1) Creating actions from local changes: To detect local
changes to the shared folder, ChronoShare relies on platform-
dependent file watching mechanisms.> Since the same file can
be updated multiple times within very short time periods,
ChronoShare delays (e.g., for 0.5 second) reaction for each
notification from the file watcher. If the same file is being
repeatedly modified within this delay, processing is postponed

3Our prototype implementation uses QT framework which provides these
platform-dependent mechanisms as part of QFileSystemWatcher class.

further, under the assumption that only the “stable” file version
is of interest to the remote users.

During the notification processing, ChronoShare compares
meta-information (permissions, file size, content digest, etc.)
of the file on disk and information stored internally. If the
file was indeed changed (not just re-saved or created by
applying remote action), ChronoShare creates a new UPDATE
or DELETE action, specifying new sequence number of the
action as part of the name (+1 to the last user’s action or 1 for
the first action), a new version number of file (+1 to the locally
known version or O for a new file) and other meta information
as part of the content.

After the action is created, ChronoShare signs, encrypts,
and publishes it in the local database, to be fetched upon
requests. Similarly, content of the modified file is chopped into
segments, each receiving a unique name within a user-device-
shared-folder namespace, signed, encrypted, and published. As
a final operation, ChronoShare notifies ChronoSync module
about the newly available local action, which in turn notifies
the remote participants of the new action.

2) Applying actions and conflict resolution: Whenever
ChronoSync discovers new actions, it immediately passes the
actions to ChronoShare if they are piggybacked in sync Data
packets, otherwise informs ChronoShare to fetch them. If the
fetched actions specify file updates, ChronoShare also fetches
the corresponding segments of the updated file. After this
process, ChronoShare determines how to apply the fetched
action to the shared folder on the local file system. To have
a consistent view of the shared folder, actions from different
participants must be applied in a consistent order. ChronoShare
defines this order based on a per-file versioning: the larger file
version number of a file supersedes any other version. If two
users were working on the same file while being physically
disconnected and assigned the same version, then version of
a user with lexicographically “larger” name prefix is defined
to be the “winner.”” This way, whenever a conflict happens,
ChronoShare automatically determines which is the “correct”
version of the file to be present in the folder.

ChronoShare stores all actions and all file versions perma-
nently or within a user-configured time period. As a result, if
the user determines that the automatic action process made a
mistake, he or she can always instruct ChronoShare to check
out an “older” version, in a way similar to how it is done
in many version control systems. In our prototype, we imple-
mented this functionality leveraging another feature of NDN:
simple name-based inter-process communication. We defined
a REST-like protocol to request lists of all available actions
and file versions, as well as a web browser-based interface
(implemented NDN-JS) [12] to “restore” the specified version
of a file.

Conceptually, ChronoShare allows action aggregation and
periodic snapshots of the shared folder, which would speed
up shared folder initialization, especially when new users join
a shared folder with a long history of changes. However, this
is another open-ended part of our story: the specific design is
on our future work agenda (RepoSync [13] is an example of



our exploration of the design space).

E. Security Considerations

To secure file sharing, ChronoShare relies on several as-
pects of NDN architecture. First, since all NDN data pack-
ets, including sync data, action data, and file segments are
uniquely named and signed, it is impossible for unauthorized
third parties to tamper with the communication: false data
packets would be simply discarded. In the existing NDN
implementations, although malicious users may be able to
disrupt ChronoShare functions using content poisoning [14]
or Interest flooding attacks [14], [15], NDN as a whole
provides all necessary components—per-packet state and two-
way symmetric Interest/Data flows—to effectively mitigate
such attacks [15].

Each data packet in private data folders, including content
and application-specific name components, can be effectively
protected using, for example, a well know shared key or group-
based encryption [16] technologies. In this case, the creator (or
an elected moderator) can authorize new users to join in and
share the folder. All data exchanges among ChronoShare users
can be encrypted for privacy protection, however we are yet to
consider whether user and folder names also need protection
by encryption. Again, ChronoShare privacy is another branch
of our story that does not yet have a concrete denouement.

F. Action and File Retrieval Strategy

1) Ordering and selective retrieval: ChronoSync notifies
ChronoShare ASAP about newly occurred actions, and it is the
responsibility of each specific ChronoShare instance to decide
when and which actions to fetch. Since the action with the
largest sequence number is more likely operating on the latest
version of a file, in our prototype we fetch (and if necessary
apply) new actions for each participant in the order from the
largest sequence number to the smallest. This way, multiple
changes of the file by the same participant will be quickly
reflected in the shared folder (even for changes for the same
file by multiple participants, the latest action(s) from each
participant most likely represent the latest version of the file
in the shared folder). Although our prototype implementation
fetches all versions of all discovered files, this behavior is not
required in general; a mobile ChronoShare instance may elect
to fetch files only when it is WiFi connected or when requested
by the user.

2) Special cases: An action or a file segment can be
fetched directly from the creator, with or without infrastructure
support—this can happen when a requester and the creator are
both connected to the Internet, or both connected to the same
WiFi access point, or simply have an ad hoc connectivity in
between. ChronoShare also leverages NDN ability to get data
by name from any node that has the data. When the creator
device of the requested data moves to a different network, or
when the device is powered off, a requester may still be able
to retrieve the data from router caches.

Howeyver, if the data is not in router cache, the data cannot
be retrieved using the original data name, even if other online

ChronoShare participants have the requested data. This is be-
cause they will not receive the Interest packets as NDN routers
forward interests based on the data creator’s name carried in
the interest packets (towards UCLA in /ucla/Alice case). To
solve this problem, ChronoShare employs the concept of a
link that is included in Interests, alongside to the requested
name [17]. The link is defined to include one or more name
prefixes, which can guide Interest forwarding to the place it
can be satisfied. However, since the link is yet to be supported
by NDN forwarder implementation [18], our ChronoShare
prototype simply prepends the link in front of the requested
data. As a response, the data producer will encapsulates the
requested data inside of the data packet with the concatenated
name.

Mobility: When user’s device moves, it can notify others
through ChronoSync, about its current link, which can be
used to reach it. For example, when Alice’s laptop moves
from UCLA to home, it can inform others about its link
{/Alice—/comcast/westwood/Alice}, so that others can con-
tinue to fetch effectively data with /Alice prefix, attaching this
link to the interests.

Device Offline: When a device that created an action of
a file segment goes offline, the data it created can still be
available on other devices that share the same folder. Thus,
when another ChronoShare device experiences multiple Inter-
est timeouts, it can simply use a link of some other participant,
e.g., selecting this user at random, to request the desired data.
If the folder is shared inside a local environment, it also
possible to use a multicast link {/Alice—/mcast/Alice} (this
feature is implemented in our prototype) to request data from
anybody who may have it.

IV. RELATED WORK

Many cloud-based services like Dropbox (https://www.
dropbox.com/), SugarSync (https://www.sugarsync.com/) and
SpiderOak (https://spideroak.com/) provide their users with
software that is capable of running on most platforms and
maintaining a consistent view of shared files across multiple
devices. However, these services rely on a central server to
coordinate updates to the files across devices, and each device
must consult only this server for the latest information.

Dropbox includes a local area network synchronization
feature to their client software that allows devices to request
the latest copies of shared files from other devices within the
same subnet, bypassing the need to upload and download the
files from the Dropbox cloud. This synchronization feature
takes advantage of the high bandwidth connections that exist
between local devices to speed up the synchronization pro-
cess. However, in order to take advantage of Dropbox LAN
synchronization, all devices involved must be connected to
both the LAN and the Internet at the same time, because the
Dropbox cloud is responsible for negotiating the connections
between the local devices to maintain their security model.

SugarSync is a cloud-based file synchronization service
that behaves much in the same way as Dropbox. However,
where Dropbox prefers to create its own dedicated folder on



a device, SugarSync provides its users with the ability to
synchronize any folder on that device. It also provides support
for platforms Dropbox does not currently support including
Windows Mobile, Symbian and Kindle Fire.

SpiderOak is another cloud-based file synchronization ser-
vice that behaves much in the same way as SugarSync.
SpiderOak provides users with the ability to choose which
folders on the device should be synchronized. SpiderOak
boasts a “zero knowledge” security model where the password
used to encrypt and decrypt shared files is only known to the
user. Not only this makes it impossible to recover data if one
forgets the password, but it also makes sharing folders and files
more difficult. To share folders and files with others, the user
must create a “ShareRoom” with a unique name and password
and securely pass this information to those the user wishes to
share the files with.

In addition to the above mentioned services, other services
like Google Drive and Microsoft Skydrive provide their users
with the ability to edit documents in the cloud directly using
in-browser tools. In addition, these services also offer real-time
collaborative editing for certain document types. However,
an Internet connection is required to access and edit the
documents; the files would not be accessible even if the sharing
devices can directly reach each other. Needless to say that
the files will also be unavailable if the cloud-based services
experience any downtime.

BitTorrent Sync (https://www.getsync.com/) seems resem-
bling ChronoShare most closely. BT Sync discovers peer
devices that have access to a shared folder through one of the
following means: a special BitTorrent tracker, or contacting a
user-defined IP address (serving the same role as the tracker),
or DHT, or searching local network. The peer devices then
inform each other of their own folder content, so that each can
decides what to fetch and from whom. File transfers are done
by the BitTorrent protocol, allowing devices to receive file
pieces from several peers simultaneously. When the contents
of the shared folder change, Sync immediately informs peers
of the changes. Besides no mentioning of mobility or ad hoc
connectivity support, BT Sync differs from ChronoShare in
that it does not eliminate the need for a rendezvous server
(tracker), and that it lacks strong data provenance support.

V. EPILOGUE

We have built a working prototype of ChronoShare and
put it through trial usage. On several occasions, ChronoShare
already helped us to sync up files among nearby laptops, when
other cross-platform file sharing applications failed due to the
failure of WiFi-based Internet connections. However, the story
of ChronoShare, as it can be seen from several remarks in the
design sections, is still at its beginning. We plan to continue
refining the design and implementation, and we would like to
invite all interested parties to help us resolve the identified
research challenges, so that the story will reach its finishing
line.

At the same time, we hope that our story has fulfilled

another, no less important goal of exemplifying the data-
centric application design process in NDN. If we look back
at the ChronoShare design, we can see that all of the design
decisions are about data, data naming, data provenance, and
data fetching. There is no notion about addresses, sessions, or
maintaining connections between hosts. This focus on data
makes mobility support easy. Although device mobility or
disconnectivity leads to special case handling, yet the solution
is still about the data, with the link suggesting the direction of
where the data may be found. Thus, ChronoShare is a good
example of not only how NDN brings back truly distributed
file sharing, but also how NDN ensures that application
developers do not have to waste their time on developing
and debugging various connection-oriented tricks, but focus
primarily on data: how to name the data, who is authorized
to produce the data, who should have access to the data, and
what one wants to do with the data.

REFERENCES

[1] B. Cohen, “The BitTorrent protocol specification,” 2008.

[2] BitTorrent Labs, “BitTorrent Sync,” http://labs.bittorrent.com/
experiments/sync.html.

[3] V. Jacobson et al., “Networking named content,” in Proc. of CoNEXT,
20009.

[4] L. Zhang et al., “Named data networking (NDN) project,” NDN, TR
0001, 2010.

[5] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, kc claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named Data Networking,”
ACM Computer Communication Reviews, June 2014.

[6] Z. Zhu and A. Afanasyev, “Let’s ChronoSync: Decentralized dataset
state synchronization in Named Data Networking,” in Proceedings of
IEEE ICNP, 2013.

[71 A. Afanasyev, Z. Zhu, and L. Wang, “ChronoShare prototype imple-
mentation,” http://github.com/named-data/ChronoShare, 2013.

[8] J. Lindblom, M.-C. Huang, J. Burke, and L. Zhang, “FileSync/NDN:
Peer-to-peer file sync over Named Data Networking,” NDN, TR 0012,
2013.

[9]1 A. Tridgell and P. Mackerras, “The rsync algorithm,” TR-CS-96-05,
1996.

[10] C. Bian, Z. Zhu, A. Afanasyev, E. Uzun, and L. Zhang, “Deploying key
management on NDN testbed,” NDN, TR 0009, Rev. 2, February 2013.
Y. Yu, A. Afanasyev, D. Clark, kc claffy, V. Jacobson, and L. Zhang,
“Schematizing and Automating Trust in Named Data Networking,”
in Proceedings of ACM Information Centric Networking Conference,
September 2015.

W. Shang, J. Thompson, M. Cherkaoui, J. Burke, and L. Zhang,
“NDN.JS: A javascript client library for Named Data Networking,” in
Proc. of INFOCOMM NOMEN Workshop, 2013.

W. Shi and A. Afanasyev, “RepoSync: Combined action-based and data-
based synchronization model in Named Data Network,” in Proceedings
of 18th IEEE Global Internet Symposium (GI 2015), April 2015.

P. Gasti, G. Tsudik, E. Uzun, and L. Zhang, “DoS & DDoS in Named-
Data Networking,” arXiv preprint arXiv:1208.0952, 2012.

A. Afanasyev, P. Mahadevan, 1. Moiseenko, E. Uzun, and L. Zhang, “In-
terest flooding attack and countermeasures in Named Data Networking,”
in Proc. of IFIP Networking, 2013.

A. Kiayias, Y. Tsiounis, and M. Yung, “Group encryption,” in Proc. of
ASIACRYPT, 2007.

A. Afanasyev, C. Yi, L. Wang, B. Zhang, and L. Zhang, “SNAMP:
Secure namespace mapping to scale NDN forwarding,” in Proceedings
of 18th IEEE Global Internet Symposium (GI 2015), April 2015.

A. Afanasyev, J. Shi, B. Zhang, L. Zhang, 1. Moiseenko, Y. Yu,
W. Shang, Y. Li, S. Mastorakis, Y. Huang, J. P. Abraham,
S. DiBenedetto, C. Fan, C. Papadopoulos, D. Pesavento, G. Grassi,
G. Pau, H. Zhang, T. Song, H. Yuan, H. B. Abraham, P. Crowley,
S. O. Amin, V. Lehman, and L. Wang, “NFD Developer’s Guide,” NDN,
Technical Report NDN-0021, Revision 4, May 2015.

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]



