An Algorithmic Approach to Identifying Link Failures

Mohit Lad
University of California, Los Angeles
U.S.A.

with Akash Nanavati, Lixia Zhang at UCLA and Dan Massey at USC/ISI
Can anyone with a host on 64/8 try reaching termforsale.net or creativesound.ca?

• From: Damian Gerow • Date: Thu Oct 31 10:09:13 2002
Background: Routing Infrastructure

- Border Gateway Protocol (BGP)
 - Autonomous Systems exchange routing information

- B tells A: path to reach D is “D: B,C,D”
- For update, B tells A: new path to reach D is D: B,E,F,D”
Faults in Networks

Routing Tree T_0

Routing Tree T_1

Problem I: Two Different Events could cause same observed effect
Faults in Networks

Routing Tree T_0

Routing Tree T_1

Knowing the underlying topology may help eliminate some scenarios, but does not guarantee elimination of problem-I
Challenges in Fault Identification

- Underlying topology not known.
- Path information available from only a select few monitoring points.

Problem Statement:
- Given a set of monitoring points M, and incomplete knowledge of the underlying topology, identify possible sets of candidate faults F.
- PRDC 2004, $IFI=1$
- $IFI \geq 1$, under submission.
Abstraction

- Internet as graph: \((V_N \cup V_D, E_N \cup E_D)\)
 - \(V_N\): AS, \(E_N\): AS peering
 - \(V_D\): prefix/destination
 - \(E_D\): \((p,q)\), \(p \in V_D, q \in V_N\)

- SPVP: Simple Path Vector Protocol
 - Advertise shortest route to all neighbors.
The Basic Approach: From One Monitoring Point

- Let $G = T_0 \cup T_1$
- Let $\text{SPT}(G, M)$ be shortest path tree from M to all V_D in G.
- Initial $T_0 = \text{SPT}(G) = \text{SPT}(T_0 \cup T_1)$
- Final $T_1 = \text{SPT}(G - F) = \text{SPT}(T_0 \cup T_1 - F)$, where F is the failed edge, $|F| = 1$.
- Transform T_0 to T_1 by removing the edge closest to M from G.
- $\text{FindPath}()$: returns the path of candidate edges that could have failed.
Example

Fault Path from Node 1
Use of Additional Views

- Certain candidate fault edges have to be marked valid. e.g. (3,9)
- Final set of candidate failures = $\bigcup F_i - \{\text{valid edges}\}$
- Additional views help, but do not guarantee accurate identification of faults.
1. Route to destination 15 gets shorter; an indication of link addition
2. Same algorithm can be applied with the role of T_0 and T_1 reversed
3. Can we deal with a scenarios where one link fails and another is added?
Example

No more links can be removed
With original Roles of T_0, T_1

Switch roles of T_0 and T_1
Now, edge (2,15) can be removed.
Thus, edge (2,15) labeled as appeared.
Procedures similar to fault case applied
to find out candidate appeared edges.
Summary of Approach

Exploit Symmetry in identification of failed and appeared edges
Final Words

- For a single fault/recovery, our approach can find the candidates for failed or recovered edges.

- Ongoing and Future Work,
 - case of multiple failures (under submission)
 - partial link failures
 - Non-shortest path routing