Destination Reachability and BGP Convergence Time

Beichuan Zhang (UCLA)
Dan Massey (Colorado State)
Lixia Zhang (UCLA)
Packet Delivery and Routing Dynamics

- The primary goal of routing is to deliver packets.
- Routing behaviors, such as convergence and stability, should be considered with respect to packet delivery.
- This work is one step in this direction.
 - Develop performance metrics for packet delivery
 - Analyze the impact of BGP convergence time on packet delivery in a simple case.
Destination Reachability

- **D is connected** at time t when there exists at least one path from S to D.
 - decided by physical topology
- **D is reachable** at time t when packets sent from S at time t will eventually reach D.
 - decided by both topology and routing.
Extra Downtime

- \(e(s) = \text{downtime}(s) - \text{disconnected}(s) \)
- \(\text{downtime}(s) \): total time that D is unreachable from S.
- \(\text{disconnected}(s) \): total time that D is disconnected from S.
- \(e(s) \) measures the additional loss of reachability due to routing dynamics following topological changes.
False Uptime

- $f(s)$: The time period during which S has a route to D, but packets sent by S will be eventually dropped in the network.
- It measures the overhead on network resources.
Use $e(s)$ and $f(s)$ as metrics.

It reflects the impact of routing dynamics on packet delivery.

Need to know routing states in all intermediate routers over time. Only possible in analysis and simulations.
Case Study

- When the destination is disconnected for a period of time, what is its reachability viewed from different sources?
 - D is disconnected at time d_1. It takes time $T_{\text{down}}(s)$ for S to converge.
 - D is re-connected at time d_2. It takes time $T_{\text{up}}(s)$ for S to converge.
 - Total disconnection time is $u = d_2 - d_1$. Calculate $e(s)$ and $f(s)$.

- Use BGP as the routing protocol.
- Use simulations to verify analysis.
Ideal Routing Convergence

\[T_{down}(s) = s1 - d1 \]

\[f(s) = T_{down}(s) + \text{dist}(s) \]
Ideal Routing Convergence

- \(T_{up}(s) = s_2 - d_2 \)
- \(e(s) = T_{up}(s) + \text{dist}(s) \)
BGP Convergence

- Path Vector Protocol for inter-domain Routing
- BGP Slow convergence
 - Path exploration slows down T_{down} significantly.
 - MRAI slows down T_{up}.
 - Overall $T_{down} >> T_{up}$

Convergence Improvement Proposals
- Reduce or eliminate path exploration, therefore $T_{down} << T_{up}$

What’s the impact of varying T_{down} on packet delivery?
Increase T_{down}

- $e(s) = T_{up}(s) + dist(s)$
- $f(s) = T_{down}(s) + dist(s)$
Worst Case

- \(T_{\text{down}}(s) = s2 - d1 \), \(T_{\text{up}}(s) = s2 - d2 \)
- \(T_{\text{down}}(s) = T_{\text{up}}(s) + u \)
Long T_{down}

- $T_{down}(s) > T_{up}(s) + u$
- Longer $T_{down}(s)$ results in shorter $e(s)$ and $f(s)$!
Long T_{down}

- When the destination’s failure is short, not adapt to the failure allows the source to avoid the T_{up} delay.
 - $T_{down}(s) > T_{up}(s) + u$

- BGP convergence improvement proposals could have negative impact on packet delivery during transient failures.
Simulation

- Use SSFNet to simulate BGP
- Topology of 110 nodes, derived from Internet AS topology.
- Use “Ghost Flushing” to represent convergence improvement proposals.
- Three scenarios:
 - BGP ($u = 60s$)
 - BGP + GF ($u = 60s$)
 - BGP ($u = 960s$)
Extra Downtime

- \(T_{down}(s) > T_{up}(s) + u \) for sources more than 3 hops away when \(u=60s \).
False Uptime

BGP-GF has shorter $f(s)$ than BGP
By reducing T_{down}, BGP-GF has *mixed* impact on packet delivery, shorter $f(s)$ but longer $e(s)$.
Packet delivery is the primary goal of routing. Extra downtime and false uptime reflect the impact of routing on packet delivery. Current BGP convergence improvement proposals could have negative impact on packet delivery during transient failures.

Possible Solutions
- Mask transient failures
- Shorten T_{up}.
Thanks !
Some Numbers

- 40% failures last less than 1 minute, 80% failures last less than 15 minutes.
 - Iannaccone et al. on Sprint network
- BGP T_{down} can be as many as several minutes longer than T_{up}.
 - Labovitz et al. from Internet measurement.
- Therefore, the case of $T_{down}(s) > T_{up}(s) + u$ may indeed exist in operational Internet.
Possible Solutions

- Shorten T_{up} too.
 - Need reduce MRAI, which may affect other BGP behaviors.

- Mask transient failures
 - Don’t send withdrawal if the failure is short, but how to predict the failure’s duration?