
1To appear in IEEE/ACM Trans. on Networking, Oct. 2001.

IDMaps: A Global Internet Host Distance
Estimation Service

P. Francis S. Jamin C. Jin Y. Jin D. Raz Y. Shavitt L. Zhang

Abstract—There is an increasing need to quickly and effi-
ciently learn network distances, in terms of metrics such as
latency or bandwidth, between Internet hosts. For example,
Internet content providers often place data and server mirrors
throughout the Internet to improve access latency for clients,
and it is necessary to direct clients to the nearest mirrors based
on some distance metric in order to realize the benefit of mir-
rors. We suggest a scalable Internet-wide architecture, called
IDMaps, which measures and disseminates distance information
on the global Internet. Higher-level services can collect such
distance information to build a virtual distance map of the Inter-
net and estimate the distance between any pair of IP addresses.
We present our solutions to the measurement server placement
and distance map construction problems in IDMaps. We show
that IDMaps can indeed provide useful distance estimations to
applications such as nearest mirror selection.

Keywords: network service, distributed algorithms, scalability,
modeling.

I. INTRODUCTION

It is increasingly the case that a given service request from
a client can be fulfilled by one of several Internet servers. Ex-
amples range from short-lived interactions such as a single Web
page access, to the long-term peering relationship between two
news (NNTP) servers. In all such interactions, all other things
being equal, it is advantageous to access the “nearest” server
with low latency or high bandwidth. Even when all other things
are not equal, for instance, when different Web servers have dif-
ferent response times, it is still useful to include the distance to
each candidate host as a factor in making a selection [1].

This project is funded in part by NSF grant number ANI-9876541.
Sugih Jamin is further supported by the NSF CAREER Award ANI-
9734145 and the Presidential Early Career Award for Scientists and En-
gineers (PECASE) 1999 and by the Alfred P. Sloan Research Fellow-
ship 2001. Additional funding is provided by MCI Worldcom, Lucent
Bell-Labs, and Fujitsu Laboratories America, and by equipment grants
from Sun Microsystems Inc. and Compaq Corp.

P. Francis is with Tahoe Networks, San Jose, CA, USA (e-
mail: paul@francis.com). S. Jamin and C. Jin are with the
EECS Dept., University of Michigan, Ann Arbor, MI, USA (e-
mail:

�
jamin,chengjin � @eecs.umich.edu). Y. Jin and L. Zhang

are with the CS Dept., UCLA, Los Angeles, CA, USA (e-mail:�
yjin,lixia � @cs.ucla.edu). Danny Raz is with the CS Dept., Technion,

Haifa, Israel, and with Bell Labs, Lucent Technologies, Holmdel, NJ
(http://www.cs.technion.ac.il/˜danny). Yuval Shavitt is with the De-
partment of Electrical Engineering–Systems, Tel Aviv University, Is-
rael, and with Bell Labs, Lucent Technologies, Holmdel, NJ (e-mail:
shavitt@eng.tau.ac.il).

One method to obtain distance information is for the initiating
host to measure it itself, using either unicast (ping, trace-
route) or multicast (expanding ring search) tools. While these
tools are easy to use, their utility is generally limited by their
overhead. For instance, the latency of running a single trace-
route can exceed the latency of a Web page access itself. More
important still, a large number of hosts making independent and
frequent measurements could have a severe impact on the Inter-
net. Ideally, measurements made by one system (host or router)
should be made available, with low overhead, to other hosts.

A useful general service for the Internet should enable a host
to quickly and efficiently learn the distance between any two
hosts. To be widely useful, such a service should provide an an-
swer with a delay overhead less than the speed-up gained using
the service. A simple protocol for such a service, SONAR, was
discussed in the IETF as early as February 1996 [2], and in April
1997 as a more general service called HOPS (Host Proximity
Service) [3]. Both of these efforts proposed lightweight client-
server query/reply protocols similar to the DNS query/reply pro-
tocol. The specifications also required each server to produce
an answer in a very short time—preferably, though not neces-
sarily, by using information already stored locally. As stated,
both services need some underlying measurement infrastructure
to provide the distance measurements.

In this paper, we propose a global architecture for Inter-
net host distance estimation and distribution which we call
“IDMaps” (Internet Distance Map Service). We intend to have
IDMaps be the underlying service that provides the distance in-
formation used by SONAR/HOPS. We discuss the basic IDMaps
architecture and show, through Internet experiments and simula-
tions, that our approach can indeed provide useful distance in-
formation.

II. OVERVIEW OF IDMAPS

A. IDMaps Goals

A distance estimation service could be called upon to support
a wide range of applications, from a client’s accessing a single
page once, to Network Time Protocol (NTP) servers establishing
long term peering relationships with each another. Each applica-
tion that can potentially find a distance estimation service useful
will have its own set of requirements. IDMaps is not designed
to satisfy all conceivable requirements for distance estimation
service. For instance, due to technology constraints and the need
for global scalability of the service, we cannot hope for a general
IDMaps service to provide near-instantaneous information about
current delays and bandwidth seen between two Internet hosts,

2

even though such information could be very useful to some ap-
plications.

Rather, we have taken the opposite tack—we determined
roughly the best service we may be able to provide given tech-
nology constraints and the need for global scalability of the
service, and then considered whether there are applications for
which this level of service would be useful. We now turn to a
discussion of the resulting goals.

Separation of Functions: We envision IDMaps as an underly-
ing measurement infrastructure to support a distance informa-
tion query/reply service such as SONAR. The full separation of
IDMaps and the query/reply service is necessary because the
different functionalities place different constraints on the two
systems. The requirements for IDMaps are relative accuracy of
distance measurements with low measurement overheads, while
the requirements for the query/reply service are low query la-
tency, high aggregate query throughput, and reasonable storage
requirements. By decoupling the different functionalities, we
can streamline the design of IDMaps to perform measurements
with low overheads and allow the query/reply service to make
flexible uses of the measured distances.

Distance Metrics: Our goal is to provide distance information
in terms of latency (e.g., round-trip delay) and, where possible,
bandwidth. Latency is the easiest distance metric to provide, and
luckily the most generally useful. There are two reasons latency
information is easy to provide. First, it is easy to measure. A
small number of packets can produce a good coarse-grain esti-
mate. Second, two different paths may have the same latency
such that while our probe packets may not travel the same path
as the path actually taken by the users’ data packet, the reported
latency would still be useful (see Fig. 2 and accompanying text).
Bandwidth is also clearly important for many applications, but
compared to latency, bandwidth is more difficult to provide. It is
more expensive to measure, and it is also more sensitive to the
exact path—a single low-bandwidth link dictates the bandwidth
for the whole path.

Accuracy of the Distance Information: We believe highly ac-
curate distance estimates (say, within 5% of the distance mea-
sured by the end-host itself) are impossible to achieve efficiently
for a large scale Internet service. While we may be able to
achieve this level of accuracy for each path measured, an es-
timate based on triangulation of such measurements will see an
accumulation of the error terms. Instead, our goal is to obtain ac-
curacy within a factor of 2 with very high probability and often
better than that. We expect this level of accuracy to be adequate
for SONAR and HOPS servers. Being able to distinguish sys-
tems that are very close, very far, or somewhere in between is
useful for a wide range of applications. For those that require
more accurate measurements, they may at least use this coarse-
grained information as a hint to server selection.

Timeliness of the Distance Information: We must consider
two kinds of distance information—load sensitive and “raw”
(distances obtained assuming no load on the network, which
generally can be approximated by saving the minimum of a num-
ber of measurements). In the interest of scalability, we plan to

provide the raw distance information with an update frequency
on the order of days, or if necessary, hours. In other words,
the distance information will not reflect transient network con-
ditions, and will only adjust to “permanent” topology changes.
Instantaneous or near-instantaneous (within 15 or 20 seconds)
load information is both impossible to distribute globally and of
diminishing importance to future applications: as the Internet
moves to higher and higher speed, the propagation delay will
become the dominant factor in distance measurements.1

Scope of the Distance Information: We assume that the dis-
tance information applies only to the “public” portion of the
Internet—the backbone networks, BGP information, and pos-
sibly the public side of firewalls and border routers of private
networks. Even if distance information of private networks were
obtainable, it may be desirable not to include it for scalability
reasons. This is not to suggest that distance information inside
private networks is not important. We believe the architecture
presented in this proposal can be replicated within a private net-
work, but otherwise do not address distance measurement within
private networks.

B. Alternative Architectures and Related Works

The primary motivation of IDMaps is to provide an estimate
of the distance between any two valid IP addresses on the Inter-
net. It is important to discuss this motivation because it signif-
icantly differentiates IDMaps from other services that also pro-
vide distance information, e.g., the SPAND and Remos projects
[4], [5], which are localized service that provides only distance
information between hosts close to a distance server and remote
hosts on the Internet. Such a service is simpler to provide be-
cause the amount of information each distance server has to
work with scales proportionally to the number of possible des-
tinations (�). When all sites on the Internet required distance
service however, the aggregated load of localized distance ser-
vice scales on the order of ��� . The amount of measurement
traffic under IDMaps will likely be much smaller than the ���
order because of the global sharing of distance information and
as a result of our application of graph compression techniques
such as � -spanners (see Sections III-C.1 and IV-D). The admin-
istrative cost of setting up and maintaining IDMaps service is
also fixed.

Stemm et al. in [4] argue for the use of passive monitoring be-
cause it does not send additional traffic to perturb actual Internet
traffic. Although the non-intrusive nature of passive monitoring
is very appealing, it has several limitations:
1. Passive monitoring can only measure regions of the Internet
that application traffic has previously traversed. For example, a
client trying to choose the nearest among multiple copies (or mir-
rors) of a Web server requires distance information to all mirrors,
whereas a passive monitoring system can only provide distance
information to mirrors that have been previously accessed.
2. When Internet topology changes, passive monitoring may be
�
While propagation delay is lower bounded by geographic distance, it

is determined by topological distance. Given the dynamic nature of In-
ternet topology, changes to topological distances can be scalably tracked
only by an automatic system such as IDMaps.

3

forced to re-collect most, if not all, of its distance information.
Distances in IDMaps are collected from multiple, intermediate,
points on the Internet, this allows the distance database to locate
any topological change and update only those actually effected.
3. Localized passive monitoring system requires human efforts
to install and maintain it at each site. The responsibility of de-
ploying passive monitoring based distance service rests on the
administrator of each individual network and requires certain
expertise and resources. With IDMaps, network administrators
only need to install a querying system, which can be standard-
ized similar to the DNS (Domain Name System).
4. Finally, passive monitoring typically requires measurement
or snooping of network traffic, which may raise privacy and se-
curity concerns.2

Another alternative to providing distance information on the
Internet is by charting the physical connectivities between nodes
(hosts and routers) on the Internet and computing a spanning
tree on the resulting connectivity map. Distances between pairs
of nodes can then be estimated by their distances on the span-
ning tree. We call this alternative the hop-by-hop approach. The
projects described in [6], [7], for example, provide snapshots of
the Internet topology at the hop-by-hop level. This approach
largely relies on sending ICMP (Internet Control Message Pro-
tocol) packets to chart the Internet. To minimize perturbation
to the network, each snapshot of the topology is usually taken
over a period of weeks, hence the result does not adapt well to
topological changes. More seriously however, due to the recent
increase in security awareness on the Internet, such measurement
probes are often mistaken for intrusion attempts.

III. IDMAPS ARCHITECTURE

This section outlines the IDMaps architecture. Specifically,
we address the following three questions:
1. What form does the distance information take?
2. What are IDMaps’ components?
3. How should the distance information be disseminated?

A. Various Forms of Distance Information

The conceptually simplest and most accurate form of distance
information IDMaps can measure consists of distances between
any pair of globally reachable IP addresses3 (as shown in Fig. 1).
The distance from one IP address to another is then determined
by simply indexing the list to the appropriate entry (using a hash-
ing algorithm) and reading the number. The large scale of this
information (on the order of ��� , where � , number of hosts,
could be hundreds of millions) makes this simple form of dis-
tance infeasible—as does the task of finding all such hosts in an
ever-changing Internet in the first place.

The next simplest would be to measure the distances from
every globally reachable Address Prefix (AP) on the Internet to
�
Active measurements can also raise security concerns, e.g., Denial

of Service attacks. We try to address these security concerns in the
design of protocols used in IDMaps, which will be reported in a future
publication.�

Understanding here that different IP addresses may be reachable at
different times, given technologies like NAT and dial-up Internet access.

Host in AP
(Address Prefix) Host in AP near Box

B + P cost2

B = number of Boxes

(B = ???)

A + P’ cost2

A = number of ASs

P’ = number of BGP prefixes

(A << P)

Host in BGP prefix in AS
(Autonomous System)

H cost2

H = number of Hosts

P cost2

P = number of APs

(P << H)

Host

Raw distance

Fig. 1. Various Forms of Distance Information

every other (Fig. 1). An AP is a consecutive address range of
IP addresses within which all hosts with assigned addresses are
equidistant (with some tolerance) to the rest of the Internet. De-
termining the distance from one IP address to another is only
slightly more complicated than the first approach—each IP ad-
dress is first mapped into its AP, and the AP is then indexed in
the list. Unlike determining the global set of IP addresses, de-
termining the set of APs, while non-trivial, seems feasible (see
Section III-D). The scale of the information, however, is still
prohibitive. The number of assigned CIDR blocks [8] is around
100,000 as of March 2001 and growing; there are probably sev-
eral times as many distinct APs as there are CIDR blocks. Prob-
ing, disseminating, and storing the full list of ��� ��� pairs of AP-
AP distances (easily a terabyte, given 200,000 APs, assuming
on average 2 AP per CIDR block, and 25 bytes per list entry) is
probably out of the question.

Clearly some way of further compressing this information is
needed. One way is to keep a list of distances from every Au-
tonomous System (AS) to every other. The AS is the unit of
path information carried by the BGP inter-domain routing pro-
tocol. BGP also maps blocks of IP addresses into their ASs. This
shrinks the size of the information to � �
	��
� , where � (�����)
is the number of ASs and ��� the number of BGP-advertised IP
address blocks (not an AP by the above definition, but of the
same order of magnitude in size). While still a large list, main-
taining it is certainly feasible (there are about 10,000 ASs as of
March 2001). The resulting accuracy of the estimated distances,
however, is highly suspect. Many ASs are global in scope, and
multiple ASs can cover the same geographic area. It is often the
case that some IP hosts are very close to each other (both in ge-
ographical and latency terms) yet belong to different ASs, while
other IP hosts that are very far apart belong to the same AS.4

Yet another form of distance information includes some clus-
tering of APs, but at a smaller unit than the AS. We can select
certain systems, which we will call Tracers, to be distributed
around the Internet, so that every AP is relatively close to one
or more Tracers. The distances between these Tracers are then
measured, and so are the distances between APs and their near-
est Tracer(s). The distance between any two APs can then be
calculated as the sum of the distance from each AP to its nearest
�
If the internal topology of each AS is known a more accurate distance

can be computed as the shortest path across the internal topologies of
transit ASs between the two hosts.

4

Tracer, and the distance between the two Tracers. The resulting
accuracy depends on the number of Tracers and where they are
located. Assuming that we can manipulate the number and loca-
tion of Tracers, we have a tuning knob for increasing accuracy at
the expense of measuring more raw distances.

This approach scales as � � 	 � , where � is the number of
Tracers. Assuming that � , the number of APs, is a manageable
number (no more than several hundred thousand), the question
then becomes, how big should we make � ? If � is on the order
of 10,000, then the size of the list is quite large. If, however, � is
on the order of 500, then the � � component is roughly the same
as the � component and, at least in terms of simple storage and
lookup, definitely manageable.

Of the four forms of distance information mentioned above,
the last one appears to have the best scalability with reasonable
estimation accuracy. We decided to use this form of distance
information in IDMaps. There are thus three main components
of IDMaps: APs, Tracers, and the raw distances, which we call
“Virtual Links” (VLs). We further differentiate VLs into two
types: those between Tracers5 (Tracer-Tracer VLs) and those
between Tracers and APs (Tracer-AP VLs). Before we exam-
ine each component in greater detail, we first evaluate the basic
assumption that we can estimate the distance between two points
as the sum of distances between intermediate points. In analytic
terms, this assumption relates to whether the triangle inequality
holds.

Triangulation on the Internet. Given a graph � with a set
of vertices � , a cost function � is said to satisfy the trian-
gle inequality if for all vertices � , � , � in a graph, � ���	�
� ���
� �
����� � 	�� �����
� � [9] (in the remainder of the paper, we use the
notation ���	��� � interchangeably with � �
�	��� �). If distances �
����� �
and �
����� � are known, then from the triangle inequality we have
that ���	�
� � is bounded above by ���	��� � 	 �
���
� � , and below by� ���	��� ��� �����
� � � . If either of the two distances is small relative
to the other, the bound is tight and the estimate accurate. Deriv-
ing a distance estimate from this bound has been referred to as
“triangulation” [10].

A key point to keep in mind is that any time we estimate a
distance from � to � based on distances to an intermediary � , we
are to some degree relying on what we will term efficient rout-
ing: that Internet routing does indeed strive to find low-latency
paths, and that the routes used by two nearby hosts will not
be drastically different from each other. This assumption can
be violated due to policy-based routing, and also by the use of
large layer-2 “clouds” by ISPs that are invisible at the network
layer, and hence contain significantly complex topology that are
completely hidden from network-layer-only viewpoints such as
available to IDMaps. If efficient routing is violated, it can ren-
der the triangle inequality incorrect: ���	�
� � might be much higher
than ���	��� � 	 �����
� � or much lower than

� ���	��� ��� �
����� � � . We now
present results from rudimentary experiments done on the Inter-

�
The actual distances used would not include the legs from the Tracers

to their backbone routers, since this part of the path is not used by other
hosts. For the sake of readability, however, we refer to the distance
between one Tracer’s router and another Tracer’s router simply as the
distance between the two Tracers.

Data Set Hosts Total Paths Shortest Paths�������
26 12,192 590�����
31 17,448 804����� !
30 15,050 733����� "
33 16,878 830����� #
33 27,366 980����� $
32 26,936 960�% ����
45 128,244 2,663�% ��
48 138,468 2,790�% �� !
39 95,925 2,229�&!'���
33 31,955 1,047�&!'�
73 341,674 5,138

TABLE I

NUMBER OF TRIANGLES OBTAINED FROM EACH DATA SET.

net to explore the feasibility of using triangulation to estimate
distances. Our intention here is not to test whether the triangle
inequality holds over all parts of the Internet (indeed it does not
[11]), but only whether using triangulation to estimate distances
on the Internet, independent of IDMaps, is at least feasible.

We analyze end-to-end traceroute measurements col-
lected using the network probe daemon (NPD) tool described
in [12]. A number of sites on the Internet were recruited to run
NPDs. At random intervals, each NPD measured the route to
another NPD site using traceroute. In this paper we analyze
the traceroute data collected by the NPDs in two experi-
ments: the Nov. 3 to Dec. 21, 1995 experiment ((*)) and the
Sep. 4, 1996 to Jan. 24, 1997 experiment ((,+). We split exper-
iment (*) into 6 data sets, and experiment (-+ into 3 data sets.
The data sets are non-overlapping in time. Thirty-three hosts dis-
tributed around the globe participated in experiment (.) , 48 in
experiment (-+ . A description of the measurement process, such
as inter-measurement interval, number of measurements per pe-
riod, etc., and data cleansing done on the collected data are avail-
able in [12] for the (*) data set and in [13] for the (,+ data set.

In addition, we collected two more data sets, (0/213) and (0/21 + ,
using the Multiple Traceroute Gateways [14] during Jan 2000.
The Multiple Traceroute Gateways (MTG) are a collection of
voluntary Web sites, each of which can run traceroute from
itself to a specified remote address. Data set (0/213) contains
traceroutes from 33 Traceroute Gateways measuring dis-
tances to all the others continuously in a round-robin fashion
over a period of five days. Each round took 20 to 40 minutes.
Data set (0/415+ contains the traceroutes from 74 Traceroute
Gateways measuring distances to all the others exactly once.

For each data set, we estimate the latency between every
traceroute source, 6 , and every traceroute destination,7

, as the minimum of the end-to-end round-trip-times reported
across all of the traceroutes from 6 to

7
. From each data

set we then compute a set of triangles, each involving three such
minimum latency traceroutes: from a host � to another host
� , from host � to a third host � , and from host � to host � . Col-
umn 2 of Table I lists the number of triangles we obtained from
each of the 11 data sets. Column 3 lists the number of shortest-
path triangles computed from each data set. Given all the � ’s
that can potentially be used to estimate the distance ���	��� � as
���	��� � 	 �����
� � , we call the path that uses the � that provides the
smallest ���	��� � 	��
����� � the shortest-path triangle.

5

We use only the additive form of triangulation (estimating
�
����� � using �
����� � 	 �����
� �) in this paper because concatenation of
distances involving multiple intermediary points is much simpler
for the additive form and, as we show below, the resulting esti-
mates are acceptable for our purposes. We emphasize that com-
puting distances on the Internet is not a straight forward process
and there is future work needed on distance measurement and
estimation; however we also caution against interpreting the tri-
angulation results presented here as an indication of how well
IDMaps will perform. We expect IDMaps to perform better than
the results presented here due to the more deliberate placement
of Tracers under IDMaps. For example, we expect the additive
form of triangulation to hold more prevalently when Tracers are
placed strategically and addresses are aggregated into APs (see
Sections III-B and IV-D).

Fig. 2 shows the ratios of ����� � ������ � �	� � � � � � for all shortest-path trian-
gles in our data sets. The closer this ratio is to 1, the smaller the
triangulation error. Without differentiating which curves belong
to which data set, we observe that between 75% and 90% of tri-
angulation estimates fall within a factor of 2 of the real distances.
We reported similar results involving only the (*) and (,+ data
sets in an earlier version of this work ([15], though an analysis
error in that paper incorrectly reports the figures), and this was
also shown by [11]. Studying the extreme cases at both ends
of the distributions, we found that ���	��� � being orders of mag-
nitude smaller than ���	��� � 	 �����
� � is mostly caused by � and �
being co-located. On the other extreme, ���	��� � being much larger
than ���	��� � 	 �����
� � is mostly caused by large ���	�
� � . We were not
able to track down why these paths have very long distances in
general (see, however, [11]).

For comparative purposes, we also show in Fig. 3 the cumula-
tive distribution function of the triangulation error from triangles
involving all potential � ’s. The figure shows, for example, that
the actual distance between � and � in about 40% of the triangles
formed is shorter than half the sum of �
�	��� � and �
���
� � , which
gives good indication that triangulating shortest paths will more
closely approximate the actual distances. Note that for ���	��� � to
be 100 times longer than ���	��� � 	 �
����� � is as bad as for it to be
100 times shorter.

In summary, while we cannot as yet make any claim as to the
potential accuracy of triangulation in IDMaps, results presented
in this section suffice to argue that the use of the additive form
of triangulation as a method to estimate distances on the Internet
is feasible.

B. Tracer Placement

As mentioned above, the resulting accuracy of IDMaps dis-
tances depends on the number of Tracers and where they are
located. Ideally, Tracers should be placed where they are able
to obtain accurate raw distance information. In this section, we
briefly review two graph theoretic approaches we can apply to
determine the number and placement of Tracers, namely the
 -
HST and the minimum K-center algorithms. These algorithms
have been used to determine placement of fire stations, ambu-
lance placement, etc. [16]. More formal descriptions of these
algorithms are available in [17], [18]. The assumption we make

in applying these algorithms to the Tracer placement problem is
that the most accurate distance information can be obtained by
minimizing the maximum distance between an AP and its near-
est Tracer. Given a graph, these algorithms partition it into sub-
graphs satisfying certain conditions. Since IDMaps cannot as-
sume prior knowledge of Internet topology, these algorithms are
mostly useful in informing and evaluating our placement heuris-
tics. We describe three placement heuristics in subsection III-
B.3.

We use the generic term “center” in place of “Tracer” in the
following descriptions. We present two variants of the center
placement problem: in the first case, the maximal center-node
distance is given, and one is required to find the minimal number
of centers needed to satisfy this constrain; in the second case, the
number of centers is given, and one needs to decide the locations
of these centers such that the maximum distance between a node
and the nearest center is minimized. Each of the two algorithms
described below can be used to solve both of these problems.

Number of Centers. Given a network � with � nodes (that is,
the topology is a priori known), and a bound � , one has to find
a smallest set of centers ��
 such that the distance between any
node � and its nearest center ��������
 is bounded by � . The
performance metric (����� ���) is the size of this set (

� ��
 �). More
formally, find the minimal � such that there is a set ��
�� �
with

� ��
 � � � and ! "#� �%$ 7 �	"	���'& �%�(� , where �'& is the
nearest center to " .

Center Placement. For the placement of a given number of
centers, one could consider the following metric (� � ��)+*): given
a network � with � nodes, and a number � , find a set of centers
��
 of size � that minimizes the maximum distance between
a node and the nearest center. This problem is known as the
minimum � -center problem.

While our Tracer placement problem is similar in spirit to the
center placement problem articulated above, for Tracer place-
ment we have to consider other practical deployment issues, pri-
marily that we do not know the Internet topology a priori, and
that the Internet topology changes dynamically. Furthermore, we
must consider the willingness of network owners to host Trac-
ers, and the managerial and financial constraints on the number
of Tracers we can afford to deploy and maintain. Hence our goal
is not to determine the minimum number of Tracers required to
provide distance estimates at a given precision, but rather to eval-
uate the effectiveness of various Tracer placement and number of
Tracers. In Section IV-D.4 we present results from experiments
with different number of Tracers. We use the graph theoretic
results only as yard sticks to evaluate the performance of our
placement heuristics presented in Section III-B.3, we do not in-
tend to directly use these graph theoretic algorithms in actual
deployment of Tracers for reasons cited above.

B.1
 -HST

We present in this subsection a placement algorithm based on
k-hierarchically well-separated trees (
 -HST) [17]. Intuitively,
think of the algorithm that generates a
 -HST as a top-down
graph partitioning algorithm that transforms a graph into a tree
of partitions by recursively dividing far-apart nodes in each parti-

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3

C
D

F

(a,c)/((a,b)+(b,c))

D1.1
D1.2
D1.3
D1.4
D1.5
D1.6
D2.1
D2.2
D2.3
D3.1
D3.2

Fig. 2. Cumulative Distribution Function (CDF) of
the ratio of ���	��� ��� � ���	��� �
	 �
����� � � for shortest-path
triangles.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3

C
D

F

(a,c)/((a,b)+(b,c))

D1.1
D1.2
D1.3
D1.4
D1.5
D1.6
D2.1
D2.2
D2.3
D3.1
D3.2

Fig. 3. Cumulative Distribution Function (CDF) of
the ratio of �
����� ��� � �
����� � 	 �
����� � � for all triangles.

Algorithm 1 (Greedy placement)

1. �������
2. 	
����
��������
3. while (����
�����	������)
4. �����! "	
5. �����$#%�'&
6. 	(����
��������

Fig. 4. Greedy placement of centers on an
 -HST tree.

tion into several smaller child partitions. The diameter of a par-
tition is defined to be the furthest distance between two nodes
in the partition. More formally, the
 -HST algorithm consists
of two phases. In the first phase, the graph is recursively parti-
tioned as follows: A node is arbitrarily selected from the current
(parent) partition, and all the nodes that are within a random ra-
dius from this node form a new (child) partition. The value of
the radius of the child partition is a factor of
 smaller than the
diameter of the parent partition. This process recurses for each
partition, until each node is in a partition of its own. We then
obtain a tree of partitions with the root node being the entire net-
work and leaf nodes being individual nodes in the network. In
the second phase, a virtual node is assigned to each of the par-
titions on each level. Each virtual node in a parent partition be-
comes the parent of the virtual nodes of the child partitions. The
length of the links from a virtual node to its children is half the
partition diameter. We embed the virtual nodes in the original
graph based on a technique developed by Awerbuch and Shavitt
[19]. Together, the virtual nodes also form a tree.

The randomization of a partition radius is done so that the
probability of a short link being cut by partitioning decreases
exponentially as one climbs up the tree. Hence nodes close
together are more likely to be partitioned lower down the tree.
We take advantage of this characteristic of the resulting
 -HST
tree to devise the following greedy algorithm to find the num-
ber of centers needed when the maximum center-node distance
is bounded by � . Let node) be the root of the partition tree,* � be the children of node � on the partition tree, and + be a list
of partitions sorted in the decreasing order of the partition diam-
eter at all times. Let , �.- �/+ � denote the partition at the head
of the list, and

7 � �0, ��, �.- �/+ � � its diameter. Fig. 4 presents our

Algorithm 2 (2-approximate minimum 1 -center [18])

1. Construct 2 � �43 2 ��53 � ��� 3 2 �6
2. Compute 7�8 for each 2 �8
3. Find smallest � such that 9 7 8 9;:<1 , say =
4. 7�> is the set of 1 centers

Fig. 5. Two-approximate algorithm for the minimum � -center
problem.

greedy algorithm on the
 -HST tree (see [19] for a more formal
presentation of the algorithm). The algorithm pushes the centers
down the tree until it discovers a partition with diameter � � .
The number of partitions,

� + � , is the minimum number of cen-
ters required to satisfy the performance metric � ��� ��� . To select
the actual centers, we can simply set the virtual nodes of these
partitions in + to be the centers.

The
 -HST-based greedy placement algorithm presented
above tells us the number of centers needed to satisfy the per-
formance metric � ��� ��� . For any given budget of centers, the
algorithm above can also be used to determine their placement.
For example, to place � centers, we simply change line 3 in
Fig. 4 with “while (

� + �@? �)”. Obviously, the performance
metric � ��� ��� may no longer be satisfied for � below a certain
number.

B.2 Minimum � -Center

The placement of a given number of centers such that the
maximum distance from a node to the nearest center is min-
imized, known as the minimum � -center problem, is NP-
complete [20]. However, if we are willing to tolerate inaccura-
cies within a factor of 2 (2-approximate), i.e. the maximum dis-
tance between a node and the nearest center being no worse than
twice the maximum in the optimal case, the problem is solvable
in O � � � A,� � [18]. In contrast to the
 -HST algorithm, one can in-
tuitively think of the minimum � -center algorithm as a bottom-
up approach to graph partitioning: it collects nearby nodes into
clusters.

More formally, the minimum � -center algorithm receives as
input a graph � � ��� � A � where � is the set of nodes,

A �
�CB�� , and the cost of an edge D � � ".E'� " � � �

A
, � �/D � , is the

cost of the shortest path between "FE and " � . All the graph edges

7

are arranged in non-decreasing order by cost, � : � �/D E ��� � �/D � � �1�1 1 � � � D � � , let � � � ��� � A � � , where
A � ��� D E �4D � � 1�1 1 �4D���� . A

square graph of � � , � �� is the graph containing � and edges
��� � " � wherever there is a path between � and " in � � of at most
two hops, ���� " . An independent set of a graph � � �
� � A � is
a subset ���
	 � such that, for all � � "#� ��� , the edge ��� � " � is
not in

A
. An independent set of � �� is thus a set of nodes in � �

that are at least three hops apart in � � . We also define a maximal
independent set � as an independent set � � such that all nodes
in � � ��� are at most one hop away from nodes in � � .

The outline of the minimum � -center algorithm from [18] is
shown in Fig. 5. The basic observation is that the cost of the
optimal solution to the � -center problem is the cost of D � , where
� is the smallest index such that � � has a dominating set6 of
size at most � . This is true since the set of center nodes is a
dominating set, and if � � has a dominating set of size � , then
choosing this set to be the centers guarantees that the distance
from a node to the nearest center is bounded by D � . The second
observation is that a star topology in � � , transfers into a clique
(full-mesh) in � �� . Thus, a maximal independent set of size � in
� �� implies that there exists a set of � stars in � , such that the
cost of each edge in it is bounded by +�D � : the smaller the � , the
larger the � . The solution to the minimum � -center problem
is the � �� with � stars. Note that this approximation does not
always yield a unique solution.

The 2-approximate minimum � -center algorithm can also
be used to determine the number of centers needed to satisfy
the performance metric � ��� ��� by picking an index
 such that
� � D�
 �%� �'�'+ . The maximum distance between a node and the
nearest center in ��
 is then at most � , and the number of centers
needed is

� ��
 � .
B.3 Tracer Heuristics

The graph theoretic approaches described above assume
known network topologies. However, the topology of the In-
ternet may not be known to all parties at any one time. Further-
more, the Internet topology changes continuously, from physical
and algorithmic causes. In this paper, results from the graph
theoretic algorithms are used as yard sticks to evaluate the per-
formance of our Tracer placement heuristics.

Given a number of Tracers and an unknown topology, we de-
vise the following heuristics for Tracer placement:
Stub-AS: Tracers are placed only on stub Autonomous Systems
(ASs). This would most likely reflect the initial deployment of
Tracers on the Internet, when Tracers would be run from end
hosts.
Transit-AS: Tracers are placed only on transit ASs, i.e. ASs that
are connected to several neighboring ASs and are willing to carry
traffic from one of its neighbors to another. This reflects deploy-
ment of IDMaps on ISP backbones. As IDMaps becomes more
popular, we hope that there will be enough incentives for net-
work providers and institutions with private networks to deploy
IDMaps. For networks that do not have IDMaps deployed, Trac-
ers could still be run from end hosts.
�
A dominating set is a set of

�
nodes such that every ����� is either

in
�

or has a neighbor in
�

.

ISPA

ISPB

ISPB

ISPA

raw distance

Seattle

ISPA

ISPB

ISPB

ISPA

Boston

Fig. 6. Distance Measurement Reduction

Mixed: Tracers are randomly, with uniform distribution, placed
on the network. This is the simplest placement method and
does not assume any knowledge of network characteristics. It
means Tracers are placed on both stub and transit ASs (hence
the name “Mixed”). In terms of deployment, this placement re-
flects IDMaps being partially deployed on some ISPs.

The choice of these very simple placement heuristics reflects our
intention to delimit how well IDMaps can be expected to per-
form. While the graph-theoretic approaches described in the pre-
vious section assume full knowledge of the underlying network
topology, our placement heuristics intentionally assume mini-
mal knowledge of the underlying network topology. Knowing
the performance of these boundary cases, we can evaluate the
benefits of further refinements to the algorithm, for example by
iteratively using the distance map collected to compute better
placement. As we show in Section IV-D.1 even these most rudi-
mentary placement heuristics can give very good results.

C. Virtual Links

Once Tracers are placed on the Internet, they start tracing
each other and APs (defined in Section III-A). The resulting
distance information are advertised to IDMaps’ clients. Clients
of IDMaps, such as SONAR or HOPS servers, collect the adver-
tised distance information and construct distance maps. In this
section, we first discuss the Tracer-to-Tracer part of the distance
map; then we discuss Tracer-to-AP virtual links.

C.1 Tracer-Tracer Virtual Links

As of March 2001, there are close to 100,000 routing address
prefixes in the Internet [8]. Assuming we have 5% as many Trac-
ers (see section IV-D.4 for the effect of having more or less Trac-
ers) and each Tracer traces to every other Tracer, there will be
millions of VLs to be continually traced and advertised. Where
efficient routing and triangle inequality hold (see Section III-
A), it is not necessary to list all � � Tracer-Tracer distances to
achieve good accuracy. For example, given a number of Tracers
in the Seattle and Boston areas, it would almost certainly not be
very useful to know all of the distances between them.7 Know-
ing the distance of one Tracer from each area would likely allow
a sufficient distance approximation between hosts in Seattle and
hosts in Boston (Fig. 6).

We now generalize the above observations by applying the
� -spanner algorithm [21] to distance map construction. A � -
�
We recognize that geographical distance does not directly relate to

network distance (though often the two are related), for instance be-
cause of multi-point traffic exchange between global ISPs. We use geo-
graphical locations here to simplify the discussion.

8

Algorithm 3 (� -spanner [21])

1. sort � by cost � in non-decreasing order
2. 2���� ��� 3 ��� � 3 �������
3. for each edge �	� 3 �;� in � do
4. if �
���
� � �	� 3 �;� ��������� �	� 3 �;� �
5. � � � �	� 3 �;� #�� �

Fig. 7. The � -spanner algorithm.

spanner of a graph is a subgraph where the distance between any
pair of nodes is at most � times larger than the distance in the
original graph [22], [23]. Formally, given a graph, � ��� � A � , a � -
spanner is a subgraph ��� �
� � A � � , A � 	 A such that

7�� � ��� � " � �
��� 7�� ��� � " � , ! � � "��*� . The number of edges required to build a
5-spanner, for example, on a graph with � nodes is bounded by
O(����� �). For �

��� ��!
� , the bound on the number of edges re-

quired is O(�). We examine the effect of using different � values
on the performance metric � �#"�" in Section IV-D.

Cai [24] showed that the minimum � -spanner (a � -spanner
with the minimum number of edges) is an NP-complete problem.
However, asymptotically, the algorithm of Althöfer et al. gener-
ates, from a graph � �
� � A � , a � -spanner whose edge count is on
the same order of magnitude as the optimal � -spanner [21]. Fig. 7
presents the � -spanner algorithm of Althöfer et al. [21]. It first
sorts, in increasing order, all the edges in � by the edge cost. The
edges are examined starting with the shortest. An edge ��� � " � is
added to the spanner � � if it improves the distance between �
and " by at least a factor of � .

To apply the � -spanner algorithm described above would re-
quire IDMaps clients to first collect and store all � � VLs adver-
tised by the � Tracers. It also assumes that once a � -spanner is
computed, it will remain static. In reality, we do not expect all
IDMaps clients to be able to store � � VLs. As the underlying
Internet topology changes, we expect the set of VLs that makes
up the � -spanner to change from time to time. To keep track of
topological changes, Tracers continually trace and advertise all
� � VLs—albeit at different frequencies, with higher frequencies
for those used by the � -spanner and those that are less stable; ac-
cordingly, IDMaps clients must continually examine each new
advertisement of a VL and continually update their � -spanners.

C.2 Tracer-AP Virtual Links

Recall that an AP (Address Prefix) is a consecutive address
range within which all assigned addresses are equidistant (with
some hysteresis) to the rest of the Internet. Unless an AP is pre-
configured into a dedicated Tracer (see Section III-D), only the
Tracers nearest to the AP itself can discover and subsequently
advertise the Tracer-AP distance. As a result, when a Tracer
first discovers an AP, it assumes itself to be the nearest Tracer
and advertises its distance to the AP as the Tracer-AP distance.
Thereafter, however, other Tracers should probe the AP to deter-
mine if they may be closer. If one is, then it advertises its closer
distance. Upon hearing this, the Tracer with the longer distance
can stop advertising its distance to the AP.

AP 1

AP 3 AP 2

ISP 1 ISP 4

ISP 3 ISP 2

C1

M1 M2

2 1

25

4

2 1

T3

T1

T2

C: Client
M: Mirror
T: Tracer

Fig. 8. Network with multiple connections to the Internet.

We also study whether it is sufficient for each AP to be traced
by only a single Tracer. If an AP has more than one path to
the rest of the Internet, having a single Tracer tracing to that AP
could result in inaccurate distance estimates between this AP and
hosts that are not sharing paths with the Tracer. Fig. 8 shows a
network of four ISPs and three APs. One Tracer each is placed
in ISP1, ISP2, and ISP3, i.e., T1, T2, and T3 respectively. The
label on each link denotes the distance of the link. Consider the
following scenario. Mirrors M1 and M2 of a service are placed
in AP3 and AP2 respectively. Assume that Tracer T1 traces to
AP1, T2 traces to AP2, and T3 traces to AP3. Client C in AP1
will then be directed to mirror M1 in AP3 instead of M2 in AP2.
Had Tracer T2 also traced to AP1, the client would have been
directed to M2. We investigate the effect of having more than
one Tracer tracing to each AP in Section IV-D.6.

D. Discovering APs

APs in IDMaps are the end-points of distance information.
The difficulty in grouping Internet hosts into APs is that the ad-
dress blocks advertised by ISPs in BGP do not necessarily rep-
resent a group of addresses in a single Internet “location.” In-
side an ISP, a BGP-advertised block may be further partitioned
into many sub-blocks (i.e., APs) that are topologically far away
from each other. The only direct way the address ranges of these
sub-blocks can be learned is by querying the ISPs’ routers using
SNMP, or by listening to their internal routing protocols. Where
ISPs themselves have set up Tracers, these methods can be used.
Ideally, a large number of Tracers should be installed by each
ISP to provide accurate distance information for each site. These
“dedicated” Tracers can easily be configured with site AP infor-
mation. For APs not covered by either of the above, “general
purpose” Tracers will have to discover the address boundaries of
APs. Due to space constraint, we will report on our AP discovery
algorithm in a future publication.
E. Distance Information Dissemination

In this section we explore how distance information produced
by IDMaps can be collected by higher-level services in the con-
text of a complete distance map service. Fig. 9 illustrates a
three-tier model of a distance map service. At the bottom are
the Tracers (T) that measure and advertise raw Internet distances
(VLs). In the middle layer, we have IDMaps Clients (iC), or
simply Clients, that collect the raw distances and build a vir-
tual distance map of the Internet. SONAR and HOPS servers
are examples of potential IDMaps Clients. These Clients use the

9

C

C

C

C C

iC

iC

iC

iC

C
C

C

C

TT

T

IDMaps Service

Tracers measure network distances,
advertise virtual topology over
multicast groups. Clients calculate
end-to-end distances.

IDMaps Clients calcuate distances
on behalf of Internet hosts. Convey
distances via simple query/reply
protocol.

IDMaps Client:
SONAR/ HOPS Servers

Internet hosts:
SONAR/ HOPS Clients

T
T

T
T T

Fig. 9. Basic Model: Two Tiers of Functionality

distance maps computed to answer queries from their clients (C),
which are user applications such as a web browser or a napster
client. IDMaps itself is concerned only with the infrastructure at
the bottom tier that collects and advertises raw distances.

IDMaps Tracers continuously send probe packets to “ex-
plore” the Internet to measure distances. Measured distances are
then advertised to Clients. Upon receiving such advertisements,
each Client independently determines the usefulness of the ad-
vertised information and handle it appropriately. To capture
topological changes, instead of completely disregarding virtual
links not currently used by Clients, Tracers will simply reduce
the frequencies at which they trace and advertise these links.

When an Internet host is interested in learning the distance
between two hosts, it queries a Client. The Client then runs a
shortest path algorithm to determine the end-to-end distance of
the two hosts in its distance map. The result of the computation
is sent back as a reply to the host. A more thorough description
and examination of the distance information dissemination pro-
tocol used by IDMaps will be reported in a future publication.

IV. PERFORMANCE EVALUATION

To study the various algorithms presented in this paper prior
to the deployment of IDMaps on the Internet, we conduct some
simulations on generated network topologies. In this section, we
give a brief summary of the three topology generation processes
used in this study. Then we describe how we “deploy” IDMaps
on the generated topologies. Finally, we describe how the per-
formance metric, � � " " , is computed.

A. Topology Generation

We use three models to generate network topologies: the
Waxman model [25], Tiers [26], and a model based on AS-
connectivity observed from data collected on the Internet
(“Inet”).8 We decide to use more than one topology genera-
tors because the actual topology of the Internet is still under
research. The Waxman model provides us topologies with expo-
nential growth as hop count increases, whereas the Inet generator
generates graph with power-law vertex degree frequency distri-
bution. The Tiers generator generates network with hierarchical
structure. More detailed description of the topology generation
processes can be found in [27].

�
Our Inet topology generator is available for download from

http://topology.eecs.umich.edu/inet/.

B. Simulating IDMaps Infrastructure

Once a network is generated, we “build” an IDMaps infras-
tructure on it. In this section, we describe how the various Tracer
placement and distance map computation algorithms and heuris-
tics are implemented.

Tracer Placement. In Section III-B, we described two
graph-theoretic approaches and three heuristics to Tracer place-
ment. To implement the graph-theoretic approaches, we com-
pute Tracer placement using the algorithms described. To im-
plement Stub-AS Tracer placement, given � Tracers, we pick �
nodes with the lowest degrees of connectivity to host Tracers.
Conversely, for Transit-AS placement, we pick � nodes with the
highest degrees of connectivity. We implement Mixed Tracer
placement by giving equal probability to all nodes on the gener-
ated network to host a Tracer.

Distance Map Computation. A distance map consists of two
parts: Tracer-Tracer VLs and Tracer-AP VLs. Each Tracer ad-
vertises the VLs it traces. We do not simulate VL tracing and
advertisement or AP discovery in this study, and we only sim-
ulate a single IDMaps Client. Since IDMaps Clients operate
independently, the use of a single IDMaps Client has no loss
of generality for the performance metrics evaluated here. The
simulated IDMaps Client has a full list of Tracers and their lo-
cations. The Tracer-Tracer part of the distance map is computed
either assuming a full-mesh among all Tracers, or by executing
the original � -spanner algorithm shown in Fig. 7.

Each AP (node) can be traced by one or more Tracers. When
each AP is traced by a single Tracer, the Tracer nearest to an
AP is assigned to trace the AP. If an AP is traced by more than
one Tracer, Tracers are assigned to the AP in order of increasing
distance. In our simulations, we assume all edges are bidirec-
tional, and paths have symmetric and fixed costs. We will report
on the effect of measurement error and stability on IDMaps’ per-
formance in a future publication.

Once a distance map is built, the distance between two APs,
� and � is estimated by summing up the distance from � to
its nearest Tracer

���
, the distance from � to its nearest Tracer���

, and the distance between
���

and
���

. When a full-mesh
is computed between Tracers, the

���
to
���

distance is exactly
the length of the shortest path between them on the underlying
network. Otherwise, they are computed from the � -spanner. If
� and � have multiple Tracers tracing to them, the distance
between � and � is the shortest among all combinations of
Tracer-AP VLs and Tracer-Tracer VLs for the Tracers and APs
involved.

C. Performance Metric Computation

Ultimately, IDMaps will be evaluated by how useful its dis-
tance information is to applications. We evaluate the perfor-
mance of IDMaps using nearest mirror selection as a prototypi-
cal application and adopt an application-level performance met-
ric, � �#"�" , which measures how often the determination of the
nearest mirror to a client, using the information provided by
IDMaps, results in a correct answer, i.e., the mirror the client
would have been redirected based on a shortest path tree con-
structed from the underlying physical topology. Incidentally, the

10

Topology Placement � T-T Map T/AP
Waxman Stub-AS 10 full-mesh 1
Tiers Transit-AS 20 2-spanner 2
Inet Mixed 40 10-spanner 3

Min 1 -center 100�
-HST

TABLE II

SIMULATION PARAMETERS

localized distance measurement service (see Section II-B) such
as provided by [4], [28] in effect constructs a shortest-path tree
from each client (or stub network) to all mirrors. � �#"�" thus can
be considered as comparing the performance of IDMaps against
the localized services in the best case scenario for the localized
services, i.e., the distances from the clients to all mirrors are
known a priori and are obtained at no cost. Performance com-
parison between localized services and IDMaps in the common
case must take into account the shortcomings of localized ser-
vices (see Section II-B), chief among which is the time lag in
obtaining distance to “uncharted” parts of the Internet due to the
“on-demand” nature of the service, the additional cost of collect-
ing distance information due to the lack of information sharing
between clients, and the cost of maintaining each instance of the
localized service.

Considering, however, that the goal of IDMaps is not to pro-
vide precise estimates of distances between hosts on the Internet,
but rather estimates of relative distances between a source (e.g. a
client) and a set of potential destinations (e.g. server mirrors),
we adopt a lax version of this measure in this paper, as follows.
In each simulation experiment, we first place � (from 3 to 24)
server mirrors in our simulated network. We place the mirrors
such that the distance between any two of them is at least)����
the diameter of the network. We consider all the other nodes on
the network as clients to the server and compute for each client
the nearest mirror according to the distance map obtained from
IDMaps and the nearest mirror according to the actual topology.
For a given � -mirror placement, we compute � �#"�" as the per-
centage of correct IDMaps’ answers over total number of clients.

On the Internet, a client served by a server 15 ms away
would probably not experience a perceptible difference from be-
ing served by a server 35 ms away, or that a server 200 ms away
will not appear much closer than one 150 ms away. We consider
IDMaps’ server selection correct as long as the distance between
a client and the nearest mirror determined by IDMaps is within
a factor of � times the distance between the client and the actual
nearest mirror (here we use �

� +).
We repeat this procedure for 1,000 different � -mirror place-

ments, obtaining 1,000 � �#"�" values in each experiment. In the
next section, we present our simulation results by plotting the
complementary distribution function9 of these � �#"�" values.

D. Simulation Results

Table II summarizes the parameters of our simulations. The
heading of each column specifies the name of the parameter,

�
The complementary distribution function, ��� ��� �
	 � �� ��� � , where

� ��� � is the cumulative distribution function of the random variable � .

and the various values tried are listed in the respective column.
The column labeled “Topology” lists the three models we use to
generate random topologies. The “Placement” column lists the
Tracer placement algorithms and heuristics. The “ � ” columns
lists the number of Tracers we use on 1000-node networks. The
“T-T Map” column lists the methods used to compute the Tracer-
Tracer part of the distance map. The “T/AP” column lists the
number of Tracers tracing to an AP. We experimented with al-
most all of the 540 possible combinations of the parameters on
1,000 node networks and several of them on 4,200 node net-
works. In addition, we also examined the case of having more
mirrors for a few representative simulation scenarios.

The major results of our study are:
1. Mirror selection using IDMaps gives noticeable improvement
over random selection.
2. Network topology can affect IDMaps’ performance.
3. Tracer placement heuristics that do not rely on knowing the
network topology can perform as well as or better than algo-
rithms that require a priori knowledge of the topology.
4. Adding more Tracers (over a 2% threshold) gives diminishing
return.
5. Number of Tracer-Tracer VLs required for good performance
can be on the order of � with a small constant.
6. Increasing the number of Tracers tracing to each AP improves
IDMaps’ performance with diminishing return.
These results apply to both the 1,000-node and 4,200-node net-
works. We present simulation data substantiating each of the
above results in the following subsections. Due to space con-
straints, we are not able to include data confirming some of these
results on the Internet [29].

D.1 Mirror Selection

Results presented in this subsection are obtained from sim-
ulations on 1,000-node randomly generated topologies. In all
cases, 3 mirrors are manually placed on the network, the number
of Tracers deployed is 10 (1% of nodes), the distance maps are
built by computing full-meshes between the Tracers, with only a
single Tracer tracing to each AP.

We compare the results of random selection against selection
using the distance map generated by IDMaps. The metric of
comparison is � �#"�" . Each line in Fig. 10 shows the comple-
mentary distribution function of 1,000 � �#"�" values as explained
in the previous section. Each line is the average of 31 simula-
tions using different random topologies, the error bars show the
95% confidence interval. For example, the line labeled “Transit-
AS” in Fig. 10a shows that on an Inet-generated topology, when
mirrors are selected based on the distance map computed from
Tracers placed by the Transit-AS heuristic, the probability that
at least 80% of all clients will be directed to the “correct” mirror
is 100% (recall our definition of correctness from the previous
section); however, the probability that up to 98% of all clients
will be directed to the correct mirror is only 85%. We start the
- -axis of the figure at 40% to increase legibility. The line labeled
“
 -HST” is the result when the
 -HST algorithm is used to place
Tracers. The
 -HST algorithm requires knowledge of the topol-
ogy (see Section III-B.1). The line labeled “Random Selection”
is the result when mirrors are randomly selected without using

11

0

0.2

0.4

0.6

0.8

1

40 50 60 70 80 90 100C
om

pl
em

en
ta

ry
 D

is
tr

ib
ut

io
n

F
un

ct
io

n

Percentage of Correct Answers

Transit AS
k-HST

Random Selection

a. Inet

0

0.2

0.4

0.6

0.8

1

40 50 60 70 80 90 100C
om

pl
em

en
ta

ry
 D

is
tr

ib
ut

io
n

F
un

ct
io

n

Percentage of Correct Answers

Transit AS
k-HST

Random Selection

b. Waxman

0

0.2

0.4

0.6

0.8

1

40 50 60 70 80 90 100C
om

pl
em

en
ta

ry
 D

is
tr

ib
ut

io
n

F
un

ct
io

n

Percentage of Correct Answers

Transit AS
k-HST

Random Selection

c. Tiers
Fig. 10. 3-Mirror selection on 1,000-node network with 10 Tracers.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
om

pl
em

en
ta

ry
 D

is
tr

ib
ut

io
n

F
un

ct
io

n

Percentage of Correct Answers

Transit AS
k-HST

Random Selection

a. Inet

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
om

pl
em

en
ta

ry
 D

is
tr

ib
ut

io
n

F
un

ct
io

n

Percentage of Correct Answers

Transit AS
k-HST

Random Selection

b. Waxman

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
om

pl
em

en
ta

ry
 D

is
tr

ib
ut

io
n

F
un

ct
io

n

Percentage of Correct Answers

Transit AS
k-HST

Random Selection

c. Tiers
Fig. 11. 24-Mirror selection on 1,000-node network with 10 Tracers.

a distance map. As expected, given that there are three mirrors,
it performs well for less than 40% correctness and the perfor-
mance deteriorates beyond 60% correctness. Mirror selection
using distance maps outperforms random selection regardless of
the Tracer placement algorithm.

We include only the best and worst performing Tracer place-
ment algorithms in Figs. 10 for legibility of the graphs. The
relative performance of the various placement algorithms is pre-
sented in Section IV-D.3. Fig. 11 shows results from simulations
with 24 mirrors. Qualitatively, these results agree with our con-
clusion that mirror selection using distance maps outperforms
random selection.

D.2 Effect of Topology

Figs. 10b and 10c show the results of running the same set of
simulations as in the previous section, but on topologies gener-
ated using the Waxman and Tiers models respectively. Again,
the error bars on each figure shows the 95% confidence in-
terval computed from 31 randomly seeded topologies. While
mirror selection using a distance map provides better perfor-
mance than random selection in all cases, performance on the
Tiers generated topology exhibit a qualitatively different behav-
ior than those in the other two topologies. Namely, the Transit-
AS heuristic gives better IDMaps performance than the
 -HST
algorithm on topologies generated from the Inet and Waxman
models, but not so in the topology generated from Tiers.

We offer a hypothesis for the relatively poor performance of
random mirror selection on Tiers topology. Our earlier work in
[27] shows that almost all the end-to-end distances in Inet gener-

ated network fall between 20% and 60% of the network diameter.
When we randomly pick two distances from this network, it is
highly likely that they will fall within this range. Consequently,
one distance will be no more than 3 times longer than the other.
So given our definition of the performance metric, even random
selection can give acceptable performance. As can be seen by
comparing Fig. 10b against Figs. 10a and 10c, this is more ev-
ident in the network generated from the Waxman model, where
the distances fall between 30% and 70% of the network diame-
ter. However, the distance distribution for the Tiers topology is
much more dispersed, and the range is between 10% and 70%
of the diameter. It is much harder for two randomly picked dis-
tances to be within a factor 3. This is corroborated by the poor
results “Random Selection” returns. We note again that despite
the significant differences in the three models, IDMaps is able to
provide noticeable improvements to nearest mirror selection in
all three cases.

D.3 Performance of Placement Algorithms

To compare the relative performance of the various Tracer
placement algorithms and heuristics, we repeat the same simula-
tions as in the previous two subsections, once for each placement
algorithm. Then using the complementary distribution function
of the � � " " values obtained from running the Mixed placement
algorithm as the baseline, we compute the improvement of each
placement algorithm relative to Mixed placement. The results
are presented in Figs. 12a, 12b, and 12c for networks generated
using the Inet, Waxman, and Tiers models respectively. There is
no clear winning placement algorithm across all topologies, but

12

the minimum � -center algorithm and Transit-AS placements
consistently perform well in all three topologies. In general, the
simple heuristics can often perform as well as the graph theoretic
placement algorithms. In [29] we also present results of apply-
ing the graph theoretic placement algorithms on distance maps
computed from the Transit-AS heuristics.

D.4 Having More Tracers

In this subsection, we study the effect of increasing the num-
ber of Tracers on IDMaps’ performance. Fig. 13a shows the re-
sults of running the Transit-AS placement algorithm on a 1,000-
node network generated using the Tiers model. Increasing the
number of Tracers from 10 to 20 improves performance per-
ceptibly, with diminishing improvements for further increases.
Comparing Fig. 13a against Fig. 10c from Section IV-D.2, we
see that increasing the number of Tracers from 10 to 20 makes
the performance of IDMaps using the Transit-AS placement al-
gorithm comparable to that of using the
 -HST algorithm with
10 Tracers.

Fig. 13b shows the results of running the Transit-AS place-
ment algorithm on a 4,200-node network generated using the
Inet model. Again, we see a perceptible improvement in IDMaps
performance when the number of Tracers increases from 10 to
35, with diminishing improvements for further increases. Also
of significance is that having only .2% of all nodes serving as
Tracers already provides correct answer 90% of the time with
very high probability. To the extent that larger networks means
denser networks,10 a Tracer can serve more nodes in a larger net-
work than it does in smaller networks. Thus to achieve the same
IDMaps performance, the number of Tracers needed to serve a
larger network does not necessarily increase as fast as the in-
crease in network size. Overall, we do not need a large scale
IDMaps deployment to realize an improvement in the metric of
interest, � �#"�" .

D.5 Distance Map Reduction

In all the simulations reported so far, the distance maps
are built by computing full-mesh Tracer-Tracer VLs. Fig. 14
shows the results of running the Transit-AS algorithm to place
100 Tracers on a 1,000-node network generated using the Inet
model, with Tracer-Tracer VLs computed as a full-mesh and as
� -spanners. For �

� + , there is no perceptible difference in per-
formance; for �

�)�� , the performance is worse. Qualitatively
similar results are observed for topologies generated using the
Waxman and Tiers models, with worse performance for �

�)��
in the Tiers case.

Using a � -spanner in place of a full-mesh can significantly
reduce the number of Tracer-Tracer VLs that must be traced, ad-
vertised, and stored. Table III shows that for all the topologies
we experimented with, the number of VLs used by both 2- and
10-spanners are on the order of � with a small constant mul-
tiplier. In contrast, the number of VLs required to maintain a
���

The number of hosts and ASs on the Internet has been growing
very fast over the past decade, but the diameter of the Internet, i.e., the
longest path between two points on the Internet, has stayed roughly the
same.

Model Inet Waxman Tiers
Placement � =2 � =10 � =2 � =10 � =2 � =10
Stub 628 198 654 198 268 202
Mixed 520 200 466 198 264 200
Transit 434 198 386 202 262 198
Min 1 -center 402 198 434 196 266 202

TABLE III

NUMBER OF VLS IN � -SPANNERS OF 100 TRACERS .

full-mesh for � �)���� is 4,950 edges. (The theoretical upper
bound on the number of edges in a � -spanner is O(� � E � E ��� �)).
D.6 Multiple Tracers per AP

In all our simulations so far we have assumed that only a sin-
gle Tracer traces each AP. We showed in Section III-C.2 (Fig. 8)
that in some cases having more than one Tracer tracing an AP
may result in better distance estimates. We now present some
performance results from scenarios in which there are 2 or 3
Tracers tracing each AP. On 1000-node networks, we place 100
Tracers using the Transit-AS algorithm, and compute a full-mesh
for Tracer-Tracer VLs. Using the performance of IDMaps where
only one Tracer traces each AP as the baseline, we compute the
percentage improvement of increasing the number of Tracers per
AP.

Fig. 15 shows that on a 1000-node network generated using
the Waxman model, compared to having only one Tracer per AP,
the probability of having at least 98% correct answer is increased
by 17% when each AP is traced by 2 Tracers, and is increased by
25% when each AP is traced by 3 Tracers. We only consider up
to 3 Tracers per AP since currently 85% of ASs in the Internet
have degree of connectivity of at most 3 [30].

V. CONCLUSION

It has become increasingly evident that some kind of distance
map service is necessary for distributed applications in the Inter-
net. However, the question of how to build such a distance map
remains largely unexplored. In this paper, we propose a global
distance measurement infrastructure called IDMaps and tackle
the question of how it can be placed on the Internet to collect
distance information.

In the context of nearest mirror selection for clients, we
showed that significant improvement over random selection can
be achieved using placement heuristics that do not require a full
knowledge of the underlying topology. In addition, we showed
that IDMaps overhead can be minimized by grouping Internet
addresses into APs to reduce the number of measurements, the
number of Tracers required to provide useful distance estima-
tions is rather small, and applying � -spanner to the Tracer-Tracer
VLs can result in linear measurement overhead with respect to
the number of Tracers in the common case. Overall, this study
has provided positive results to demonstrate that a useful Internet
distance map service can indeed be built scalably.

ACKNOWLEDGMENT

We thank Vern Paxson for discussions on IDMaps architec-
ture and triangulation on the Internet. We thank the anonymous
reviewers for their insightful comments that have improved the

13

-20

-15

-10

-5

0

5

10

15

20

25

40 50 60 70 80 90 100

P
er

ce
nt

ag
e

of
 Im

pr
ov

em
en

t

Percentage of Correct Answer

Transit AS
Min-K

Stub AS
k-HST

a. Inet

-20

-10

0

10

20

30

40

50

40 50 60 70 80 90 100

P
er

ce
nt

ag
e

of
 Im

pr
ov

em
en

t

Percentage of Correct Answer

Transit AS
Min-K

Stub AS
k-HST

b. Waxman

-50

0

50

100

150

200

250

40 50 60 70 80 90 100

P
er

ce
nt

ag
e

of
 Im

pr
ov

em
en

t

Percentage of Correct Answer

Transit AS
Min-K

Stub AS
k-HST

c. Tiers
Fig. 12. Improvement of placement algorithms over the “Mixed” algorithm on 1,000-node network, 10 Tracers.

0

0.2

0.4

0.6

0.8

1

40 50 60 70 80 90 100

C
om

pl
em

en
ta

ry
 D

is
tr

ib
ut

io
n

F
un

ct
io

n

Percentage of Correct Answers

10 Tracers
20 Tracers
40 Tracers
80 Tracers

100 Tracers

a. 1,000-node Tiers network

0

0.2

0.4

0.6

0.8

1

80 85 90 95 100

C
om

pl
em

en
ta

ry
 D

is
tr

ib
ut

io
n

F
un

ct
io

n

Percentage of Correct Answers

10 Tracers
35 Tracers
70 Tracers

140 Tracers
350 Tracers

b. 4,200-node Inet network
Fig. 13. Mirror selection using IDMaps with varying number of Tracers.

0

0.2

0.4

0.6

0.8

1

40 50 60 70 80 90 100

C
om

pl
em

en
ta

ry
 D

is
tr

ib
ut

io
n

F
un

ct
io

n

Percentage of Correct Answers

Full Mesh
2-spanner

10-spanner

Fig. 14. Effect of � -spanner on 1,000-
node I net network with 100 Tracers.

0

5

10

15

20

25

30

35

40

80 85 90 95 100

P
er

ce
nt

ag
e

of
 Im

pr
ov

em
en

t

Percentage of Correct Answers

2 Tracers per AP
3 Tracers per AP

Fig. 15. Mirror selection on 1,000-node
Waxman network with 2 and 3 Trac-
ers / AP.

paper considerably. We also thank Andrew Adams, Bengt
Ahlgren, Pavel Curtis, Ramesh Govindan, Ed Knightly, and Jörg
Liebeherr for allowing us to run our experimental Tracer on their
sites. Eric Cronin, David Helder, Tony Kurc, Wenjie Wang, Zhi-
heng Wang, Amgad Zeitoun, and Beichuan Zhang have helped
us in the design and implementation of IDMaps.

REFERENCES

[1] S. Bhattacharjee et al., “Application-Layer Anycasting,” Proc. of
IEEE INFOCOM ’97, Apr. 1997.

[2] K. Moore, J. Cox, and S. Green, “Sonar - a
network proximity service,” Internet-Draft, url:
http://www.netlib.org/utk/projects/sonar/, Feb. 1996.

[3] P. Francis, “Host proximity service (hops),” Preprint, Aug. 1998.
[4] M. Stemm, R. Katz, and S. Seshan, “A Network Measurement Ar-

chitecture for Adaptive Applications,” Proc. of IEEE INFOCOM
’00, pp. 2C–3, Mar. 2000.

[5] N. Miller and P. Steenkiste, “Collecting Network Status Informa-
tion for Network-Aware Applications,” Mar. 2000.

[6] R. Govindan and H. Tangmunarunkit, “Heuristics for Internet
Map Discovery,” Proc. of IEEE INFOCOM 2000, 2000.

[7] K. C. Claffy and D. McRobb, “Measurement and Vi-
sualization of Internet Connectivity and Performance,”
http://www.caida.org/Tools/Skitter/.

[8] T. Bates, “The CIDR Report,” url:
http://www.employees.org/˜tbates/cidr-report.html, June 1998.

[9] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to
Algorithms, Cambridge, MA: MIT Press, 1990.

[10] J.D. Guyton and M.F. Schwartz, “Locating Nearby Copies of
Replicated Internet Servers,” Proceedings of ACM SIGCOMM,
August 1995.

14

[11] S. Savage et al., “The End-to-End Effects of Internet Path Selec-
tion,” Proc. of ACM SIGCOMM ’99, Sep. 1999.

[12] V. Paxson, “End-to-End Routing Behavior in the Internet,”
Proc. of ACM SIGCOMM ’96, pp. 25–38, Aug. 1996.

[13] Merit Networks, “Npd (network probe daemon) project,” URL:
http://www.merit.edu/ipma/npd/, 1996.

[14] MirrorNet, “Multiple traceroute gateway,” URL:
http://www.tracert.com, 1999.

[15] P. Francis et al., “An Architecture for a Global Internet Host Dis-
tance Estimation Service,” Proc. of IEEE INFOCOM 1999, March
1999.

[16] C. Toregas, R. Swain, C. Revelle, and L. Bergma, “The location
of emergency service facilities,” Operstiond Research, vol. 19, pp.
1363–1373, 1971.

[17] Y. Bartal, “Probabilistic approximation of metric space and its
algorithmic applications,” in 37th Annual IEEE Symposium on
Foundations of Computer Science, October 1996.

[18] V. Vazirani, Approximation Methods, Springer-Verlag, 1999.
[19] Baruch Awerbuch and Yuval Shavitt, “Topology aggregation for

directed graphs,” IEEE/ACM Transactions on Networking, vol. 9,
no. 1, pp. 82–90, February 2001.

[20] M.R. Garey and D.S. Johnson, Computers and Intractability, NY,
NY: W.H. Freeman and Co., 1979.

[21] I. Althöfer, G. Das, D. Dopkin, D. Joseph, and J. Soares, “On
sparse spanners of weighted graphs,” Discrete and Computational
Geometry, vol. 9, pp. 81 – 100, 1993.

[22] D. Peleg and E. Upfal, “A tradeoff between space and efficiency
for routing tables,” in 20th ACM Symposium on the Theory of
Computing, May 1988, pp. 43 – 52.

[23] D. Peleg and A.A. Schäffer, “Graph spanners,” Journal of Graph
Theory, vol. 13, no. 1, pp. 99 – 116, 1989.

[24] L. Cai, “NP-completeness of minimum spanner problems,” Dis-
crete Applied Mathematics, vol. 48, pp. 187 – 194, 1994.

[25] B.M. Waxman, “Routing of Multipoint Connections,” IEEE Jour-
nal of Selected Areas in Communication, vol. 6, no. 9, pp. 1617–
1622, Dec. 1988.

[26] M. Doar, “A Better Model for Generating Test Networks,”
Proc. of IEEE GLOBECOM, Nov. 1996.

[27] S. Jamin et al., “On the Placement of Internet Instrumentation,”
Proc. of IEEE INFOCOM 2000, March 2000.

[28] Robert L. Carter and Mark E. Crovella, “Server Selection using
Dynamic Path Characterization in Wide-Area Networks,” Proc. of
IEEE INFOCOM ’97, April 1997.

[29] S. Jamin, C. Jin, A. Kurc, D. Raz, and Y. Shavitt, “Constrained
Mirror Placement on the Internet,” Proc. of IEEE INFOCOM
’2001, April 2001.

[30] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On Power-Law
Relationships of the Internet Topology,” Proc. of ACM SIGCOMM
’99, pp. 251–262, Aug. 1999.

Paul Francis has conducted Internet research for nearly two
decades. He has worked for research labs at MITRE, Bellcore,
NTT, and ACIRI. His innovations include NAT, shared multicast
trees (used in the CBT and PIM sparse mode protocols), shortcut
routing, and the multiple addresses method of site multihoming
used by IPv6. He is now the Chief Scientist at Tahoe Networks,
where he is developing solutions for wireless internetworking.
He holds a PhD in Computer Science from the University Col-
lege London.

Sugih Jamin is an Assistant Professor in the Department of
EECS at the University of Michigan. He received his Ph.D. in
Computer Science from the University of Southern California,

Los Angeles in 1996 He spent parts of 1992 and 1993 at the
Xerox Palo Alto Research Center. He is a recipient of the ACM
SIGCOMM Best Student Paper Award in 1995, the National Sci-
ence Foundation Presidential Early Career Award for Scientists
and Engineers (PECASE) in 1999, and of the Alfred P. Sloan
Research Fellowship in 2001.

Cheng Jin is a Ph.D. candidate in the Department of EECS at
the University of Michigan. He received his B.Sc. in Computer
Science from Case Western Reserve University in 1996. His cur-
rent area of research include placement of measurement boxes
and server mirrors on the Internet. He is a co-developer of the
Inet topology generator.

Yixin Jin received his Ph.D. in Computer Science from the Uni-
versity of California, Los Angeles. He received his B.Sc. in
Computer Science from University of Science and Technology
of China, Hefei. His research interests include scalable informa-
tion dissemination protocols, Internet performance measurement
and content-aware network applications.

Danny Raz is a faculty member at the Department of CS,
Technion-Israel Institute of Technology. He received his
Ph.D. from the Department of Applied Mathematics and Com-
puter Science from the Feinberg Graduate School, Weizmann
Institute of Science, Rehovot, Israel in 1995. He was a post-
doctoral fellow at the International Computer Science Institute,
Berkeley from 1995 to 1997. He was also a Visiting Lecturer at
the University of California, Berkeley, 1996-1997. He has been
a Member of the Technical Staff at Bell Labs since 1997.

Yuval Shavitt (s’88-M’97-SM’00) received the B.Sc. (cum
laude), M.Sc., and D.Sc. from the Technion, Haifa, Israel in
1986, 1992, and 1996, respectively. After graduation he spent
a year as a Postdoctoral Fellow at the CS Dept. at Johns Hop-
kins University, Baltimore, MD. Since 1997 he is a Member of
Technical Staff at the Networking Research Lab at Bell Labs,
Holmdel, NJ. Starting October 2000, Dr. Shavitt is also a faculty
member in the Dept. of Elect. Eng. at Tel-Aviv University. He
served as TPC member for INFOCOM 2000, 2001, and 2002,
IWQoS 2001, and ICNP 2001.

Lixia Zhang is a Professor of Computer Science at UCLA
where she joined the faculty in 1995. Prior to that she was a
member of the research staff at Xerox PARC. Zhang served on
the Internet Architecture Board from 1994 to 1996; she is cur-
rently serving on the Transport Area and IPv6 Directorates in the
IETF, and is the vice chair of ACM SIGCOMM. From 1992 to
1998 she served as an editor for the IEEE/ACM Transactions on
Networking. She received her Ph.D in computer science from
MIT.

