

SecSpider: The DNSSEC Monitoring Project

Eric Osterweil
Dan Massey
Lixia Zhang

http://secspider.cs.ucla.edu/

Why We Are Monitoring

- Trying to identify observable facets of DNSSEC's rollout
- Hope to find instructive insights for future systems
- Identifying elements that shed light on a design and operational practices

- We study the importance of islands and chains of trust
 - What kinds of islands are out there?
- When keeping records for their signature lifetimes:
 - Is re-signing of new data before expiration bad?
 - How often does it happen?

- Monitoring procedure
- Current state of our monitored set
- The way zones look so far
- Islands of trust
- Signing behavior and pitfalls
- Conclusion

- Each zone that we monitor was obtained in one of 3 ways
 - As a user submission
 - As the parent of a secure zone
 - It was spidered in our web crawl
 - It was NSEC walked

	#
User submission	67
Parent	33
Spidered	360
Walked	10

How We Monitor Each Zone

- To determine the operational status of each zone, we query each nameserver and we:
 - Note its serial number
 - Check that it supports ENDS0
 - Look for RRSIG RRs on its SOA record
 - Check to see if those signatures correspond to DNSKEYs served by the zone
 - Verify that the zone does not serve a CNAME for itself

How We Monitor Each Zone (2)

- Ensure that the zone issues a secure denial of existence for names that do not exist
- We classify zones as secure if all of their nameservers conform to the tests above
- Within each zone, each nameserver's status is enumerated on its zone-drilldown page

Name Servers:

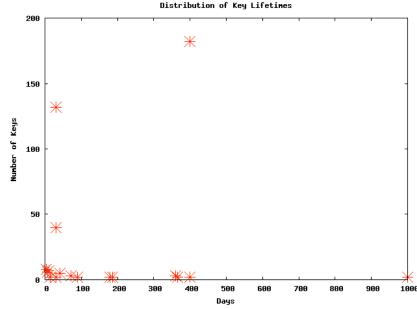
Online:	NS Name:	NS IP	Version:		Last Queried:	Number:	Capable:		Pointed to by Which Zone (Parent/Authoritative/Both)?
Yes	ns0- dnssec.nic.uk.	213.248.202.150	1		2000 UTC			Yes	Parent
Yes	ns1- dnssec.nic.uk.	213.248.202.150	9.3.1	Mon Nov 13 16:50:11 2006 UTC	Mon Nov 13 16:50:11 2006 UTC	2006111301	Yes	Yes	Parent

What We Are Tracking

- Currently, we track 470 zones
- Of these, roughly 276 are secure
 - i.e. they use DNSSEC with up to date signatures, etc.
- From our web crawl (of 18M zones), we estimate that the deployment status of DNSSEC is roughly 0.0015%

NSEC Walking

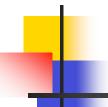
- In each secure zone we walk NSEC records to look for secure delegations
- Large zones can be prohibitively expensive to walk
 - Some may inflate their zones so that walking is prohibitively expensive
- We resort to randomized NSEC walking


Randomized NSEC Walking

- Faced with many large secure zones we choose to make random jumps
- After a number of NSEC walks (starting at a zone's apex) we randomly create a string and append the zone's name to it
- Essentially, after some number of NSEC records, we jump forward
 - We repeat this until we wrap around to the apex

Keys

We track 447 DNSKEY records


- All but 2 are RSA/SHA1
- Signature lifetimes vary between 3 and 1,000 days
- 80.04% keys signed for either 30 or 400 days

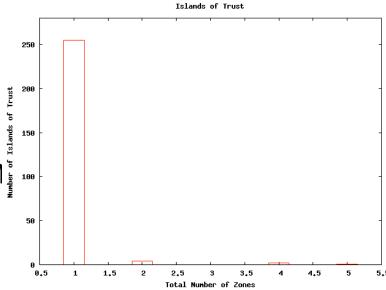
Nameservers in Zones

- We see an average of 3.6 nameservers per zone
- 24 zones have some nameservers that are secure and some that are not secure
 - We classify these zones as insecure
- 269 (out of 470) authoritative zones have NS RRsets that match the set served by their parents

"No [Zone] is an Island..."

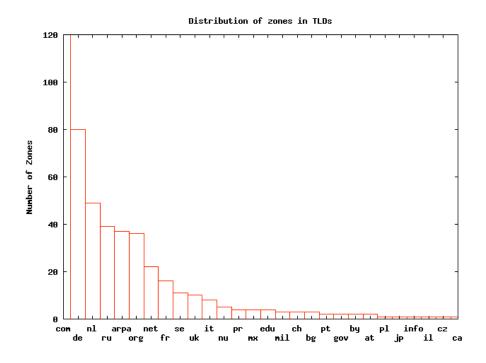
- Delegation is a large part of the security model of DNSSEC
- Keeping track of the delegation hierarchy of the DNSSEC deployment
 - The state of the deployment falls far from the original vision

Or, maybe they are?


- From 276 secure zones, there are 262 separate islands of trust
- The largest island is se. and contains just 5 zones
- Islands are only formed by cryptographic delegations
 - Through DS records

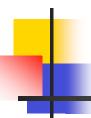
Today's Islands of Trust

Almost every zone is its own island


- Demonstrates lack
 of deployment
 experience
 managing delegation
 hierarchy
 - Since every zone is island, no zone is currently operating the delegation hierarchy

TLD Distribution

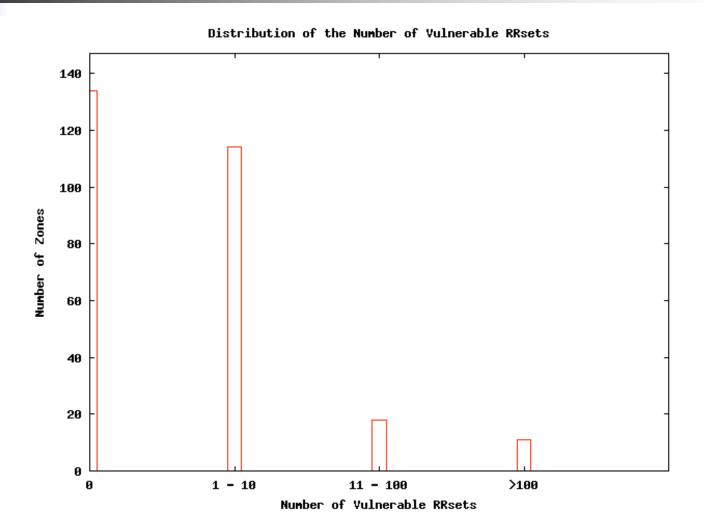
- Some TLDs have an effort to push DNSSEC
- Other TLDs are simply large and have more zones that could try DNSSEC


RRset Signing

- Stale records can be replayed even after the auth servers remove the records
 - Vulnerable until the signature lifetime expires
 - Suggests the use of a very short signature lifetime
- Signing data is a computational and operational burden
 - Requires access to private keys which may (should?) be offline
 - suggests the use of a very long signature lifetime
- SecSpider tracks the trade-offs and shows potential vulnerabilities due to long signatures

Zones May Be Vulnerable

- Some zones proactively re-sign their records more often than they expire
 - RRsets become vulnerable when their RR values change and are re-signed before old values' signatures expire
- In the event that a record (NS/A/etc) is resigned with a new value, an adversary may be able to replay old values
 - This could affect service
 - What about a DNSKEY?


DNSKEY Vulnerability

 In some cases, important sets (like DNSKEYs) can be vulnerable to replay

	<u>l.</u>	DNSKEY	Nov 02, 2006 09:36:46 UTC Dec 02, 2006 09:36:46 UTC No
Protecting	<u>l.</u>	NS	Nov 02, 2006 09:36:46 UTC Dec 02, 2006 09:36:46 UTC No
the	<u>l.</u>	SOA	Nov 02, 2006 03:38:40 UTC Dec 02, 2006 03:38:40 UTC Yes
innocent	<u>l.</u>	NS	Nov 02, 2006 03:38:40 UTC Dec 02, 2006 03:38:40 UTC No
	<u>l.</u>	DNSKEY	Nov 02, 2006 03:38:40 UTC Dec 02, 2006 03:38:40 UTC Yes

 Re-signing every night for keys with lifetimes of 1 month might be problematic when they change

How Bad is it?

How Bad is it? (2)

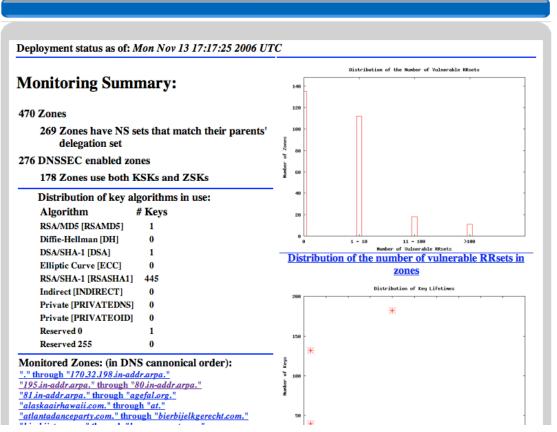
- Roughly half of the monitored zones maintain signing practices that correspond to signature lifetimes
- The rest re-sign with a frequency that leaves some of their RRsets in conflict with previous values

Conclusion

- We have observed that "orphaned" islands of security are essentially the norm
 - This lends credence to the notion of providing nonhierarchical (or look aside) validation of zones
- We have also seen that many zones deploy with default configurations
 - Almost all zones use RSA/SHA1
 - A significant portion of DNSKEYs are signed with the default 30 period

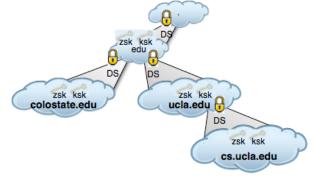
Conclusion (2)

- With the observations of small islands and default configurations we can see the importance of providing strong/safe defaults for critical operational practices
- Additionally, we notice that without clear re-signing guidelines, there exist unaddressed attack vectors against DNSSEC


Future Work

- Add support for
 - NSEC3
 - DLV
- Create a distributed monitoring framework
 - Poll zones from locations around the World
 - Will let as add the notion of availability to our monitoring

Thank You


Questions?

Backup

What is Trust?

 In DNSSEC resolvers identify authoritative zone data

- Secure delegations create Islands of Security
- Ideally, the root of an island should serve as a configurable trust anchor
- All zones below a root should be verifiable from that root (chain of trust)

Web Crawling

- We obtained a large web crawl from a commercial search engine (http://www.infocious.com/)
- Next we mapped its URLs to 18,965,389 unique authoritative zones
- For each zone we queried for DNSKEY records.
- Whenever found, a zone with keys is added to SecSpider