SecSpider: The DNSSEC Monitoring Project

Eric Osterweil
Dan Massey
Lixia Zhang

http://secspider.cs.ucla.edu/
Why We Are Monitoring

- Trying to identify observable facets of DNSSEC’s rollout
- Hope to find instructive insights for future systems
- Identifying elements that shed light on a design and operational practices
Motivating The Sec in DNSSEC

- We study the importance of islands and chains of trust
 - What kinds of islands are out there?
- When keeping records for their signature lifetimes:
 - Is re-signing of new data before expiration bad?
 - How often does it happen?
Outline

- Monitoring procedure
- Current state of our monitored set
- The way zones look so far
- Islands of trust
- Signing behavior and pitfalls
- Conclusion
Where Do We Get Our Zones?

- Each zone that we monitor was obtained in one of 3 ways:
 - As a user submission
 - As the parent of a secure zone
 - It was spidered in our web crawl
 - It was NSEC walked

<table>
<thead>
<tr>
<th></th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>User submission</td>
<td>67</td>
</tr>
<tr>
<td>Parent</td>
<td>33</td>
</tr>
<tr>
<td>Spidered</td>
<td>360</td>
</tr>
<tr>
<td>Walked</td>
<td>10</td>
</tr>
</tbody>
</table>
How We Monitor Each Zone

- To determine the operational status of each zone, we query each nameserver and we:
 - Note its serial number
 - Check that it supports ENDS0
 - Look for RRSIG RRs on its SOA record
 - Check to see if those signatures correspond to DNSKEYs served by the zone
 - Verify that the zone does not serve a CNAME for itself
How We Monitor Each Zone (2)

- Ensure that the zone issues a secure denial of existence for names that do not exist
- We classify zones as secure if all of their nameservers conform to the tests above
- Within each zone, each nameserver’s status is enumerated on its zone-drilldown page

<table>
<thead>
<tr>
<th>Name Servers:</th>
<th>Online</th>
<th>NS Name:</th>
<th>NS IP:</th>
<th>Server Version:</th>
<th>First Queried:</th>
<th>Last Queried:</th>
<th>NS Serial Number:</th>
<th>EDNS0 Capable:</th>
<th>DNSSEC Deployed:</th>
<th>Pointed to by Which Zone (Parent/Authoritative/Both)?</th>
</tr>
</thead>
</table>
What We Are Tracking

- Currently, we track **470** zones
- Of these, roughly **276** are secure
 - i.e. they use DNSSEC with up to date signatures, etc.
- From our web crawl (of 18M zones), we estimate that the deployment status of DNSSEC is roughly 0.0015%
NSEC Walking

- In each secure zone we walk NSEC records to look for secure delegations
- Large zones can be prohibitively expensive to walk
 - Some may inflate their zones so that walking is prohibitively expensive
- We resort to randomized NSEC walking
Randomized NSEC Walking

- Faced with many large secure zones we choose to make random jumps
- After a number of NSEC walks (starting at a zone’s apex) we randomly create a string and append the zone’s name to it
- Essentially, after some number of NSEC records, we jump forward
 - We repeat this until we wrap around to the apex
Keys

- We track 447 DNSKEY records
- All but 2 are RSA/SHA1
- Signature lifetimes vary between 3 and 1,000 days
- 80.04% keys signed for either 30 or 400 days
Nameservers in Zones

- We see an average of 3.6 nameservers per zone
- 24 zones have some nameservers that are secure and some that are not secure
 - We classify these zones as insecure
- 269 (out of 470) authoritative zones have NS RRsets that match the set served by their parents
“No [Zone] is an Island…”

- Delegation is a large part of the security model of DNSSEC
- Keeping track of the delegation hierarchy of the DNSSEC deployment
 - The state of the deployment falls far from the original vision
Or, maybe they are?

- From 276 secure zones, there are **262** separate islands of trust.
- The largest island is **se.** and contains just **5** zones.
- Islands are only formed by cryptographic delegations:
 - Through DS records.
Today’s Islands of Trust

- Almost every zone is its own island
- Demonstrates lack of deployment experience managing delegation hierarchy
 - Since every zone is island, no zone is currently operating the delegation hierarchy
TLD Distribution

- Some TLDs have an effort to push DNSSEC
- Other TLDs are simply large and have more zones that could try DNSSEC
RRset Signing

- Stale records can be replayed even after the auth servers remove the records
 - Vulnerable until the signature lifetime expires
 - Suggests the use of a very short signature lifetime

- Signing data is a computational and operational burden
 - Requires access to private keys which may (should?) be offline
 - Suggests the use of a very long signature lifetime

- SecSpider tracks the trade-offs and shows potential vulnerabilities due to long signatures
Zones May Be Vulnerable

- Some zones proactively re-sign their records more often than they expire
 - RRsets become *vulnerable* when their RR values change and are re-signed *before* old values’ signatures expire
- In the event that a record (NS/A/etc) is re-signed with a new value, an adversary may be able to replay old values
 - This could affect service
 - What about a DNSKEY?
DNSKEY Vulnerability

- In some cases, important sets (like DNSKEYs) can be vulnerable to replay.

<table>
<thead>
<tr>
<th>Protocols</th>
<th>Old Signing Date</th>
<th>New Signing Date</th>
<th>Protect the Innocent</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNSKEY</td>
<td>Nov 02, 2006 09:36:46 UTC</td>
<td>Dec 02, 2006 09:36:46 UTC</td>
<td>No</td>
</tr>
<tr>
<td>NS</td>
<td>Nov 02, 2006 09:36:46 UTC</td>
<td>Dec 02, 2006 09:36:46 UTC</td>
<td>No</td>
</tr>
<tr>
<td>SOA</td>
<td>Nov 02, 2006 03:38:40 UTC</td>
<td>Dec 02, 2006 03:38:40 UTC</td>
<td>Yes</td>
</tr>
<tr>
<td>NS</td>
<td>Nov 02, 2006 03:38:40 UTC</td>
<td>Dec 02, 2006 03:38:40 UTC</td>
<td>No</td>
</tr>
<tr>
<td>DNSKEY</td>
<td>Nov 02, 2006 03:38:40 UTC</td>
<td>Dec 02, 2006 03:38:40 UTC</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Re-signing every night for keys with lifetimes of 1 month might be problematic when they change.
How Bad is it?

Distribution of the Number of Vulnerable RRsets

Number of Zones

Number of Vulnerable RRsets

0 10 11 >100

0 20 40 60 80 100 120 140
How Bad is it? (2)

- Roughly half of the monitored zones maintain signing practices that correspond to signature lifetimes.
- The rest re-sign with a frequency that leaves some of their RRsets in conflict with previous values.
Conclusion

- We have observed that “orphaned” islands of security are essentially the norm
 - This lends credence to the notion of providing non-hierarchical (or look aside) validation of zones

- We have also seen that many zones deploy with default configurations
 - Almost all zones use RSA/SHA1
 - A significant portion of DNSKEYs are signed with the default 30 period
Conclusion (2)

- With the observations of small islands and default configurations we can see the importance of providing strong/safe defaults for critical operational practices.
- Additionally, we notice that without clear re-signing guidelines, there exist unaddressed attack vectors against DNSSEC.
Future Work

- Add support for
 - NSEC3
 - DLV
- Create a distributed monitoring framework
 - Poll zones from locations around the World
 - Will let us add the notion of availability to our monitoring
Come See For Yourself

SecSpider the DNSSEC Monitoring Project

Monitoring Summary:

470 Zones
269 Zones have NS sets that match their parents’ delegation set
276 DNSSEC enabled zones
178 Zones use both KSKs and ZSKs

Distribution of key algorithms in use:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th># Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSA/MD5/SHA1/SHA256</td>
<td>1</td>
</tr>
<tr>
<td>Diffie-Hellman [DH]</td>
<td>0</td>
</tr>
<tr>
<td>DSA/SHA-1 [DSA]</td>
<td>1</td>
</tr>
<tr>
<td>Elliptic Curve [ECC]</td>
<td>0</td>
</tr>
<tr>
<td>RSA/SHA-1 [RSA_SHA1]</td>
<td>445</td>
</tr>
<tr>
<td>Indirect [INDIRECT]</td>
<td>0</td>
</tr>
<tr>
<td>Private [PRIVATEDNS]</td>
<td>0</td>
</tr>
<tr>
<td>Private [PRIVATEOID]</td>
<td>0</td>
</tr>
<tr>
<td>Reserved 0</td>
<td>1</td>
</tr>
<tr>
<td>Reserved 255</td>
<td>0</td>
</tr>
</tbody>
</table>

Monitored Zones (in DNS canonical order):
- "" through "176.32.198.in-addr.arpa."
- "196.in-addr.arpa." through "90.in-addr.arpa."
- "81.in-addr.arpa." through "agefols.org."
- "alaskaairhawaii.com." through "at."
- "atlantadonezparty.com." through "hierbijkgerchre.com."
Thank You

Questions?
Backup
What is Trust?

- In DNSSEC resolvers identify authoritative zone data
 - Secure delegations create Islands of Security
 - Ideally, the root of an island should serve as a configurable trust anchor
 - All zones below a root should be verifiable from that root (chain of trust)
Web Crawling

- We obtained a large web crawl from a commercial search engine (http://www.infocious.com/)
- Next we mapped its URLs to 18,965,389 unique authoritative zones
- For each zone we queried for DNSKEY records.
- Whenever found, a zone with keys is added to SecSpider