The Evolution of DNSSEC’s Global Rollout

Eric Osterweil
What is DNSSEC Good For?

- The DNS is a core Internet protocol that maps names to other content:
 - IP addresses, mail servers, SPF policies, etc.

- DNSSEC enhances DNS by overlaying crypto
 - Name learning hierarchy is overloaded for crypto key learning

- Crypto verification is recursively performed throughout the hierarchy

- However -

- The overall protections are affected by the operational deployment
Level Setting

- DNSSEC is the first true internet-scale cryptographic system
- Its global rollout has offered a couple of key lessons:
 - The added operational complexities of cryptography have been non-trivial
 - Crypto can cause unforeseen interactions with the network
- DNSSEC has experienced several growth-spurts and also a number of measurable challenges
 - Distributed monitoring has allowed us to learn as we’ve deployed
Outline

- How DNSSEC works
- State of DNSSEC’s Deployment
- Operational Complexities: Managing keys
- Unforeseen Interactions with the Network
- Addressing Challenges
- Summary
DNSSEC

- DNSSEC provides *origin authenticity*, *data integrity*, and *secure denial of existence* by using public-key cryptography.

- **Origin authenticity:**
 - Resolvers can verify that data has originated from authoritative sources.

- **Data integrity**
 - Can also verify that responses are not modified in-flight.

- **Secure denial of existence**
 - When there is no data for a query, authoritative servers can provide a response that proves no data exists.
How DNSSEC Works

- DNSSEC zones create public/private keys
 - Public key is DNSKEY

- Zones sign all RRsets and resolvers use DNSKEYs to verify them
 - Each RRset has a signature attached to it: RRSIG

- Resolvers are configured with a single root key, and trust flows recursively down the hierarchy
Data Signing Example

Using a zone’s key on a standard RRset (the NS)

Signature (RRSIG) will only verify with the DNSKEY if *no* data was modified.
Getting the Keys

- Until a resolver gets DNSKEY(s), data can be spoofed
- Keys verified by secure delegations from parents to children
 - So resolvers know DNSKEYs are not being spoofed
- DNSSEC’s design needs the full hierarchy in order to verify keys
 - No middle ground: either a key has a delegation, or you know nothing about it
Growth of DNSSEC’s Deployment

Figure from SecSpider http://secspider.cs.ucla.edu/
Size of the Deployment

- How the 30,102 DNSSEC zones have been found
 - Phase 1: crawling a corpus of DNS zones from a search engine
 - Phase 2: user submissions (thank you!)
 - Phase 3: NSEC walking

- Search engine’s crawl size is 35,213,902 which suggests that DNSSEC’s deployment is somewhere around 0.1%

- This suggests the deployment challenges and the economic incentives may not be well aligned
Grass-Roots Have Been Essential

- Several Top Level Domains (TLDs) took early initiative
 - 19 TLDs deployed in 2009, including .org
 - Today 61 TLDs are signed, including .net!!

- Zones under these TLDs have more incentive to deploy
 - The delegation chain exists
 - In January 2009, over 1,000 .se domains signed
 - In March 2010, several thousand .cz signed

- The deployment’s bulk has come from grassroots / early adopters and the rate has been affected by large events
Timing of DNSSEC’s Growth

Figure from SecSpider http://secspider.cs.ucla.edu/
Growth Rate of Signed TLDs

The graph illustrates the growth of signed TLDs (Top-Level Domains) over time from July 2005 to January 2011. The x-axis represents the date, while the y-axis shows the number of TLDs signed. The growth rate is indicated by a red line on the graph, which shows a steady increase in the number of signed TLDs over the specified period.
Growth in the Root Zone

- As the root zone is growing, IPv6 uptic and DNSSEC delegations are showing accelerated adoption
Regarding the Deployment

- DNSSEC’s protections come from more than its protocol’s correctness
 - Monitoring lets us discover and diagnose its behavior under real operational conditions

- We can see a correlation between large public events and growth spikes
 - Perhaps periodic alignment of costs and incentives
 - But does misalignment of costs and incentives explain the plateaus?

- Posit: the operational complexity often dissuades adoption
Challenges Facing DNSSEC So Far

- To paraphrase Paul Mockapetris:
 “Deploying [cryptography] for a database does not deploy a corresponding amount of expertise”

- It adds new crypto-related operational learning curves
 - Managing crypto (key rollovers, algorithm rollovers, etc.)
 - Protecting crypto keys (offline, HSMs, etc)

- Unforeseen interactions at the network layer
 - Large messages / PMTU interactions
 - “Middlebox” interoperability (or lack thereof)

- The road from the protocol’s specification to the global rollout has already given us a lot to learn from
Operational Complexity: DNSKEYs

- DNSSEC adds a number of new operational requirements
- Among them is managing cryptographic keys
- DNSKEYs are not used the same way as other records
 - For example, DNS A records aren’t subject to crypto analysis or being stolen
- Thus, in DNSSEC, more thought must be invested in managing keys than other record types
Managing Keys: Key Lifetimes

- There is a distinct difference between the signature lifetimes of DNSKEYs and the actual period of use
 - A key with a short signature lifetime can be re-signed indefinitely!
Key Rollovers

- DNSSEC’s philosophy is that keys should be replaced periodically

- When keys become compromised, they must be removed/revoked/etc

- Conventional wisdom says that keys should not be used indefinitely
 - RFC 4641 suggests prolonged use of keys increases the probability of “compromise…”
How Keys **Should** be Changed

- When key changes are needed, old keys need to overlap with new keys
 - Chained rollovers

- Sign with Key_1 ➔ add Key_2 ➔ Sign with Key_2 ➔ Stop serving Key_1
Otherwise…

- Removing a key too soon can cause validation failures
 - If caches only have signatures from a recently removed key, resolvers may not be able to verify data

- Key changes must be chained
 - Until all signatures from a key have expired, a zone must serve that key
 - Otherwise resolvers may encounter data that seems false

- So, how often are people chaining?
Managing Key Rollovers

- Bimodal distribution
 - Some operations seem to be struggling with rollovers
Addressing this Type of Challenge

- One of the main problems is the new operational complexity
 - Key rollovers are a new type of operational requirement
 - No clear analog in operating a plain old DNS zone

- Other operational challenges also exist:
 - Algorithm rollovers
 - Managing offline keys
 - DS record synchronization / rollover

- Tool suites like: BIND-tools, ldns utilities, Vantages have arisen to address and ease these problems
But What Happens to DNSSEC on the Wire?

- Operational / configuration complexity are not the only problems posed

- DNSSEC’s have significant differences from plain old DNS’
DNSSEC’s Interaction with the Network

- DNSSEC Overstressed the DNS
 - We added crypto keys (DNSKEYs), anywhere up to 4,096 bits each
 - Zones should have at least 2 (ZSK + KSK) and maybe more

- We added crypto signatures (RRSIGs)
 - At least one in each RRset and sometimes one for each DNSKEY
 - Varying in size, based on DNSKEY sizes

- Large messages have lead to a prominent availability problem in DNSSEC’s deployment
 - Resolvers request large response messages, even if they won’t fit

- Sometimes these larger messages are too large to fit over the network path
 - The Path Maximum Transmission Unit (PMTU) is too small
The Network Path and PMTU

- A network path is a sequence of links.
- Each link can only support packets of a certain size (MTU).
- The smallest MTU for a network path is its bottleneck, or its *Path Maximum Transmission Unit* (PMTU).
Studying the PMTU Problem

- A recent study showed that roughly 60% of queries seen at one root server ask for response sizes of 4,096 bytes.

 https://www.dns-oarc.net/node/146

- In 2009, SecSpider used its distributed pollers to illustrate:

 - How often does the default behavior of using 4,096 byte buffers work for DNSSEC?
 - When it fails, is it possible to advertise smaller buffer sizes that will work?
 - How often are key sets just too large to fit over paths?
As Seen From SecSpider’s Pollers

- Green bars indicate the number of times a poller needed to do a PMTU walk.
- Red bars indicate the percentage of times a PMTU was able to find a buffer size allowing DNSKEYs to be received.
A Correlated Jump in Walks

- In September of 2008, roughly 100 zones began serving DNSKEYs that didn’t “fit” their PMTUs.
- In November of 2008 the availability was restored, but only with PMTU walks.
- Zones can always check their statuses at:

 http://secspider.cs.ucla.edu/
Addressing Challenges

- Monitoring discovers deployment problems
 - This is an ongoing need: new problems will arise

- Before and during DURZ, extensive measurements were taken to ensure stability

- Tool suites have been critical in easing pains
 - But there is still plenty to do

- Approaches like SecSpider have taken additional proactive steps
 - Quantifies the operational protection of DNSSEC
SecSpider’s View of DNSSEC’s Deployment

- Quantifying DNSSEC lets us to concisely describe its status
 - We define 3 measures to quantify the overall system status

- **Availability**: resolvers must be able to get data
 - Quantify the dispersion of the PMTU problem from different vantages

- **Verifiability**: resolvers must verify cryptographic keys and signatures
 - As opposed to spoofed by an attacker

- **Validity**: The data covered by cryptographic protections must be valid
 - A verifiable RSA signature does not mean an RRset’s data is correct
Today’s problems may indicate that DNSSEC’s operational complexity is a disincentive to deploy it. Many tools and services have arisen to deal with this: SecSpider, BIND-tools, Idns utils, Vantages, etc.

DNSSEC’s network interactions have also spawned a great deal of discussion and best practice work. Operational guidelines now include consideration for large message sizes, DU[R]Z, etc. Tools like dnsfunnel and OARC’s reply-size test for this.

With major milestones like the root being signed, incentives should finally arriving.
Thank you

Questions?
Backup
SecSpider’s Distributed Polling

- 9 pollers in: Asia, North America, South America, and Europe
- Pollers are lightweight C daemons called rdnsD
- Communications between master coordinator and pollers is secured using TIG
 - Symmetric key crypto
Further Complications with DNS’ Large Packets

- DNS messages are further limited by “middle boxes” (firewalls, NAT, etc.)
 - Some firewalls drop “suspicious” DNS traffic
 - A recent study found this was quite common in SOHO routers http://download.nominet.org.uk/dnssec-cpe/DNSSEC-CPE-Report.pdf

- Because of middle boxes, network paths that may support large packets may fail to deliver large DNS messages

- We overload the term PMTU to apply in these cases too
How Many Zones Have Trouble?

- Fraction of queries (x-axis) that cause PMTU exploration (y-axis)
- For Ex: from poller 0: ~70% of the production zones only need PMTU walks ~20% of the time (or less)
- Poller 6: ~60% of the zones need PMTU walks up to 90% of the time
SOHO Router in Los Angeles

PMTU Rates Over Time

- 4096 Worked
- Smaller Works
- Packets Don't Fit
Something Interesting…

[Graph showing PMTU rates over time with a red circle highlighting a specific area.]

- **4096 Worked**
- **Smaller Works**
- **Packets Don’t Fit**

[Months and years marked on the x-axis: Sep/07, Nov/07, Jan/08, Mar/08, May/08, Jul/08, Sep/08, Nov/08, Jan/09, Mar/09, May/09, etc.]

[Count and date labels on the y-axis and x-axis, respectively.]