
Reducing the X.509 Attack Surface with
DNSSEC’s DANE

Eric Osterweil
Verisign Labs

eosterweil@verisign.com

Burt Kaliski
Verisign Labs

bkaliski@verisign.com

Matt Larson
Verisign Labs

mlarson@verisign.com

Danny McPherson
Verisign Labs

dmcpherson@verisign.com

Abstract—For the last decade, perhaps the most commonly
used type of end-user security has been the HTTP Secure
(HTTPS) protocol employed by web browsers (which runs
over the Secure Sockets Layer, SSL or its successor, TLS). In
HTTPS, any service (such as a website) may create its own
cryptographic certificate to secure its communication channel,
and clients use this certificate to verify data from, and transmit
data to the server. This model has helped to secure online
banking transactions, eCommerce websites, social networking
websites, and more. However, two inherent complications to
this approach are that clients must have a secure way to learn
the authentic certificate for each website before they begin
using this protocol, and they must be able to determine if
they can trust the named entity that the certificate belongs to.
These complications are conflated in today’s security model,
which is based on a list of prespecified trusted X.509 Certificate
Authorities (CAs) that every client must know a priori, and
a very ad-hoc approach to determining which of this list of
CAs will vouch for any keys discovered.

In this paper we first outline some of the fundamental
problems that exist with today’s CA model, problems that
arise from its conflation of the two inherent complications,
and some of the implications and attack vectors that these
problems present to the security of this model’s users. Then we
introduce some of the relative benefits that can be gained from
a new approach being standardized in the IETF called DNS-
based Authentication of Named Entities (DANE), in which
certificate credentials are verified by DNSSEC-enabled zones,
rather than the CA model used today. We illustrate that
the DNSSEC-verification model reduces the attack surface
that users currently inherit, and show that this model opens
avenues that have previously remained elusive (such as a
usable S/MIME verification infrastructure).

I. INTRODUCTION

For over a decade now, Internet users have needed a way
to securely visit data sources (websites, mail servers, etc.).
However, busy data sources like these cannot, for example,
proactively disseminate (or push) their crypto certificates
to all of their users (how could websites like Google even
know exactly who will visit them ahead of time). Moreover,
sending a crypto key over the same channel that may be
subject to a Man in the Middle (MitM) attack, would make
in-line key learning vulnerable too. Yet, users need some
way to “securely” learn crypto certificates for all the sources
they will ever visit (even though they do not know who
they may visit ahead of time), and determine if the named
entities that hold those certificates are “trustworthy” (that is,
a named entity may still act maliciously even if they have

a valid certificate). Moreover, services like websites, email
servers, etc. may want to periodically change their crypto
certificates, so learning certificates is a moving target for
clients.

Today, we rely on certain organizations called Certificate
Authorities (CAs) to perform these tasks for us. That is,
a relatively few organizations (compared to the millions
of delegated organizations) who are trusted to vouch for
both the authenticity and “trustworthiness” of all other
organizations’ (i.e. the named entities) certificates. Each
of these CAs is associated with a certificate of its own,
but unlike Google’s certificate, all clients in the Internet
are presumed to have securely learned the certificates of
a list of “well known” CAs. Some of the details of this
approach are discussed in [16]. Generally, large software
vendors (like Mozilla Foundation, Apple, Microsoft, etc)
configure the X.509 certificates for roughly 160 CAs for
users when they are installed. These certificates are then
treated as ground-truth for the trustworthiness of learned
certificates by software ranging from web browsers, to mail
readers, etc. In this model, software vendors have assumed
the responsibility to choose and maintain CA lists, and
these CAs are responsible for verifying all of the data
sources a user may ever visit on the Internet. However, it
has become increasingly well known that the CA model
can present adversaries with several attack vectors that
are both easy to implement and/or hard to detect. We
discuss these in more detail, and give specific examples
of known instances of compromise in Section II-A. One
major liability of this approach is that after the mandatory
DNS lookup that precedes certificate verification, there is no
unambiguous and transparent way for service operators to
inform Relying Parties (RPs) of how their certificate should
be verified and trusted. That is, the DNS provides a clean
way to unambiguously map a domain name to an Internet
resource (generally an IP address), but SSL/TLS does not
have equivalent semantics to allow the named entity who
was looked up in the DNS to unambiguously inform RPs
of the verification process. Rather, any certificate received
over the TCP session is treated as the starting point for
authentication. Therefore, if a service operator uses CA1
to verify their certificates, but a Man in the Middle (MitM)
adversary inserts a falsified certificate from CA2, there is
no way for an RP to detect this (specifically because the

cryptographic verification will succeeded for the adversary’s
certificate). The term named entity is sometimes used when
logically associating a domain name to the authoritative
entity that controls it.

Recently, however, the DNS Security Extensions
(DNSSEC) [6], [8], [7] have become an operationally
relevant technology, and their deployment has been growing
steadily for over six years [5]. This has opened the door
for domain owners to explicitly manage their security in
the same distributed database that users trust to find their
service: DNS. Using DNSSEC to attest to TLS keys (for
HTTPS and other TLS-based protocols) has already begun
in the IETF’s DNS-based Authentication of Named Entities
(DANE) working group [1]. Moreover, some commercial
products, such as Google’s Chrome [10] have deployed
native support for this and add-ons exist for browsers
such as FireFox [3]. Perhaps one of the most fundamental
observations to make about this approach is that Inter-
net clients that act as RPs are already captive to DNS
(for example, URLs are rarely formed with IP addresses).
Thus, enabling certificate authentication within the same
infrastructure that is already required for online transactions
reduces the system’s dependencies on additional systems
and protocols, and thus reduces the overall attack surface.

Based on observations that more could be possible with
the general approach of verifying certificate authenticity
using the now-secure DNS, work has begun towards ad-
dressing the needs to make S/MIME’s global deployment
a possibility [9]. With an approach like the one DANE
is advocating for TLS, users’ will be able to secure their
email inboxes (inbound and outbound) by configuring and
learning crypto keys from DNS. In fact, this has been
discussed for over 13 years [4], and while approaches like
PGP’s web of trust [12] have been attempted to bridge this
gap through user-based multilateration, they have failed to
gain significant traction and provide convincing security as-
surances. Recently, other work [19] has begun to investigate
some alternative ways to do this.

Many well designed security protocols have stagnated
in the Internet’s operational setting because there has not
been a globally secure/operationally deployed system that
allows for Internet-scale cryptographic key learning and
verification. However, with the operational deployment of
DNSSEC, a new climate is emerging in Internet operations.

The rest of this paper is organized as follows: First,
Section II details how the current CA model works. Then,
Section III describes the DANE model and compares its
security assurances against the current CA model’s. Finally,
we conclude with a discussion of future directions in
Section IV.

II. THE CA / X.509 LANDSCAPE

Without X.509 and certificate authorities, Internet users
are at risk from having their TCP connections (HTTP,
SMTP, etc) hijacked. Figure 1 shows how even if DNS
is secured with DNSSEC, hijacking a TCP session can

be quite straightforward over a narrowly focused attack
surface.

CAs have “secured” various channels for us for over
a decade. Every time a user’s web browser contacts an
HTTPS website, every time their mail client (the Mail User
Agent, MUA) connects to their secure mail server, every
time their operating system checks for (or authenticates)
new software packages their computer checks the requested
data service’s certificate against a list of CAs configured
on their machine. In this model, the notion of authenticity
and trustworthiness are conflated into a single cryptographic
verification.

The specific process is surprisingly flexible: a user’s
operating system, or a software provider (such as Mozilla)
maintains a list of globally “trustable” CAs on every user’s
computer.1 Thus, whenever there is a software update of
(say) FireFox, or OS X, a current list of CAs are pushed
to a user’s computer. This allows software packages such
as Thunderbird (an MUA), FireFox, Opera, etc. to verify
the authenticity of X.509 certificates that are learned when
users connect to services they encounter online, and infer
the trustworthiness of these certificates. For example, when
a user clicks on an HTTPS link they find in a Google
search page, their browser receives an X.509 certificate
from the remote web server. Their browser then performs a
number of sanity checks (that include date checks, possibly
OCSP/CRL checks, other blacklisting checks, possibly a
usage type check, etc.), then looks in that certificate to see
what CA it claims to be verified by and then looks in its
own local CA list to see if it has that certificate. If so,
then the CA’s certificate is used to verify the signature that
the remote web server’s certificate claims belongs to that
certificate. If there is a match, then the certificate can be
used to secure the communications between the two parties.

This model has several notable benefits. Perhaps the
clearest is the fact that any data source in the Internet (web
servers, mail servers, etc) can choose any of the most well
known CAs to verify them. For example, when a web site
wants to deploy HTTPS, it can create its own Certificate
Signing Request (CSR), pass this to a CA of their choice
(say PiousCA), then take the returned certificate (with a ver-
ifying signature from PiousCA) and configure it to be served
from their webservers. Thus, any web browser that has
the PiousCA CA certificate configured can verify the TLS
transaction, and that transaction verifies the web server’s
content. This model allows services to determine whom they
would like to trust, and allows clients to have flexibility
in when learning keys from a diverse set of services. If
an attacker launches a Man-in-the-Middle (MitM) attack
against a client, they must provide a certificate that was
issued by a valid CA and which reports to belong to the
service in question, or it will be rejected by the client.

1It is common for the list of CAs to be approximately 160 entries in
size, and there is no definitive source that prescribes what CAs should
be in the lists managed by different parties. Thus, different software may
have different lists of CAs

DNSSEC

root

example.com

.com

1 - Resolving
http://www.example.com

Web Server

Client

2 - DNS
response

3 - HTTP

Attack Surface

Fig. 1. The vulnerability of an HTTP session.

While it is easy for data services and clients to use this
certificate learning system, is easy really the right metric
to judge its success? Moreover, if any CA can vouch for
any service at any time (even if the service owner doesn’t
want it or doesn’t know about it), how much trustworthiness
is actually imparted during the authenticity verification and
how much operational liability already exists in the current
CA deployment?

A. Liabilities: an Attack on One Defeats All

The converse of the CA model’s easy-to-use design is
that there is a correspondingly easy way to defeat it. Since
any data source can be vetted by any CA, then if any CA
is hacked, then all data sources are vulnerable. There have
been several actual cases where this has happened [15],
[20], [22], and one might reason that if this can happen to
such high-profile zones (Google, Skype, Yahoo, etc.) then
the same could happen for any zone, and may not even
be widely reported. In addition to the outright issuance of
fraudulent certificates, some CAs have been tricked into
issuing certificates for names that simply appear to be valid
for sites, but technically aren’t. For example, in 2009, a
Black Hat presentation [14] demonstrated the ability of a
miscreant to use the “NULL byte hack” to use certificates
that really vouch for one domain to trick browsers into
applying them to a subdomain.2

The fact that any data source can choose whom they
would like to be verified by means that any CA can authen-
ticate a certificate for any data source they want. That is, the

2The description of this hack is beyond the scope of this document, but
is fully described by the citation.

flexibility of whom a source trusts translates to the inability
of a client to judge if a CA is authorized to vouch for a
service. Consider the following (one of many possible attack
vectors), suppose subzone.example.com runs an HTTPS
server, and chooses to be certified by PiousCA (a fictional
CA). They get a certificate from PiousCA, with a signature
in it that can only be verified by PiousCA’s CA certificate.
The administrators of https://www.subzone.example.com/
then configure their webserver to use this (their new) cer-
tificate. However, an adversary can get the CA from (say) a
compromised CA (such as one from a country whose politi-
cal regime has recently been overthrown and whose climate
may allow politics to interfere with Internet operations).
This compromised CA (let’s call it .compromised) can
also issue a certificate for subzone.example.com. Thus, if
an attacker launches a MitM attack with a certificate from
.compromised, the client will not know it is any less
valid than one from PiousCA, or any other CA.

In order to properly address the liabilities, we begin with
the premise that the aggregate attack surface can be defined
as the union of all attack vectors, and that the “size” of this
surface roughly describes the vulnerability of the security
model.

B. Attack Surface
The sum of all attack vectors, or the aggregate attack

surface for the CA model:
• The CAs themselves are a vector. Each CA that a

client has configured is an element that can be attacked
(as seen in the example above). This means that if
the average user has about 150 CAs configured, the
corresponding attack surface is augmented once for

CA List

DNSSEC

root

example.com

.com

1 - Resolving
https://www.example.com

Web Server

2 - DNS
response

3 - HTTPS

Client

OCSP
servers

CRL
servers

4 - Check
Cert

Check
CA Rev

Check
CA Rev

Attack Surface
~160 targets

Attack Surface
~160 targets

Fig. 2. Attack surface using CAs.

each. The most vulnerable is simply the weakest link,
but any CA can allow for arbitrary certificate spoofing.
Moreover, since the certificate delivery is point to
point between a client and a server, it is not easy
to detect when a MitM attack is underway. Bogus
certificates can be delivered selectively to victims to
avoid detection. This component of the attack surface
is O(n), where n is the number of CAs on a client.
We note that many CAs employ subordinate CAs,
which are entities who are allowed to sign on behalf
of a given CA. While this clearly increases the attack
surface, we omit this for now, and just estimate the
predictable size of this component of the overall attack
surface.

• Any Online Certificate Status Protocol (OCSP) servers,
or Certificate Revocation List (CRL) servers. These
two services are designed to allow clients to check if
a given certificate has been revoked. For example, if a
certificate owner knows that their certificate has been
compromised, they may want to issue a revocation so
that clients won’t use it any more. For clients to find
this information they must use a service like OCSP,
or a CRL. However, relying on these services means
that they can be attacked in order to keep a client
from learning of a revoked certificate (thus allowing
a miscreant to continue using it). This component of
the attack surface is O(m+p), where m is the number
of OCSP servers in all certificates a client encounters
and p is the number of CRL servers a client encounters.
This can effectively double the attack surface from just
the CA list alone.

• The DNS zones that host OCSP services, the CRL
servers, or even just the target domain’s zone itself.
This part of the attack surface may not be as obvious
as others, but it is just as real. A zone’s attack surface
can be loosely derived from a notion that is often
called transitive trust (first discussed in [18], and more
recently elaborated on in greater detail in [17]), which
relates to the opportunity cost of an attacker that aims
to disrupt of hijack a DNS zone. In this case, such
an attack would allow a miscreant to launch a DoS
attack against service to OCSP or CRL servers by
attacking DNS nameservers (instead of the data servers
themselves). We generally quantify this as O(|NS|),
where |NS| represents the number of name servers
involved in serving the entire predecessor graph of a
zone. An example of this is shown in Figure 4.

Figure 2 also shows a view of this attack surface.

III. DANE AS AN ALTERNATIVE

Now that DNSSEC has been deployed at the DNS root,
several of the largest Top Level Domains (TLDs), such as
.com, .net, .se, etc., and the global growth has begun to
to gain visible traction (as seen in Figure 3, taken from [5]),
zone owners are beginning to be faced with both economic
incentives to deploy, and operational DNSSEC tools whose
maturity is making the cost of deploying DNSSEC more
realistic.

Under these operational conditions, operators, the IETF,
and various other groups have begun considering the possi-
bility of replacing the aging CA certification model with
one based on the newly secured DNS. Most notably,

the IETF has formed a working group called DNS-based
Authenticated Named Entities (DANE) [1]. In this group,
new Internet drafts have already begun the publication
cycle towards RFC standards documents. In particular, the
working groups first focus has been to specify what must be
placed in DNS, in order to transfer trust to a TLS certificate.
At the time of this writing, the working group has begun
standardizing on a DNS resource record called the TLSA
record and specifying its semantics. The basic role of this
record is to exist in a DNSSEC signed zone, and to indicate
the certificate information that corresponds to a specific
service on a specific port of a name in that zone. Thus,
when an administrator of (say) www.example.com wants
to run TLS on port 443, he/she can place a TLSA record
at 443. tcp.www.example.com so that browsers know that
there is a service on that port and what the certificate should
be. One of the subtle, but important, differences in this
model is that it is attempting to verify the authenticity of
certificates, but does not speak to the trustworthiness of the
named entities themselves. Thus, one can know that the
certificate being used is authentic for a domain name, but
cannot necessarily use this knowledge to determine if that
domain is (for example) a phishing site. That is, DANE
properly decouples these two goals.

A. New Benefits

When clients (such as web browsers) lookup named
entities (such as domain names like www.paypal.com), they
currently query the site’s DNS zone for the IP address of its
server(s), then query the servers for the certificate, then use
their CA list to verify the certificate (locally). By contrast,
using the DANE protocol, a browser would query the DNS
for the IP address and the TLSA record. Then connect to
the webserver and see if the returned certificate matched
what it had already learned and verified from the DNS.
Any MitM attack would be thwarted before it even started.
As a result, each named entity (i.e. a DNS domain name)
can “staple” itself to either a key (placed in its zone), or to a
specific CA (if the TLSA certificate explicitly allows for it).
This protocol makes the verification process transparent to
clients. When they lookup information about the zone, they
can explicitly see the certificate/CA that a named entity.

In addition to the the TLSA record, the DANE group has
also discussed the general ease with which similar work
could be done to standardize on a verification mechanism
for S/MIME (a protocol for “securing” email communi-
cations between arbitrary parties). Currently, some users
use PGP keys to protect their emails. In order to verify
the PGP keys being used, they turn to PGP’s Web of
Trust [12]. For many years, researchers have tried to turn the
social multilateration of the Web of Trust into a trustworthy
substrate, but now that DNSSEC has secured the same name
space that email addresses rely on for service resolution, the
DANE work can be applied to this need as well.

In any of these cases, one of the most compelling
observations is that a named entity is able to explicitly

Fig. 3. The size of the global growth of DNSSEC, as seen by SecSpider.

indicate its verification information to its clients. Rather
than trusting the two-party matching protocol of the CA
model, the owners state their trust assertions to their clients
in a clear and transparent protocol.

B. Protecting DNS’ Model

Many of the benefits described above are really inherent
in DNS’ core model. Thus, changes to the way DNS is
operated, or its core approach to universal resolvability
has the potential to undermine its protections. DNS was
designed to be a globally unique name space served on top
of a globally available database. This has allowed websites
to brand themselves, users to trust named entities to deliver
content from specific authorities, and more. This global
name space and its universal resolvability have formed
a substrate on which even the CAs (let alone DANE)
have built a verifiable trust model. Clearly, without these
properties, many of the security assurances that have been
built and are being designed would suffer. Yet, some groups
have proposed that resolution of DNS and resolvability
of DNS’ domain names should be subject to external
legislation, or filtering techniques that are built into the
DNS’ control plane itself [21]. Recently, some Internet
researchers approached the US legislative body that has
been contemplating this form of legislation and issued a
statement against such action [2].

In addition to the implications of prescribing resolution
policy through legislative bodies, DNS’ control-plane itself
is an important consideration when adding additional layers
of trust. In recent work [17] we outlined the need for
zone owners to understand how much transitive-trust they
may inadvertently be incurring through the deployment and
sharing of DNS secondary servers. Figure 4 shows that
the DNS resolution of the DNSSEC-enabled Top Level
Domain (TLD), .bg can depend on querying a great
many secondaries for information. By contrast, the more
conscientious deployment of starbucks.com’s zone (as seen
in Figure 5) will generally require far fewer secondary

Fig. 4. The control plane dependency graph of .bg

servers to be trusted (and in this particular case, they all
reside within a single administrative domain).

C. Liabilities in this Direction

The value proposition for the DANE work is relatively
clear: since DNS zones are the starting point for TLS
transactions in the Internet, and since DNSSEC provides
origin authenticity, data integrity, and secure denial of ex-
istence, then verifying the TLS handshake from DNSSEC-
protected data allows clients to transit the same trust they
have in the origin zone to the webserver’s authenticity.
While the current CA model allows any CA that a client has
configured to create a security hole, the new approach does
not address some of the services that the current CA model
does. Perhaps the most notable element that is missing from
the DANE approach is the policy framework of the CA
model. Currently, when many CAs make attestations, they
take actual “responsibility” for them. For instance, some
CAs will issue Extended Validation (or EV) certificates to
zones. These certificates carry with them the implication
that the issuing party is taking (in many cases, a legal)
responsibility for the authenticity of the mapping from a
certificate to the prescribed service. Thus, the implication
is that if the CA is in err, they are liable. Some feel this
adds more security to the CA model, and others claim that
this new approach fundamentally decouples a conflated set
of issues in the CA model and that this enables more utility
in security policy expression.

As the DANE approach relies heavily on DNSSEC to
verify data, it also ushers in another implicit need: DNSSEC
validators. When an authoritative zone deploys DNSSEC,
it creates signatures to verify its data. For example, when
a user queries for www.verisigninc.com, the answer is
returned with a digital signature. However, if the DNS
resolver that is issuing the query does not check that
signature, then there is no increase in security. ISPs and
enterprises have begun rolling out these services, but our
end-user devices are becoming increasingly less tied to
specific DNS resolution infrastructure. For example, an
iPad, or a cell phone may be acting on a wireless network,

or a home cable network, or a coffee house’s network. In
each of these cases, the DNS resolver being queried may,
or may not, have DNSSEC validation enabled.

Another liability in this direction is one in which peo-
ple try to deliver DNSSEC verification over a non-DNS
medium. In part, this discussion has arisen in the IETF [13]
while the protocol is in its nascent stages. Thus, this treatise
may not reflect a long-lived concern. Nonetheless, some
have contended that a DNSSEC enabled zone should be
able to serve certificate credentials for a service, or staple
itself to a CA, but that this information should be encoded in
the certificate itself (rather than taken from DNS). Though
there are several operational justifications that proponents
espouse, this approach opens an attack vector up against
the otherwise immune DANE protocol. If verification of a
certificate is taken from that certificate instead of validated
off-axis in the DNS, then an adversary can replay a cer-
tificate that has been revoked in the DNS zone. That is,
suppose a zone vouches for a certificate in its TLSA record
at t0. Then, at time t1, the zone operator learns that the
certificate has been compromised and is being used to forge
data. The operator can then replace the TLSA record with
one pointing to a new certificate at time t2, and clients
will automatically learn the new value from then on. By
contrast, putting the DNSSEC verification information in a
certificate would mean that an adversary can continue to
replay the compromised certificate with impunity any time
after t0, regardless of when the zone is updated.

D. DANE’s Attack Surface

To begin, let’s consider a web server running HTTPs at
the URL www.subzone.example.com. Further, we simplify
our attack scenario by assuming that a zone operator has
indicated an End Entity (EE) certificate as being authorita-
tive for their web server. That is, initially this zone does not
staple itself to a CA, but uniquely identifies the certificate
it will use.

In order for an adversary (Eve) to attack this name, she
can attack the name servers for the zone subzone.example.
com, or any zone in the predecessor list (bar.com, .com, or

Fig. 5. The control plane dependency graph of starbucks.com.

the root zone). However, if each of these zones is DNSSEC
enabled, she can (at best) launch a DoS attack against them.
This would not allow her to spoof data, and would be
globally detectable.

Thus, the attack surface of this approach (which doesn’t
need OCSP, CRLs, or a list of CAs) is just O(|NS|), where
|NS| is the number of name servers in the predecessor list
(inclusive of the target zone). In fact, one could argue that
if the DNSSEC zone’s signing keys are kept offline, an ad-
versary cannot compromise the integrity of the data on any
single name server, and must compromise the organization’s
key. This could reduce O(|NS|) to O(|Inst|), where Inst
is the set of institutions running zones, and |Inst| ≤ |NS|.
However, we conservatively assume O(|NS|) here. Because
verification is based on the presence of a verifying TLSA
record in a zone, revocation is implicit when it is removed.
This obviates the zone from needing any revocation infras-
tructure. This effectively reduces the attack surface (from
the CA model’s) from a derivative of the roughly 150 CAs
to just the predecessor graph (inclusive of the target zone).
Figure 6 illustrates the reduction in attack surface.

E. A Usable S/MIME Infrastructure

As a globally unique and highly available name-space,
DNS has allowed email addresses to become a form of
unique identifiers. Users already rely on the fact that given
an email address, any user can send messages to any other
without knowing anything about them and that messages
can be sent to a single unique place. However, this does not
ensure that they will be delivered, be unaltered, or that they
will not be read by third parties. To address this concern,
S/MIME was created to sign and optionally encrypt email.
However, as a cryptographic protocol, S/MIME suffers from
the same problem that other Internet-scale security protocols
suffer: how can arbitrary parties in the Internet securely
learn and verify each others’ cryptographic keys?

Just as with TLS, now DNSSEC can be leveraged to store
S/MIME certificates for users. Just as the DNS named entity
already directs mail to specific servers for the mailboxes that
belong to it, it can now use the same authority to direct
clients to the S/MIME certificate for each mailbox. This
would overload the same 1-to-1 mapping that exists between

the authority for a DNS domain (i.e. the address) and the
verification mechanism for that address.

IV. FUTURE DIRECTIONS

The increased operational deployment and feasibility of
DNSSEC will surely be considered a watershed event in
the history of operational Internet security. Having designed
Internet applications and protocols to use DNS names
for service location, we are now able to use the same
mechanism to resolve and securely authenticate system
credentials. The deployment of DNSSEC has made this pos-
sible, and with the increased incidence of CA compromise,
and the increasing need for security in our everyday online
activities, it could not have happened soon enough.

In this paper we discuss a number of the motivations for
using the DNS to bootstrap trust in other systems, and we
outlined the need to treat DNS as a reliable service, rather
than a policy enforcing framework. Researchers, protocol
engineers, and operators alike have long awaited the arrival
of an Internet-scale crypto key learning and verification
system. It is important that now, as we are on the threshold
of realizing this new service, we do not undermine its very
foundations [2], and that we conscientiously attend to its
own security properties [17] so that this promise becomes
an operational reality.

One of the key outstanding issues is that some services
may require both authenticity verification (as DANE pro-
poses to enable), and the additional trustworthiness checks
that were attempted by the CA model. While DANE offers
a design that restores transparency and enables data owners
to expose their policy preferences to RPs, a similar model is
needed for those systems that want both. Currently, DANE
allows data owners to serve certificates that chain back to
specific (stapled) CAs. This is, perhaps, best viewed as a
stepping stone on the way to a system that (like DANE)
provides more transparency and embraces the RPs’ needs
directly. In the future, technologies may arise that allow
name resolution to include more than just a domain name,
but perhaps the entire URI and meta-data [11]. In such cases
the DANE model would likely become even more influ-
ential as its applicability would reach more applications.
That being said, DANE has become a relevant protocol
today, and demonstrates that the promise of using DNSSEC

DNSSEC

root

example.com

.com

1 - Resolving
https://www.example.com

Web Server

2 - DNS
response

3 - HTTPS

Client

Fig. 6. Attack surface of DANE

to verify our online transactions is finally here. Moreover,
the appeal that DANE likely holds to end users, and its
reliance on DNSSEC could very likely lead to a deployment
symbiosis whereby the benefits of each, stimulates operators
to deploy them both.

ACKNOWLEDGMENTS

We would like to thank Joe St Sauver and David Dagon
for their most helpful suggestions and feedback.

REFERENCES

[1] DANE. https://datatracker.ietf.org/wg/dane/charter/.
[2] Experts Urge Congress to Reject DNS Filtering from

PROTECT IP Act, Serious Technical Concerns Raised.
http://www.circleid.com/posts/20110525 experts urge congress to
reject proposed dns filtering protect ip/.

[3] Extended dnssec validator. https://os3sec.org/.
[4] RSA Data Security and Leading Vendors to Merge S/MIME Mes-

saging Standard With U.S. Government’s MSP Message Security
Protocol. http://www.rsa.com/press release.aspx?id=718.

[5] SecSpider. http://secspider.cs.ucla.edu/.
[6] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. DNS

Security Introduction and Requirement. RFC 4033, March 2005.
[7] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. Protocol

Modifications for the DNS Security Extensions. RFC 4035, March
2005.

[8] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. Resource
Records for the DNS Security Extensions. RFC 4034, March 2005.

[9] P. Hoffman and J Schlyter. Using secure dns to associate certifi-
cates with domain names for s/mime - draft-hoffman-dane-smime.
Technical report.

[10] DNSSEC Deployment Initiative. Dnssec certificates stable in
chrome. https://www.dnssec-deployment.org/index.php/2011/09/
dnssec-certificates-stable-in-chrome/.

[11] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F.
Plass, Nicholas H. Briggs, and Rebecca L. Braynard. Networking
named content. In CoNEXT ’09: Proceedings of the 5th international
conference on Emerging networking experiments and technologies,
pages 1–12, New York, NY, USA, 2009. ACM.

[12] Rohit Khare and Adam Rifkin. Weaving a web of trust. World Wide
Web J., 2(3):77–112, 1997.

[13] DANE Mailing list. Draft for serializing DNSSEC chains. http:
//www.ietf.org/mail-archive/web/dane/current/msg02796.html.

[14] Moxie Marlinspike. Breaking SSL with null characters. Black Hat,
2009.

[15] Eddy Nigg. Untrusted Certificates, 2008. https://blog.startcom.org/
?p=145.

[16] Eric Osterweil, Dan Massey, and Lixia Zhang. Managing trusted
keys in internet-scale systems. In The First Workshop on Trust and
Security in the Future Internet (FIST’09), 2009.

[17] Eric Osterweil, Danny McPherson, and Lixia Zhang. Operational
implications of the dns control plane. IEEE Reliability Society
Newsletter, May 2011.

[18] Venugopalan Ramasubramanian and Emin Gün Sirer. Perils of
transitive trust in the domain name system. In Proceedings of the
5th ACM SIGCOMM conference on Internet Measurement, IMC ’05,
pages 35–35, Berkeley, CA, USA, 2005. USENIX Association.

[19] Joe St Sauve. S/mime simple public key server. http://pages.uoregon.
edu/joe/simple-keyserver/keyserver-documentation.docx.

[20] Mike Wood Naked Security. Fraudulent certificates
issued by Comodo, is it time to rethink who we
trust?, 2011. http://nakedsecurity.sophos.com/2011/03/24/
fraudulent-certificates-issued-by-comodo-is-it-time-to-rethink-who-we-trust/.

[21] Paul Vixie. Taking Back the DNS. http://www.isc.org/community/
blog/201007/taking-back-dns-0.

[22] Warwick Ashford Computer Weekly. DigiNotar SSL certificate
compromise widens to include security agencies, 2011.
http://www.computerweekly.com/Articles/2011/09/05/247792/
DigiNotar-SSL-certificate-compromise-widens-to-include-security.
htm.

