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Abstract An attractive approach for commercial online content
Content distribution via the Internetis becoming increas—jistribution is the use of peer-to-peer (P2P) protocols.
ingly popular. To be cost-effective, commercial contentthjs approach does not require a content provider to
providers are considering the use of peer-to-peer (P2Rgyerprovision its bandwidth to handle peak demands, nor
protocols such as BitTorrent to save on bandwidth costgpes it require the provider to purchase service from a
and to handle peak demands. However, when an onlingjrd-party such as Akamai. Instead, a P2P protocol such
content provider uses a P2P protocol, it faces a crucial isas BjtTorrent [26] harnesses its clients’ bandwidth for file
sue: how to incentivize its clients to upload to their peers gjstribution, and saves the bandwidth and computing re-
This paper presents Dandelion, a system designed tgoyrces of a content provider. Leading content providers
address this issue in the case of paid content distribusych as Warner Bros [16] and 20th Century Fox [11] have
tion. Unlike previous solutions, most notably BitTorrent, now partnered with BitTorrent, Inc. EMI [12] has an-
Dandelion provides robust (provably non-manipulable)nounced a plan to launch a P2P music distribution ser-
incentives for clients to upload to others. In addition, un-yice. This recent trend indicates that P2P protocols en-
like systems with tit-for-tat-based incentives, a client i aple a site to cost-effectively distribute content.

motivated to upload to its peers even if the peers do Not \yhen an online content provider uses a peer-to-peer

have content that interests the client. A client that hon'protocol, it faces a crucial issue: how to motivate clients

estly uploads to its peers is rewarded with credit, whicha¢ hossess content to upload to others. This issue is of
can be redeemed for various types of rewards, such gsaramountimportance because the performance of a P2P
discounts on paid content. 5 network is highly dependent on the users’ willingness to
In designing Dandelion, we trade scalability for the contribute their uplink bandwidth. However, selfish (ra-
ability to provide robust incentives. The evaluation of tional) users tend not to share their bandwidth without
our prototype system on PlanetLab demonstrates thgyiernal incentives [36]. Although the popular BitTor-
viability of our approach. A Dandelion server that runs yent protocol has incorporated the rate-based tit-for-tat
on commodity hardware with a moderate access linkncentive mechanism for users to upload static content,
is capable of supporting up to a few thousand clientShis mechanism bears two weaknesses. First, it does not
These clients can download content at rates comparabgzncourage clients to seed, i.e. to upload to other peers
to those of BitTorrent clients. after completing the file download. Second, it is vulner-
able to manipulation [37, 43, 44, 48, 49], allowing modi-
) fied clients to free-ride and still achieve a better down-
1 Introduction loading rate than compliant clients (Section 2.2).

Content distribution via the Internet is becoming in-  The purpose of this work is to explore the design space
creasingly popular among the entertainment industry an@f a P2P content distribution protocol that addresses this
the consumers alike. A survey showed that Apple'sissue. We present the design and implementation of Dan-
iTunes music store sold more music than Tower Recordgelion, a cooperative paid content distribution protocol
and Borders in the US in the summer of 2005 [10]. A that uses non-manipulable virtual-currency-based incen-
number of key content producers, such as Universal, artives to encourage uploading and to address free-riding.
now launching download to own services [15]. However, Our protocol guarantees strict fair exchange of con-
the increasing demand for digital content is overwhelm-tent uploads for virtual currency (credit). A client cannot
ing the infrastructure of online content providers [13]. download content fronselfishpeers (i.e. peers that do
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not upload unless they expect to be rewarded) without
paying credit, neither it can obtain credit for uploads it
did not perform. This protocol property provides robust
incentives for selfish peers to contribute their bandwidth
in the following two ways. First, credit can be redeemed
at a content provider for a discount on the content, or for
other types of monetary awards. Given appropriate pric-
ing schemes, a selfish client is motivated to serve content
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The use of virtual currency for incentives has been
proposed in several P2P content distribution systems [3,
7,8,17,29,51,52], but a key challenge, how to makea client that only downloads from others but does not
the virtual-currency-based system efficient and practicalipload. Aswarmrefers to all clients that actively partic-
while robust to manipulation, is left unaddressed (Secipate in the protocol for a given content item.

tions 2.1 and 24) We address this Challenge based on The rest of this paper is Organized as follows. Sec-
the insight that in the problem domain of online contenttion 2 describes existing incentive mechanisms in P2P
distribution, the content provider itself is a trusted dhir protocols, and cryptographic fair exchange schemes.
party and can mediate the content exchange between itSection 3 describes the design of Dandelion. Section 4
clients. Based on this observation, we design a prOtOCC&nEﬂyzes the Security of our design_ Sections 5 and 6
in which clients exchange data for credit and the Servebresent our system’s imp|ementati0n and experimenta|

mediates this exchange. The server uses only efficierdvaluation, respectively. We conclude in Section 7.
symmetric cryptography on critical data paths and sends

only short messages to its clients.
Our work makes the following contributions: 2 Background and Related Work

1) An efficient cryptographic fair exchange scheme for |n this section we motivate the design of Dandelion
trading data uploads for virtual currency, which is suit- by describing existing P2P content distribution incentive
able for P2P content distribution. Our scheme is base%echanisms and their weaknesses. In addition’ we dis-

on symmetric key cryptography, and is provably robustcyss previous work on cryptographic fair exchange.
to client cheating. A client that does not upload or up-

loads garbage to its peers cannot claim credit. A client2 1
cannot download correct content from selfish peers with-—
out the client being charged and the peers rewarded. The popular BitTorrent protocol employs the rate-
2) The design and implementation of Dandelion. Tobased tit-for-tat incentive mechanism [26]. A client un-
the best of our knowledge, Dandelion is the first imple-chokes (i.e. uploads to) at most four to ten clients for a
mented P2P static content distribution protocol that usegiven file, in parallel. Most of the unchoked peers are
symmetric cryptography in order to provide robust in- the peers that upload useful parts of the file to the client
centives for clients to upload paid content to their peersat the fastest rates and are interested in the client’s con-
Our system’s evaluation on PlanetLab [24] identifies thetent. The client als@ptimisticallyunchokes one or two
scalability limits of our incentive mechanism and demon-peers that are not among the fastest uploaders, in expec-
strates the plausibility of our approach. tation of future reciprocation. The list of unchoked peers
In this paper, we use a BitTorrent-like terminology. A is typically revised every 10 seconds.
seederefers to a client that uploads to its peers despite This mechanism mitigates free-riding but does not
not being interested in the content being distributed (e.gprovide explicit incentives for seeding. Although several
a client that uploads although it has completed its fileBitTorrent deployments rely on clients to honestly report
download). Aleecherrefers to a client that is interested their uploading history [17], and use this history to de-
in the content being distributed (e.g. a client that hascide which clients can join a swarm, practice has shown
not completed its file download). Aee-riderrefersto that clients can fake their upload history reports [4].

Impact of Seeding



In contrast, Dandelion’s non-manipulable and cen-peers. It can also find more seeders, which do not em-
trally maintained virtual currency enables a content dis-ploy tit-for-tat.
tributor to reliably keep record of the amount of content  In particular, we show that our modified free-rider
a selfish client has uploaded to its peers. The distributotlient is able to download faster than its tit-for-tat com-
can use this record to provide robust incentives for a selfpliant counterpart in 12 out of 15 randomly selected
ish client to upload to its peers regardless of whether theublic torrents, for file sizes between 500MB to 2 GB
peers have content that interests the client. and swarm sizes of 50 to 1000 peers. We also ex-

Seeders can substantially improve download compleperiment with PlanetLab residing swarms that comprise
tion times, because they increase the file availability andf ~300 leechers that are rate-limited at 30KB/sec
the aggregate upload bandwidth. Figure 1 shows the imand one initial seeder that is rate-limited at 120KB/sec.
pact of seeders. We run two BitTorrent experiments orWhen compliant clients comprise 90% of the PlanetLab-
PlanetLab, with one and ten initial seeders, respectivelytesiding swarm, free-riders download faster than compli-
Initial seeders are clients that have the complete file prioant clients in their swarm and slightly worse than com-
to the start of the distribution. In each experiment, we runpliant clients in a swarm with no free-riders.
~200 CTorrent 1.3.4 [2] leechers on distinct PlanetLab The same weakness of BitTorrent’s incentives is ex-
nodes to simultaneously download a file. Upon compleperimentally demonstrated in a recent work by Locher et
tion of their download, leechers remain online seedingal. [44], which was almost concurrent with ours.
the file. As can be seen, the mean file download com- Drawing from the above observations, we believe
pletion time decreases considerably when there are temat the “large view” exploit has the potential to be
initial Seeders, eSpeCially for small files of a few MB. W|de|y adopted and could lead to System_wide perfor-

L . mance degradation in BitTorrent swarms. Dandelion ex-
2.2 Free-riding in BitTorrent plicitly addresses this issue, because its provably non-

A general observation is that since BitTorrent's tit-for- manipulable incentives enable a content distributor to
tat incentives reward cooperative clients with improvedreliably track the amount of content a client has down-
download times, clients are always incented to uploadloaded from selfish peers, and charge the client accord-
Therefore, free-riding should not be an issue in BitTor-ingly.
rent networks. This observation relies on the assumption
that users aim only at maximizing their download rates.2 3 Pairwise Currency as Incentives
However, in practice, several BitTorrent users can be re-
luctant to upload even if uploading improves their down- In P2P content distribution protocols that employ
load times. For example, users with access providers thgzairwise virtual currency (credit) for incentives, clisnt
impose quotas on outgoing traffic or users with limited maintain distinct credit balances for each of their peers.
uplink bandwidth (e.g. 1.5Mbps/128Kbps ADSL) may In this context, credit refers to any metric of a peer’s co-
wish to save their uplink for other critical tasks. operativeness.

Considering the tradeoff between performance and An eMule [7] client rewards cooperative peers by re-
susceptibility to free-riding [31], BitTorrent purposely ducing the time the peers have to wait until they are
does not implement a strict tit-for-tat (TFT) strategy. In served by the client. Swift [51] introduces a pair-
particular, it employs rate-based instead of chunk-levevise credit-based trading mechanism for peer-to-peer file
TFT, and BitTorrent clients optimistically unchoke peers sharing networks and examines the available peer strate-
for relatively long periods of time (10 to 30 seconds). gies. In [37], the authors suggest tackling free-riding in
Furthemore, BitTorrent seeders select peers to upload tBitTorrent by employing chunk-level tit-for-tat, which
regardless of whether those peers upload to others.  is similar to pairwise credit incentives. These pairwise

Based on the above observations and previous work ofredit-based incentive mechanisms bear weaknesses that
BitTorrent exploitation [37,43, 48], in [49], we modify are similar to the ones of rate-based tit-for-tat: a) they
a CTorrent-1.3.4 client to employ the “large view” ex- provide no explicit incentives for seeding; and b) they
ploit to free-ride. The client obtains a larger than normalcan be manipulated by free-riders that obtain a “large
view of the swarm, either by repeatedly requesting parview” of the network, and initiate short-lived sessions
tial views from the BitTorrent tracker or by exchanging with numerous peers to exploit the initial offers in pair-
views with its peers [6,9]. Subsequently, it connects towise transactions.
all peers in its view, while it does not upload any content. Scrivener [29] combines pairwise credit balances with
Using this exploit in a sufficiently large swarm, a modi- a transitive trading mechanism. Its incentive mechanism
fied client can substantially increase the frequency withis based on the premise that a client remains perpetu-
which it becomes optimistically unchoked, comparing toally interested in exchanging the earned pairwise credit
a compliant client, which typically connects to 50-100 for content downloads from the same network. Unlike



Scrivener, credit earned by Dandelion clients can be conimental evaluation. Their scheme detects cheating with
verted into monetary rewards, providing strong incen-probabilistic guarantees, whereas Dandelion determinis-
tives for clients to upload even if the network ceases taically detects and punishes cheaters.
offer content that interests the client. Li et al. [42] proposed a scheme for incentives in P2P
MojoNation [8] used a combination of pairwise bal- environments that uses fair exchange of proof of service
ances and tokens that can be cashed in a central bravith chunks of content. The selfish client encrypts a
ker. When the debt during pairwise transactions exceedshunk and sends it to its peer, the peer responds with a
a specified threshold, the side with the negative balancpublic-key cryptographic proof of service, and the client
transfers a credit token to the other by contacting a broeompletes the transaction by sending the decryption key.
ker. Since MojoNation does not provide strong fair ex- A trusted third party (TTP) is involved only in the follow-
change guarantees of content uploads for credit, it can bieg cases: a) the selfish client presents the proofs of ser-
manipulated in a way similar to the “large view” exploit. vice to obtain credit; b) the peer complains for receiving
Keidar et al. [38] present the design of a P2P mul-an invalid chunk; and c) the peer complains for not re-
ticast protocol, which is formally proven to enforce co- ceiving the decryption key from the selfish client. How-
operation among selfish leechers. To prove cooperatiorgver, unless the server incurs the high cost of frequently
the authors assumed that selfish leechers abide by a preenewing the public key certificates of each client, the
determined strategy, which specifies how many peers aredit system is vulnerable to clients that obtain content
leecher can have. However, the recent work on BitTorfrom selfish peers, despite those clients not having suf-
rent exploitation [44, 49], which has partly motivated our ficient credit. In contrast, in Dandelion, the TTP me-
system’s design, has demonstrated that this assumptiafiates every chunk exchange, effectively preventing a
may be too restrictive. client from obtaining any chunks from selfish peers with-
BAR Gossip [41] is suitable for P2P streaming of live out having sufficient credit.
content. Owing to its cryptographic exchange mecha- PPay [54] and WhoPay [53] are recemicropayments
nism it is robust to clients that attempt to free-ride. Sinceproposals that employ public key cryptography and are
BAR Gossip is designed for P2P streaming, it does notlesigned for the P2P content distribution case. These
need to provide incentives for seeding. Therefore, itsystems do not guarantee fair exchange of content for
ensures the fair exchange of content uploads betweepayment. Free-riders may establish short-lived sessions
clients that are interested in the same live broadcast. Oto many peers, download portions of content from them
the other hand, Dandelion, which needs to incent seedsr obtain payments, and thereby obtain a substantial
ing for static content distribution or video on demand, amount of content or credit without paying or uploading.

guarantees fair exchange of content uploads for virtual ] _
currency. 2.5 Cryptographic Fair Exchange

. There are two main classes of solutions for the classic

2.4 Global Currency as Incentives cryptographic fair exchange problem. One uses simulta-

It has been widely proposed to use global virtualneous exchange by interleaving the sending of the mes-
currency to provide incentives in P2P content distribu-sage with the sending of the receipt [22, 25,27, 30, 46].
tion systems. This is the basis of the incentive mechaThese protocols rely on the assumption of equal compu-
nism employed by Dandelion: for each client, the sys-tational and bandwidth capacity, which does not suit the
tem maintains a credit balance, which is used to track théeterogeneous P2P setting.
bandwidth that the client has contributed to the network. The other class relies on the use of a trusted [18, 19,

Karma [52] employs a global credit bank and certified-55, 56] or semi-trusted [32, 33] third party (TTP). The
mail-based [47] fair exchange of content for receptionmain differences of our scheme are as follows: 1) In
proofs. It distributes credit management among multiple[18, 19, 56] the TTP cannot decide whether a party has
nodes. Karma’s distributed credit management improvesnisbehaved, but can only complete the transaction it-
scalability. However, it does not guarantee the integrityself if presented with proof that the parties initially in-
of the global currency when the majority of the nodestended to perform the transaction. They assume that the
that comprise the distributed credit bank are malicious orcost of sending the data is small and can be repeated by
in a highly dynamic network. In contrast, Dandelion’s the TTP. However in Dandelion, transmission of data is
centrally maintained global currency is non-manipulablethe most expensive resource and our scheme aims at the
by clients, enabling a content provider to incent clientfair exchange of this resource; 2) Unlike [32] and [33],
cooperation by offering monetary rewards. our scheme does not rely on untrusted clients to become

Horne et al. [35] proposed an encryption- and erasuresemi-TTP; 3) Unlike [55], our scheme does not use pub-
code-based fair exchange scheme for exchange of cotie key cryptography for encryption and for committing
tent for proofs of service, but did not provide an exper-to messages, and only requires one client rather than two



to contact the TTP for each transaction. The techniquéervice (DoS) attack against the server or selected clients
they use to determine whether a message originates froifthis attack would involve only protocol messages, as we
a party is similar to the one used by our complaint mech-consider bandwidth or connection flooding attacks out-
anism, but our work also addresses the specifics of deteside the scope of this work); and c) they may upload in-

mining the validity of the message. valid chunks aiming at disrupting the distribution of con-
tent.
3 DeS|gn e Selfish(rational) clients share a utility function. This
In this section we describe the system model and thdunction describes the cost they incur when they upload a
design of Dandelion. chunk to their peers and when they pay virtual currency
to download a chunk. It also describes the benefit they
3.1 Overview gain when they are rewarded in virtual currency for cor-

Our design is based on the premise that a low cosfect chunks they upload and when they obtain chunks
server does not have sufficient network 1/0 resourcedhey wish to download. A selfish client aims at maximiz-
to directly serve content to its clients under overloading its utility. We assume that the content provider prices
[14,34]. It may however, have sufficient CPU, mem- @ peer’s accumule_lted v_|rtual currency approp_natel_y: the
ory, and memory/disk/network I/O resources to executdenefit that a selflsh. client gains from acquiring VII‘tL_J.a|
many symmetric cryptography operations, to maintaincurrency f_or content it u_ploads exceeds the cost of utiliz-
TCP connection and protocol state for many clients, to"d its uplink to upload it.
access its client’s protocol state, and to receive and send A selfish client may consider manipulating the credit
short messages. However, CPU, memory and I/O are stifystem in order to maximize its utility by misbehaving as
limited resources. Therefore we aim at making the defollows: a) it may not upload chunks to a peer, and yet
sign as efficient as possible. claim credit for them; b) it may upload garbage either on

Under normal workload, A Dandelion server behavesPurpose or due to communication failure, and yet claim
similar to a Web/ftp, Streaming or video on demandcredit; C) it may obtain chunks from selfish C|ientS, and
server, i.e. it directly serves content to its clients. When Yet attempt to avoid being charged; d) it may attempt
serveris over|0aded' it entersaer-servingnode' Upon to download content from selfish peers without haVing
receiving a request, the server redirects the client torothesufficient credit; and e) it may attempt to boost its credit
clients that are able to serve the requests for content. 1Ry colluding with other clients or by opening multiple
the peer-serving mode, a Dandelion system is reminisDandelion accounts.
cent of BitTorrent, in the sense that a server splits contene Altruistic clients upload correct content to their peers
into verifiablechunks and clients exchange carefully se- regardless of the cost they incur and they do not expect
lected chunks. As is the case with BitTorrent, the contento be rewarded.
is split into multiple chunks in order to enable clientsto  We assume weak security of the IP network, meaning
upload as soon as they receive and verify a small porthat a malicious or a selfish client cannot interfere with
tion of the content. It is also split in order to increase thethe routing and forwarding function, and cannot corrupt
entropy of content in the network, facilitating chunk ex- messages, but it can eavesdrop messages. In addition,
changes among peers. We discuss the tradeoffs in selestre assume that communication errors may occur during
ing a chunk size in the case of static content distributionmessage transmissions.
in Section 6.3.1. In the rest of this section we describe the design

However, our protocol uses a differentincentive mech-of Dandelion, which explicitly addresses the challenges
anism. The server maintains a virtual economy and assgosed by selfish and malicious clients, as well as the
ciates each client with its credit balance. It entices gelfis challenges posed by the communication channel.
clients to upload to others by explicitly rewarding them
with virtual credit_, while it charges clients thatdownload 3 3 Credit Management
content from selfish peers.

Dandelion’s incentive mechanism creates a virtual
3.2 System Model economy, which enables a variety of application scenar-

We describe the system model under which Dandelioros. A client spenda. > 0 credit units for each chunk it
is designed to operate. We assume three types of clientdpwnloads from a selfish client and a selfish client earns
which we define as follows: A > 0 credit units for each chunk it uploads to a client. A
e Malicious clients aim at harming the system. They client can acquire a chunk only if its credit is greater than
misbehave as follows: a) they may attempt to cause othek.. We setA; = 4, so that two colluding clients cannot
clients to be blacklisted or charged for chunks they didincrease the sum of their credit, by falsely claiming that
not obtain; b) they may attempt to perform a Denial of they upload to each other.



Our protocol is intended for the case in which userse.g. using TLS [1]. A client sends its ID and password
maintain paid accounts with the content provider, suchover the secure channel. The ser8ayenerates a secret
as in iTunes. A client is awarded sufficient initial credit key and symmetric encryption initialization vector pair,
to download the complete paid content from its peersdenotedKsa, which is shared wittA. Ksa is efficiently
The content provider may redeem a client's credit forcomputed asa = (H(Ks, (A), p,0),H(Ks, (A), p,1)).
monetary rewards, such as discounts on content pricdssa is also sent over the secure channel. This key is
or service membership fees, similar to the mileage proused both for symmetric encryption and for computing
grams of airline companies. This incents a client to up-a MAC. For MAC computation, we use only the secret
load to others and earn credit. A user cannot boost itkey portion ofKsa The rest of the messages that are ex-
credit by presenting multiple IDs (Sybil attack [28]) and changed between the server and the clients are sent over
claiming to have uploaded to some of its registered IDsan insecure communication channel (e.g. plain TCP),
This is because each user maintains an authenticated paidchich must originate from the same IP as the secure ses-
account with the provider. The user essentially purchasesion. Similarly, all messages between clients are sent
its initial credit, and the net sum in an upload-downloadover an insecure communication channel.

transaction between any two IDs is zero. Each clientA exchanges only short messages with the
server. To prevent forgery of the message source and re-
@<& @ play attacks, and to ensure the integrity of the message,
S = 4,6 S each message includes a sequence number and a digital
Client A 2 § Client B signature. The signature is computed as the MAC of the

L Eﬁ?ﬁsﬁ for content from server message, keyed with the secret kgy thatA shares with

3. Request for content from peer the server. Each time a client or the server receive a mes-

by gi‘;‘;‘i‘;‘f‘;‘r"c‘;“ﬁfe“*s sage from each other, they check whether the sequence

6. Es;rﬂei, Iclll\:lriltlzleﬁ?crypted num_ber succeeds the sequence number of the prewou_sly
.. A 7. Request for decryption key received message and whether the MAC-generated sig-

8. Decryption key nature verifies. If either of the two conditions is not sat-

) isfied, the message is discarded. The sequence number is
Figure 2: The Dandelion protocol. The numbers on the arrows reset when time period changes.

correspond to the listed protocol messages and the stepstéd in The server initiates re-establishment of shared keys
Section 3.4.2. The messages are sent in the order they are num Ksa With the clients uporp Change in order to: a) pre-
bered. vent attackers from inferrinksa by examining the en-
crypted content and the MACs used by the protocol; and
3.4 Robust Incentives b) allow the reuse of message sequence numbers once

these numbers reach a high threshold, while preventing
attackers from replaying previously signed and sent mes-
sages. The server tolerates some lag inghssumed by
3.4.1 Setting a client.

By (X) we denote the description of an entity or ob-
ject, e.g.(X) denotes a clien’s Dandelion IDKsis the
serverSs master secret key is a cryptographic hash ~ To provide robust incentives for cooperation under
function such as SHA-IMAC is a Message Authenti- the model described in Section 3.2, Dandelion em-
cation Code such as HMAC [20], armrefers to a time  ploys a cryptographic fair-exchange mechanism. Our
period. Bypx we denotep at client or servekK. fair-exchange protocol involves only efficient symmetric

Due to host mobility and NATs, we do not use Inter- cryptographic operations. The server acts as the trusted
net address (IP or IP/source-port) to associate credit anthird party (TTP) mediating the exchanges of content for
other persistent protocol information with clients. In- credit among its clients. When a clieAtuploads to a
stead, each user applies for a Dandelion account and idient B, it sends encrypted content to cliébt To de-
associated with a persistent ID. The ser@associates crypt,B must request the decryption key from the server.
each client with its authentication information (client ID The requests for keys serve as the proof thaias up-
and password), the content (e.g. a fil€) it currently  loaded some content& Thus, when the server receives
downloads or seeds, its credit balance, and the content & key request, it credits for uploading content t8, and
can access. The clients and the server maintain looselgharges for downloading content.
synchronized clocks. When a clienfA sends invalid content tB, B can de-

Every clientA that wishes to join the network must es- termine that the content is invalid only after receiving
tablish a transport layer secure session with the s&ver the decryption key and being charged. To address this

This section describes Dandelion’s cryptographic fair-
exchange-based protocol.

3.4.2 Protocol Description



problem, our design includes a non-repudiable complaintlepend on the type of content distribution. For example,

mechanism. IA intentionally sends garbageBypAcan-  in the case of static content distribution, the initial chun

not deny that it did. In additionB is prevented from announcementwould contain the IDs of all the chuAks

falsely claiming thatA has sent it garbage. owns, while the periodically sent announcement would
The following description omits the sequence numbercontain the IDs of newly acquired chunks.

and the signature in the messages between clients and the

server. Figure 2 depicts the message flow in our protocol. A — B:[chunk announcemeln{c);ist

Step 1: The protocol starts with the clie® sending a Step 5: B and A determine which chunks to download

request for the content iteffr) to S. from each other according to a chunk selection policy;
BitTorrent’'s locally-rarest-first is suitable for static
B — S [content requebtF) content dissemination, while for streaming content or

video on demand other policies are appropriate [23, 41].
Step 2:If B has access t¢(F), Schooses a short list of A can request chunks frorB, after it requests and
clients(A)jist, which are currently in the swarm fdF ). retrievesTsg from S. B sends a request for the missing
The policy with which the server selects the i}t de-  chunkc to A.
pends on the specifics of the content distribution system.
Each list entry, besides the ID of the client, also contains B — A:[chunk requesfTsa, (F), (c),t, ps
the client’s inbound Internet address. For every client in
(A)iist, Ssends a tickeTsa = MACk,[(A), (B),(F),tJ to  Step 6:B's chunk requests are served s long as the
B. t is a timestamp, andA) is a client in(A)ji;. The  timestampt is fresh, andTsa is cached ofTsa verifies.
tickets Tsa are only valid for a certain amount of time If A is altruistic, it sends the chunkto B in plaintext
Tpeer and allowB to request chunks of the contefft) and the per-chunk transaction ends here. Otherwise,
from client A. WhenTsa expires and still wishes to A encryptsc using a symmetric encryption algorithm
download fromA, it requests a nevlisa from S. Eng asC = Enq<<c> (¢). ki is a random secret key and
To ensure integrity in the case of static contentrandom symmetric encryption initialization vector pair.
distribution or video on demand also sends td@ the  This pair is distinct for each chunl& encrypts the ran-
SHA-1 hashH(c) for all chunksc of (F). For the case dom key withKsa, ase = Endag,(K()). Next, A hashes
of live streaming content, the content provider augmentshe ciphertexC asH(C). Subsequently, it computes its
the chunks it generates with his public key signature orcommitment to the encrypted chunk and the encrypted
their hash and ID, asign(H(c),(c)). Clients append key asTas= MACk.,[(A),(B),(F),(c),e H(C),t]. The
this signature to all the chunks they upload. tickets Tas are only valid for a certain amount of time
Tkey, Which forcesB to expedite paying for decrypting
S— B:[content respon$@sa, (A)iist, H (C)iist, (F),t, ps  the encrypted chunks. This fact allowsto promptly
acquire credit for its servicé sends the following t@.
Step 3: The client B forwards this request to each
A€ (Ajist. A — B: [chunk respong@&as, (F), (c),e,C,t, pa

B — A:[content requebTsa, (F),t, ps Step 7:To retrievek), B needs to request it from the
server. As soon aB receives the encrypted chung,

Step 4:1f current-time< t + Tpeer and Tsais not inA's  computes its own hash over the received cipher@xt
cache A verifies if Tsa= MACkg,[(A), (B), (F),t]. The  and forwards the following t&.
purpose of this check is to mitigate DoS attacks against
A, it allows A to filter out requests from clients that are B —— S:[decryption key requelsth), (F), (c),e, H(C'),
not authorized to retrieve the content or from clients that, Tas, pa
became blacklisted. If the verification fails,drops this
request. Also, ifps is greater tharA's current epoch Step 8: If current-time < t + Tgey, and pa
pa, A learns that it should renew its key withsoon. is not too much off, S checks if Tas =
Otherwise, A cachesTsa and periodically sends the MAGCkg,[(A), (B),(F),(c),e,H(C'),t]. The ticket
chunk announcement message described below, for ks verification may fail either becaus® # C due to
long as the timestamipis fresh. This message contains transmission error in stepé) or becauseA or B are
a list of chunks tha® owns, (c)jis;. B also does so in misbehaving. Sinc&is unable to determine which is
separate chunk announcement messages. The specifibe case, it punishes neitheSor B and does not update
of which chunks are announced and how frequentiytheir credit. It does not send the decryption keBtbut



it still notifies B of the discrepancy. In this casB,is  ruled againsk without further processing.

expected to disconnect from and blacklist it in case Since a verdict on a complaint can adversely affect a
A repeatedly sends invalid chunk response messageslient, each client needs to ensure that the commitments
If B keeps sending invalid decryption key requeSs, it generates are correct even in the rare case of a disk
penalizes him. If the verification succeeddchecks read error. Therefore, a client always verifies the read
whetherB has sufficient credit to purchase the chumk chunk against its hash before it encrypts the chunk and
It also checks again whethBrhas access to the content generates its commitment.

(F). If Bis approved, it chargeBand reward#\ with A¢

credit units. Subsequentls,decryptsk’<C> = Deg,(€), 3.5 Other Protocol Issues

and sends it t@. A content provider may be more concerned with scal-
ability than it is with the free-riding problem presented
S— B: [decryption key responkéA), (F), (c), /<C> in Section 2. In such case, it can deploy clients that use

tit-for-tat incentives if their peers have content thaemt

B usesk/<c> to decrypt the chunk ag = Deg, (C/).  eststhem,i.e. thg clients unld upload plaintext content
© to peers that reciprocate with plaintext content. These

clients would fall back to Dandelion’s cryptographic fair-

exchange mechanism when their peers do not have con-

tent that interests them. For example, selfish seeders

would always upload encrypted content to their peers.

In case a client is unable to timely retrieve a missing
chunk from its peers, it resorts to requesting the chunk
_ . . _ , from the server. If the server is not busy, it replies with

S ignores this message turrent-time > t + Teey  the plaintext chunk. If it is moderately busy, it charges
whereT,., > Tkey Tyey— Tkey Should be greater than the an appropriately large amount of credig > Ac, sends
time needed foB to receive a decryption key response, the chunk and indicates that it is preferable for the client
decrypt the chunk and send a complaint to the servemot to download chunks from the server. If the server is
With this condition, a misbehaving clieAtcannot avoid  gyerloaded, it replies with an error message. Clients al-
having complaints ruled against it, everhiensures that  \yays download the content from the server in chunks, so
the time elapsed between the momargommits to the  hat the system can seamlessly switch to the peer-serving
encrypted chunk and the moment the encrypted chunk igygde when the server becomes busy.
received byB is slightly less thafie,. Salsoignoresthe  Typically, a content distributor would deploy, in addi-
complaint message if a complaint for the saf@ndcis  tion to the server, at least one client that possesses the
in a cache of recent complaints ttnaintains for each  complete content (initial seeder). In this way, the distrib
client B. Complaints are evicted from this cache onceytor ensures that the complete content is made available,
current-time>t+T'. even if the server is too busy to serve chunks.

If TasAMACksa[(A), (B),(F),(c),e H(C'),t], S pun-
ishesB. This is becaus& has already notified in 4 Security Ana|ysis
step(7) that Tasis invalid. If Tag verifies,S caches this
complaint, recomputeKsa as before, decryptk/<C> =

Dexg,(e) once again, retrieves from its storage, and
encryptsc himself usingkzc>, C' = Enq% (c). If the

hash of the ciphertext (C”) is equal to the valuel (C") Lemma 4.1 If the serverScharges a clienB A; credit
thatB sent toS, Sdecides tha# has acted correctly and units for a chunkc received from a selfish clienA,
B's complaint is unjustified. Subsequentfydrops the B must have received the correct regardless of the
complaint request and blacklisBs It also notifiesA,  actions taken by.
which disconnects fromB and blacklists it. Otherwise,
if H(C") # H(C'), Sdecides thaB was cheated byA, Lemma 4.2 If a selfish clientA always encrypts chunk
removesA from its set of active clients, blacklisfs and ¢ anew when servicing a request andifjets correct
revokes the corresponding credit chargeBorSimilarly,  from A, thenA is awarded\. credit units fromS, andB
B disconnects fromh and blacklists it. is charged\. credit units fromS,

The server disconnects from a blacklisted cliént
marks it as blacklisted in the credit file and denies acceskemma 4.3 A selfish or a malicious client cannot
to E if it attempts to login. Future complaints concern- assume another authorized clien®ddentity and issue
ing a blacklisted clienE and for which tickets verify, are messages undek, aiming at obtaining service at the

Next, we explain the complaint mechanism.

Step 9:If the decryption fails or ifH(c) # H(c) (step
2), B complains toS by sending the following message.

B — S[complaini (A), (F), (c), Tas,e,H(C'),t, pa

This section briefly lists the security properties of our
design. For simplicity of presentation, we omit proofs
on why these properties hold. They can be found in [50].



expense of\, chargingA for service it did not obtain or paid accounts with the content provider from launching

causingA to be blacklisted. In addition, it cannot issue a such attack by havin§issue a short-lived tickelsa to

valid Tsa for an invalid chunk that it sends to a clidt  authorized clients only.Tsa is checked for validity by

and caus® to produce a complaint message that wouldA (steps 4 and 6 in Section 3.4.2). In additi@may

result in a verdict againgt. charge an authorizeB for the issuance of ticket$sa
effectively deterring from maliciously expending both

Lemma 4.4 A malicious client cannot replay previously A’'s and the server’s resources.

sent valid requests to the server or generate decryption

key requests or complaints undais ID, aiming atA Owing to properties 4.1, 4.2, 4.3 and 4.5, and given

being charged for service it did not obtain or beingthat the content provider employs appropriate pricing

blacklisted because of invalid or duplicate complaints. schemes, Dandelion ensures that selfish (rational) clients
increase their utility when they upload correct chunks

Observation 4.5 A client cannot download chunks from and obtain virtual currency, while misbehaving clients

a selfish peer if it does not have sufficient credit. Ourcannot increase their utility. Consequently, Dandelion

design choice to involve the server in every transactionentices selfish clients to upload to their peers, resulting

instead of using the fair exchange technique proposed ifft @ Nash equilibrium of cooperation.

[42], enables the server to check a client’s credit balance .

before the client retrieves the decryption key of a chunk.9 Implementatlon

This section describes a prototype C implementation

Observation 4.6 To maintain an efficient content of Dandelion that is suitable for cooperative content dis-
distribution pipeline, a client needs to relay a receivedribution of static content. It uses tlapenss([5] library
chunk to its peers as soon as it receives it. Howeveror cryptographic operations and standard file /O sys-
the chunk may be invalid due to communication errortem calls to efficiently manage credit information, which
or due to client misbehavior. The performance of thejs stored in a simple file.
system would be severely degraded if clients wasted
bandwidth to relay invalid content. To address this issued.1 ~ Server Implementation
Dandelion clients send a decryption key request to the The server and the credit base are logical modules and
server immediately upon receiving the encrypted chunkcould be distributed over a cluster to improve scalability.
This design choice enables clients to promptly retrieveror simplicity, our current implementation combines the
the chunk in its non-encrypted form. Thus, they cancontent provider and the credit base at a single server.
verify the chunk’s integrity prior to uploading the chunk  The server implementation is single-threaded and
to their peers. event-driven. The network operations are asynchronous,

and data are transmitted over TCP. In order to scale
Observation 4.7 A malicious client cannot DoS attack to thousands of simultaneously connected clients, the
the server by sending invalid content to other clients orserver employs thepoll() event mechanism.
repeatedly sending invalid complaints aiming at causing Each client is assigned an entry in a credit file, which
the server to perform the relatively expensive complaintstores the credit as well as authentication and file access
validation. This is because it becomes blacklisted bycontrol information. Each entry has the same size and the
both the server and its peers the moment the invalictlient ID determines the offset of the entry of each client
complaint is ruled against it. In addition, a malicious in the file, thus each entry can be efficiently accessed for
client cannot attack the server by sending valid signedoth queries and updates.
messages with redundant valid complaints. Our protocol The server queries and updates a client’s credit from
detects duplicate complaints through the use of timeand to the credit file upon every transaction, Yet, it does
stamps and caching of recent complaints. not force commitment of the update to persistent storage.

Instead, it relies on the OS to perform the commitment.
Observation 4.8 A malicious clientB can always If the server application crashes, the update will still be
abandon any instance of the protocol. In such cése, copied from the kernel buffer to persistent storage. Still,
does not receive any credit, as argued in Lemmas 4.1 tthe OS may crash or the server may lose power before the
4.3, even thoug!tB may have consumed’s resources. updated data have been committed. However, in prac-
This is a denial of service attack agaiAstNote that this  tice, a typical Dandelion deployment would run a stable
attack would require that the malicious clidexpends operating system and use backup power supply. In ad-
resources proportional to the resources of the vigim dition, the server could mirror the credit base on multi-
therefore it is not particularly practical. Nevertheless, ple machines using high speed IP/Ethernet I/O. In addi-
prevent blacklisted clients or clients that do not maintaintion, transactions would not involve very large amounts



of money per user. Hence, we believe it is preferable notlownloaders and to jumpstart peers that recently joined
to incur the high cost of committing the credit updatesthe swarm.
to non-volatile memory after every transaction or after a This downloader selection algorithm aims at reducing

few transactions (operations 12 and 13 in Table 1). the amount of duplicate data a client needs to upload,
_ _ before it has uploaded a full copy of its content to the
5.2 Client Implementation swarm. Downloader selection improves the system'’s per-

The client side is also single-threaded and eventformance in the following additional ways. First, it lim-
driven. A client may leech or seed multiple files at a its the number of peers a client concurrently uploads to,
time. A client can be decomposed into two logical mod-Such that complete chunks are made available to other

ules: a) theconnection managememtodule; and b) the P€ers and relayed by them at faster rates. Second, given
peer-servingnodule. that all clients are connected to roughly the same num-

The connection management module perfopest- ber of peers, it also limits the number of peers a client
ing and uploader discovery With peering, each client concurrently downloads from to approximately As a

obtains a random partial swarm view from the server and€Sult, the rate with which the client downloads complete
strives to connect t®(logn) peers, where is the num- chunks increases. Last, by limiting the number of con-

ber of nodes in the Dandelion swarm. as communicate&‘emions over which clients upload, it avoids the ineffi-
to the node by the server. As a result, the swarm apgiency and unfairness that is observed when many TCP

proximates a random graph with logarithmic out-degree floWs share a bottleneck link [45].

which has been shown to have high connectivity [21]. 1€ number of peers that d’ownload from a client in
With uploader discovery, a client attempts to remain con-Parallel depends on the client's upload bandwidth. We

nected to a minimum number of uploading peers. If theh@ve empirically determined that a good value for this
number of recent uploaders drops below a threshold, Rarameter in the PlanetLab environment s 10.

client requests from the server a new swarm view and6 | .
connects to the peers in the new view. Evaluation
The peer-serving module performeentent reconcil- The goal of our experimental evaluation is to demon-

iation and downloader selectian Content reconcilia- strate the viability and to identify the scalability limits
tion refers to the client functionality for announcing re- of Dandelion’s centralized and non-manipulable virtual-
cently received chunks, requesting missing chunks, reeurrency-based incentives.

guesting decryption keys for received encrypted chunks . -

and replying to chunk requests. Our implementation em8.1 Dandelion Profiling

ploys locally-rarest-random [39] scheduling in request- We profile the cost of operations performed by the
ing missing chunks from clients. To efficiently utilize server and clients aiming at identifying the performance
their downlink bandwidth using TCP, clients strive to at bottlenecks of our design. The measurements are per-
all times keep a specified number of outstanding chunkKormed on a dual Pentium D 2.8GHZ/1MB CPU with
requests [26, 39], which have been sent to a peer and hadéGB RAM and 250GB/7200RPM HDD running Linux
not been responded to. 2.6.5-1.358smp.

With downloader selection, the system aims at making Table 1 lists the cost of per chunk Dandelion opera-
chunks available to the network as soon as possible. Itions. In a flash crowd event, the main task of a Dan-
the following descriptionn denotes the number of par- delion server is to: a) receive the decryption key request
allel downloaders. Dandelion’s downloader selection al-(operation 7); b) authenticate the request by computing
gorithm is similar to theseederchoking algorithm used an HMAC (operation 1); c) verify the ticket by comput-
in the “vanilla” BitTorrent 4.0.2, as documented in [40]. ing an HMAC (operation 2); d) decrypt the encrypted de-
The algorithm is executed by each client every 10 seceryption key (operation 3); e) query and update the credit
onds. It is also executed when a when a peer that isf the two clients involved (operations 10 and 11); f) sign
selected to be downloader disconnects. The algorithnthe decryption key response (operation 4); and g) send
proceeds as follows: a) peers that are interested in thihe decryption key response (operation 8).
client’s content are ranked based on the time they were As can be seen in the table, the per chunk cryp-
last selected to be downloaders (most recent first); b) théographic operations of the server (operations 1-4) are
client selects as downloaders the 2 top ranked peers; highly efficient (total 109 usec), as only symmetric cryp-
c) in case of a tie, the peer with the highest download ratéography is employed. The credit management opera-
from the client is ranked higher; and d) the client ran-tions (10 and 11) are also efficient (total 24 usec). On
domly selects two additional downloaders from the non-the other hand, the communication costs clearly domi-
selected nodes that are interested in the client's contenhate the processing costs, indicating that for 1Mb/s up-
Step (d) is performed in expectation of discovering fastlink and downlink, the downlink is the bottleneck.



| | Dandelion operation | Size [ Time(ms) ]

CPU-centric Operation

1 Authenticate decryption key 98 bytes .018
request

2 Generate ticket for decryption key 78 bytes .018
key request or complaint
verification

3 Encrypt/decrypt decryption key 32 bytes .056

4 Sign decryption key response 46 bytes .017

5 Encrypt/decrypt chunk 128 KB 715

6 Hash encrypted chunk for 128 KB 487
commitment generation or for
commitment processing
Communication Operation

7 Receive decryption key request | 156 bytes ~1.79

8 Transmit decryption key responsg 104 bytes ~1.39

9 Transmit chunk 128 KB ~1053
Credit Management Operation

10 | Query credit file N/A ~0.004

11 | Update credit file without N/A ~0.02
commit to disk (rely on OS)

12 | Update credit file and N/A ~9.25
commit to disk

13 | Update credit file and N/A ~0.27
commit to disk every 100 update

Table 1: Timings of per chunk transaction Dandelion op-
erations. Timings for operations 1-6 are obtained using
getrusage(RUSAGE _SELF) over 10000 executions to obtain 1 usec
precision. Timings for operations 7-9 are approximated acording
to our application layer rate-limiting for IMb/s uplink and 1Mb/s
downlink. They are provided as reference for comparison wit
CPU-centric and credit management operations. Timings fooper-
ations 10-13 are approximated usingyettimeofday() over 10000 ex-
ecutions. Operations 3 and 5 use 8-byte-block Blowfish-CBCith
128-bit key and 128-bit initialization vector.1, 2 and 4 useHMAC-
SHA1 with 128-bit key. Operation 6 uses SHA-1. Operations 10
12 are performed on a credit file with 10000 44-byte entries. &t
committing to disk in operations 12 and 13, we use fsync() andie
disable HDD caching.

The cost of a complaintis higher because in addition t
verifying a ticket, it involves reading a chunk, encrypting
it with the sender client’s key (operation 5), and hashing

the encrypted chunk (operation 6).

6.2 Server Performance

A Dandelion server mediates the chunk exchanges be-
tween its clients. The download throughput of clients in
our system is bound by how fast a server can process
their decryption key requests. Both the server's compu-
tational resources and bandwidth may become the per-
formance bottleneck.

We deploy a Dandelion server that runs on the same
machine as the one used for Dandelion profiling. We also
deploy~200 clients that run on distinct PlanetLab hosts.
The server machine shares a 100Mb/s Ethernet Il link.
To mitigate bandwidth variability in the shared link and
to emulate a low cost server with an uplink and downlink
that ranges from 1Mb/s to 5Mb/s, we rate-limit the server
at the application layer.

In each experiment, the clients send requests for de-
cryption keys to the server and we measure the aggregate
rate with which all clients receive key responses. The
server always queries and updates the credit base from
and to the credit file without forcing commitment to disk.
The specified per client request rate varies from 1 to 14
requests per second. For each request rate, the experi-
ment duration was 10 minutes and the results were av-
eraged over 10 runs. As the request rate increases and
the server’s receiver buffers become full, clients do not
send new requests at the specified rate, due to TCP’s flow
control. When the request rate increases to the point that
the server’s resources become saturated, the key response
rate from the server decreases.

Figure 3(a) depicts the server’'s decryption key
throughput for various server bandwidth capacities. As
the bandwidth increases from 1Mb/s to 3Mb/s, the
server's decryption key response throughput increases.
This indicates that for 1Mb/s to 3Mb/s access links, the
bottleneck is the bandwidth. When the bandwidth limit
is 4Mb/s and 5Mb/s, the server exhibits similar perfor-

Jmance, which suggests that the access link is not satu-

rated at 4Mb/s. The results show that a server running on
our commodity PC with 4Mb/s or 5Mb/s access link can
process up tov1200 decryption key requests per sec-
ond. This indicates that with a 128KB chunk size, this

A Dandelion client can decrypt/encrypt and hash aseryer may simultaneously support almost 1200 clients

128KB chunk (operations 5 and 6) much faster thanthat download from each other at 128KB/s. With a larger
download it or transmit it at 1Mb/s (operation 9). There- chunk size, each such client sends decryption key re-

fore, the client's processing overhead does not affect itguests at a slower rate, and the number of supported
upload or download throughput. clients increases.

Note that this profiling repeats the same operation Figures 3(b) and 3(c) show the average CPU and me-
multiple times. It does not consider the parallel processimory utilization at the server over the duration of the
ing of I/O and CPU operations. In addition, it does notabove experiments. We observe that for 4Mb/s and
include the cost of system calls and the cost of TCP/IFSMb/s, the server’s CPU utilization reache400%, in-
stack processing. Therefore, we refrain from derivingdicating that the bottleneck is the CPU. In Figure 3(c),
conclusions on the throughput of the server. Such conwe see that the server consumes a very small portion of
clusions are derived in the subsequent evaluation. the available memory.
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6.3 System Performance B — :
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The following experiments evaluate the performance £ 1000 | 100 B File O |
of the Dandelion system on PlanetLab. We examine the (HOMBRle X M
impact of chunk size and the impact of seeding on the 5 8001k I
performance of the system. We also compare our sys- § 600 | KKK )
tem’s performance to BitTorrent’s. In all experiments E A N — &
we ran a Dandelion server within a PlanetLab VServer < A A ¢
spawned on a highly available Xeon 3GHZ/2MB CPU g8 207 . : —
and 2GB RAM machine. We rate-limit the server at é L S

o ‘ ‘
64 256 512 1024 2048
2Mb/s.

. .. e . Chunk Size (KB)
Leechers are given sufficient initial credit to com-

pletely download a file. Clients always respond to ChunkFigure 4:Mean file download completion times of 40 leechers as
requests from their selected downloaders and they NeV&ltunction of chunk size. The swarm has one initial seeder. Tén
request ChL_mkS from _the server._ We do not rate'”mitx axis corresponds to the chunk size. The axis corresponds to
the Dandelion and BitTorrent clients, as a means forthe mean download completion time in the swarm. The error bas
testing our system in heterogeneous Internet environéOrresponol to 95% confidence intervals.

ments. To cover the bandwidth-delay product in Planet-

Lab, the TCP sender and receiver buffer size is set equal

to 120KB. which key requests are sent to the server, reducing the

For each configuration we repeat the experiment 1Qc4|ability of the system. In addition, due to TCP’s slow

times and we extract mean values and 95% confidencgart 4 small chunk size cannot ensure high bandwidth
intervals over the swarm-wide mean file download com-sjlization during the TCP transfer of any chunk.

pletion times of each run. The file download comple-
tion time is the time that elapses between the momenb
the client contacts the server to start a download and th
moment its download is completed.

In each configuration, we deploy approximately 40
andelion leechers and one initial seeder. Leechers start
Sownloading files almost simultaneously. We deploy
only 40 leechers to ensure that the server is not saturated,
6.3.1 Selecting Chunk Size even if we use 64KB chunk size.

This experiment aims at examining the tradeoffs in- Figure 4 shows the leecher mean download comple-
volved in selecting the size of the chunk, the verifiabletion time as a function of the chunk size. For smaller
transaction unit in Dandelion. Intuitively, since clients files, e.g., the 10MB file, the system has the best per-
are able to serve a chunk only as soon as they complef@rmance for chunk size equal to 64KB. The system’s
its download, a smaller chunk size yields a more efficienferformance degrades with the chunk size. As the file
distribution pipeline. In addition, when the file is divided Size increases, the beneficial impact of small chunks, be-
into many pieces, chunk scheduling techniques such agomes less significant. For example, for 250MB file,
rarest-first can be more effective, as there is sufficienf 128KB chunk size yields notably better performance
content entropy in the network. Consequently, clientsthan a 64KB chunk size.
can promptly discover and download content of interest. Based on the above results and further fine-tuning, in
However, a smaller chunk size increases the rate witlthe rest of this evaluation, we use 128KB chunks.



6.3.2 Impact of Dandelion Seeders completion & = 100%). The purpose of this illustration
One of Dandelion’s main advantages is that it pro-1S to show that Dandelion can attain performance com-

vides robust incentives for clients to seed. We quantifyP@rable to the one achieved by BitTorrent, although it

the performance gains from the existence of seeders i_ﬁmploys a dlfferent_downloader selection algorithm and

our system. In each experiment, we depla300 leech- involves the server in each chunk exchange. .

ers. Leechers start downloading the file almost simulta- Although Dandelion appears to outperform BitTorrent

neously, creating a flash crowd. for certain file sizes, we do not claim that it is in general
We show the impact of seeders by varying the prob-2 better-pgrfo_rmlng protocol. The performance of both

ability that a leecher remains online to seed a file afteiProtocols is highly dependent on numerous parameters,

it completes its download. In each experiment, a swarnyvhich we have not exhaustively analyzed.

has one initial seeder. Upon completion of its downloadg 3 4 credit Distribution

each leecher stays in the swarm and seeds with probabil-

ity a. Probabilitya varies in 25% and 100% We examine the distribution of credit during a Dande-

lion file distribution. The purpose of this measurementis
900 to identify which types of clients tend to accumulate the
800 |  Dandelion 25% seeders —i— | most credit in swarms of similar configuration to ours.
700 | Bandelion 100% seeders o ;N Figure 6 shows the scatter plot of the client’s credit
600 | | after a single 250MB file download by200 leechers to-
500 | gether with the mean download rate of each client. In the
400 | experiment, there is only one initial seeder. All nodes
300 f are given 100% of the credit needed to download the file
200 ¢ and they all become seeders upon download completion.
10 We observe that the seeder obtained the most credit dur-
Ly 55 5 10 50 100 250 ing the file distribution. This is expected, as a seeder is
File Size (MB) always in position to upload useful content to its peers
and our seeder had a fast access link. Since fast down-
Figure 5: swarm-wide mean file download completion times  loaders obtain useful content earlier in the distribution
of ~200 leechers as a function of file size for varying portion of  and are likely to have uplinks proportional to their down-
leechers that become seeders. The error bars correspond t6% link, they should be able to deliver more content and earn
confidence intervals. more credit. Our results confirm this intuition and show

that there isstrong correlation between average down-

Figure 5 depicts the mean download completion timejga rate and credit ratio, i.e. the product-moment corre-
over all ~200 leechers as a function of the file size, for |ation coefficient is equal to 0.72.
varyinga. The results show the beneficial impact of \ye also observe that many clients uploaded substan-
seeders and the importance of a mechanism to robustlyly |ess than they downloaded. Indicatively, 25.8% of

incent seeding. For example, for a 250MB file, we ob-the clients had less than 70% of their initial credit.
serve a swarm-wide mean download completion time of

674 sec and 837 sec when leechers become seeders with 1500
100% and 25% probability, respectively. If we express
the impact of seeders as the ratio of the mean down-
load time fora = 100% over the mean download time
for a=25%, we observe that the impactis reduced as the
file size increases. The larger the file is, the longer clients
remain online to download it, resulting in clients con-
tributing their upload bandwidth for longer periods. For
smaller files however, leechers rely heavily on the initial o ‘ ‘ ‘ ‘
seeder and the leechers that become seeders to download 50 100 150 200 250 300
their content from. Therefore for small files, a reduction Credit Ratio (%)

in probabilitya results in substantially longer download
completion times.

Mean Download Completion Time (sec)

1000

500

Download Rate (KB/sec)

seeder

Figure 6: The scatter plot of the distribution of credit after ~200
leechers have completed a 250MB file download and their avege
6.3.3 Comparison with BitTorrent download rates. Thex axis shows the credit ratio, which is the
Figure 5 also shows the download completion timesratio of the remaining credit of a client over its initial cre dit. The y
of ~200 tit-for-tat compliant CTorrent 1.3.4 leechers. All axis shows the average download rate of each client. The seeds
BitTorrent leechers remain online after their downloadincluded for illustration purposes, but its download rate is invalid.
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This paper describes Dandelion: a cooperative (P2P)g
system for the distribution of paid content. Dandelion’s (19]
primary function is to enable a content provider to pro-
vide strong incentives for clients to contribute their up- 20
link bandwidth. [21]

Dandelion rewards selfish clients with virtual currency 22
(credit) when they upload valid content to their peers andzz)
charges clients when they download content from self-
ish peers. Since Dandelion employs a non-manipulable
cryptographic scheme for the fair exchange of conten}ZS]
uploads for credit, the content provider is able to redeem
a client’s credit for monetary rewards. Thus, it provides[gsl
strong incentives for clients to seed content and to no
free-ride. B

Our experimental results show that seeding substan-
tially improves swarm-wide performance. They also
show that a Dandelion server running on commodity
hardware and with moderate bandwidth can scale td*ll
a few thousand clients. Dandelion’s deployment inzz
medium size swarms demonstrates that it can attain Pef5;,
formance that is comparable to BitTorrent. These facts
demonstrate the plausibility of our design choice: cen{34
tralizing the incentive mechanism in order to increase rejss)
source availability in P2P content distribution networks.

(28]
]

(30]

(36]

(37]
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