Route Flap Damping with Assured Reachability

Pei-chun Cheng, Jong Han Park, Keyur Patel, Lixia Zhang

UCLA
Contents

1. Introduction to RFD
2. Toward reviving RFD
3. Evaluation
4. Summary
BGP and Flap Damping

- Failures (flaps) happen from time to time
 - HW/SW defects
 - Mis-configurations
 - ...

- BGP runs a flat routing space
 - Event goes as far as possible
 - Ripple the entire Internet
 - $O(N \times N)$

- In 90's, RFD is invented to mitigate such persistent processing load [4]
How does RFD work?

For each route:
- Keep a penalty value
- Track the flapping history

Update the penalty using AIMD

Two thresholds:
- Suppress if above suppress-limit
- Re-use if below reuse-limit

Looks fine, but . . .
- What is a “flap”?
- Difficult to identify

Problem: Reachability Loss

- In 2002, Mao et al. show that RFD *falsely* suppress occasional route changes, NANOG26 [2]
 - Unexpected interaction btw. RFD and “path exploration”
 - Lose reachability

- Over years, several enhancements are proposed
 - S-RFD [3], RFD+ [1], RFD-RCN [5], F-RFD[6]
 - All tried to correctly identify route flaps

- None is successful!
 - Introduce additional BGP complexity
 - Do *not* solve the reachability loss problem

- As the result, in 2006, RIPE suggested *NOT* to enable RFD in production networks
Why revisiting RFD now?

- Long term oscillation does exist
 - Responsible for a large fraction of updates
 - Last for days or even weeks

- Increasing popularity of real-time or VoIP applications
 - Suffers from persistent route flaps and slow convergence
 - Correlated with 50% of VoIP quality degradation

- Operators ask for faster convergence
 - Disable other rate limiting measures
 - Greatly increase the number of updates

► Our goal: fix the reachability loss and hopefully revive RFD
Let’s change the mindset!

Current approach
- *Flap detection* and *flap suppression* are tied together
 - False detection could hurt reachability
 - Sophisticated RFD enhancements are introduced
- Tradeoff between *reachability* and stability

Our response
- **Decouple** *flap detection* and *flap suppression*
 - This work only modify the flap suppression behavior
 - A simple, yet deployable patch
 - Compatible to the existing efforts
- Reachability comes first!
 - Only tradeoff between *optimality* and stability
Reachability in BGP

- **Protector routes**
 1. Alternative routes to the same prefix
 Ex: \((P.1,A)\) protects \((P.1,B)\)
 2. Routes to the covering prefixes
 Ex: \((P.1,A)\) protects \((P.1.2,A)\) and \((P.1.2,B)\)

only suppress when there exist **protector routes**
Illustrating the idea

Prefix Space

Instable Prefixes

* Not drawn to scale
Illustrating the idea

Prefix Space

RFD

Instable Prefixes

* Not drawn to scale

May lose reachability
Prefix Space

Illustrating the idea

- RFD
- Instable Prefixes
- May lose reachability
- S-RFD, RFD+, etc

* Not drawn to scale
Illustrating the idea

* Not drawn to scale

Prefix Space

- Instable Prefixes
- Prefixes have protector routes
- May lose reachability
- S-RFD, RFD+, etc

Only suppress these prefixes
Illustrating the idea

Prefix Space

- RFD
- Instable Prefixes
- Prefixes have protector routes
- May lose reachability
- S-RFD, RFD+, etc

* Not drawn to scale

Only suppress these prefixes
Q1: Do protectors exist?

- A quick peek of routing data (LINX exchange point)
 - 50% prefixes have protector prefixes
 - Num. paths \approx num. providers

![Fraction of Prefixes (CDF)](image1)

![Number of Covering Prefixes](image2)

![Fraction of Prefixes (CDF)](image3)

![Number of Nexthop Routers](image4)
Q2: How to preserve reachability?

+RG (Reachability Guard): two checks

1. Reachability Check
2. Early Release
Q2: How to preserve reachability?

+RG (Reachability Guard): two checks

1. Reachability Check
2. Early Release
Q2: How to preserve reachability?

- **+RG (Reachability Guard): two checks**
 1. Reachability Check
 2. Early Release

![Diagram](image-url)
Q2: How to preserve reachability?

+RG (Reachability Guard): two checks
1. Reachability Check
2. Early Release

Diagram:
- **P**
 - **P.1**
 - **P.1.1**
 - A
 - **A, B**
 - **P.1.2**
 - A, [B]
 - **P.2**
 - [B]
Q2: How to preserve reachability?

+RG (Reachability Guard): two checks

1. Reachability Check
2. Early Release
Evaluation methodology

Our approach ~ simulation with BGP feeds

- A partial BGP simulator
 - Flap damping
 - Vanilla RFD (default cisco parameters)
 - +RG, +RG (without early release)
 - Simple shortest path selection

- Actual BGP data source
 - From exchange points (collected by RIPE/RIS)
 - LINX
 - Others
 - One week in 2009 December (168 hours)
 - Full IPv4 routing table (~ provider-customer)
Evaluation metrics

- Measure the performance and trade-off

1. Reachability
2. Tradeoff
 (Quality of Reachability)
 - Router processing load
 - Stability
 - Route preference
An example case

- An example prefix 137.119.0.0/20, December 1st
 - No covering prefix
 - Reachable via two different peers
 - Preferred path flaps persistently
 - Less preferred path is stable (failed occasionally)

Input feed

- Update pattern (A/W)
- Preferred Route
- Alternative Route

Damping result

- Reachable pattern (R/U)
- No Damping
- RFD
- RFD+RG
- Route Change
An example case

- An example prefix 137.119.0.0/20, December 1st
 - No covering prefix
 - Reachable via two different peers
 - Preferred path flaps persistently
 - Less preferred path is stable (failed occasionally)

Input feed

- Update pattern (A/W)

Damping result

- Reachable pattern (R/U)
 - No Damping
 - RFD
 - RFD+RG
 - Route Change
 - Reach. loss

Cheng et al. (UCLA)

Nov 2010 13 / 22
An example case

- An example prefix 137.119.0.0/20, December 1st
 - No covering prefix
 - Reachable via two different peers
 - Preferred path flaps persistently
 - Less preferred path is stable (failed occasionally)

Input feed

Damping result

Cheng et al. (UCLA)
Preserve reachability

- All damped prefixes (41,086 prefixes)

- For RFD, 20% of damped prefixes lose reachability
 - 3% (1.3K) prefixes lose more than 10 minutes reachability
- RFD+RG guarantees reachability!
✓ **Gain - Fewer updates**

- Reduce number of updates
 - \(\sim \) best path selection
 - RFD (26.0%)
 - RFD+RG (24.2%)
- +RG saves a little less than RFD
 - 2.0% of updates
 - Essential updates for maintaining reachability

Evaluation Summary

<table>
<thead>
<tr>
<th></th>
<th>Saved</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>RG</td>
<td>1,468,421</td>
<td>24.21</td>
</tr>
<tr>
<td>RG (w/o ER)</td>
<td>1,539,993</td>
<td>25.39</td>
</tr>
<tr>
<td>RFD</td>
<td>1,576,991</td>
<td>26.00</td>
</tr>
</tbody>
</table>

Number of total updates: 6,065,353
Gain - Fewer route changes

- Reduce next hop changes (~ FIB changes)
 - RFD (23.5%)
 - RFD+RG (21.7%)

- +RG saves a little less than RFD
 - 1.8% number of next hop changes

<table>
<thead>
<tr>
<th></th>
<th>Saved</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>RG</td>
<td>205,461</td>
<td>21.70</td>
</tr>
<tr>
<td>RG(w/o ER)</td>
<td>212,657</td>
<td>22.46</td>
</tr>
<tr>
<td>RFD</td>
<td>222,978</td>
<td>23.55</td>
</tr>
</tbody>
</table>

Number of total next hop changes: 946,829
Tradeoff - Stability and Preference

All damped prefixes (41,086 prefixes)

+RG makes BGP choose the less preferred route, if...
- Preferred path is unstable
- Less preferred path is stable

Deviate from the preference settings
- Might be an acceptable trade-off?
Result of other exchange points

- Exchange points across different topological locations
 - Guarantee reachability
 - Overhead reduction could be different

<table>
<thead>
<tr>
<th>Location</th>
<th>Reach. loss</th>
<th>Damped prefixes</th>
<th>Reduced updates (%)</th>
<th>Reduced NH changes (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINX</td>
<td>0</td>
<td>46,488</td>
<td>24.21</td>
<td>21.70</td>
</tr>
<tr>
<td>AMS-IX</td>
<td>0</td>
<td>13,464</td>
<td>13.28</td>
<td>19.09</td>
</tr>
<tr>
<td>CIXP</td>
<td>0</td>
<td>9,125</td>
<td>5.82</td>
<td>16.40</td>
</tr>
<tr>
<td>NETNOD</td>
<td>0</td>
<td>45,496</td>
<td>27.16</td>
<td>20.30</td>
</tr>
<tr>
<td>MIX</td>
<td>0</td>
<td>31,543</td>
<td>11.10</td>
<td>14.33</td>
</tr>
<tr>
<td>NYIIX</td>
<td>0</td>
<td>15,907</td>
<td>8.99</td>
<td>15.20</td>
</tr>
<tr>
<td>DE-CIX</td>
<td>0</td>
<td>26,708</td>
<td>17.89</td>
<td>27.07</td>
</tr>
<tr>
<td>MSK-IX</td>
<td>0</td>
<td>29,314</td>
<td>12.97</td>
<td>19.77</td>
</tr>
</tbody>
</table>
This work . . .

- a simple addition to guarantee reachability
 - Address the long overdue reachability loss problem
 - Offer a better trade-off

- compatible with all existing damping schemes
 - Previous efforts are not wasted
 - Incrementally deployable

- NOT yet another damping scheme

- NOT a routing enhancement, but a defensive measure

Future questions: implementation issues, overhead, system wide impact . . .
Thank you!
References

Z. M. Mao, R. Govindan, G. Varghese, and R. H. Katz. Route Flap Damping: Harmful?

References (cont.)
