
On the Security Bootstrapping in Named Data
Networking

Tianyuan Yu
UCLA

Los Angeles, USA
tianyuan@cs.ucla.edu

Xinyu Ma
UCLA

Los Angeles, USA
xinyu.ma@cs.ucla.edu

Hongcheng Xie
City University of Hong Kong

Hong Kong, China
hongcheng.xie@my.cityu.edu.hk

Xiaohua Jia
City University of Hong Kong

Hong Kong, China
csjia@cityu.edu.hk

Lixia Zhang
UCLA

Los Angeles, USA
lixia@cs.ucla.edu

ABSTRACT
By requiring all data packets been cryptographically authen-
ticatable, the Named Data Networking (NDN) architecture
design provides a basic building block for secured network-
ing. This basic NDN function requires that all entities in an
NDN network go through a security bootstrapping process
to obtain the initial security credentials. Recent years have
witnessed a number of proposed solutions for NDN secu-
rity bootstrapping protocols. Built upon the existing results,
in this paper we take the next step to develop a system-
atic model of security bootstrapping: Trust-domain Entity
Bootstrapping (TEB). This model is based on the emerging
concept of trust domain and describes the steps and their
dependencies in the bootstrapping process. We evaluate the
expressiveness and sufficiency of this model by using it to
describe several current bootstrapping protocols.

1 INTRODUCTION
Named Data Networking (NDN) [4, 22] architecture provides
semantically named and signed data to enable secured data
communications. However, the architecture design needs
useful tools to realize the security design. There are two fun-
damental requirements to fulfill NDN security design. First,
NDN entities1 require Security Bootstrapping to obtain neces-
sary security components. Then, NDN entities also require
Security Support to manage trust relations and certificates.
Specifically, NDN entities need to know the appropriate cer-
tificate to sign data, and the appropriate verification chain to
validate signed data. For example, a data producer may have
multiple signing certificates, with different certificates used
to sign data under different name prefixes, as indicated by
the trust schema [17]. This demands that the Security Sup-
port not merely store cryptographic tools, but rather manage
cryptographic tools following trust policies.

1NDN entities are applications and all other network communication par-
ticipants in an NDN network [26]

Recently, a number of security bootstrapping solutions [6,
8, 12] have been proposed. As the understanding of security
bootstrapping evolves, in this work we take the next step to
extract commonalities from different designs. By doing so, we
intend to obtain a generic model describing the procedures
of bootstrapping to understand NDN security better and
support software development. In this work, we make the
following contributions. First, we clarify the concepts ofNDN
trust domain [8] and the necessary steps to set up an NDN
trust domain. Second, we develop a systematic understanding
of security bootstrapping within a trust domain and propose
a generic function model, Trust-domain Entity Bootstrapping
(TEB), to describe the procedures. Our TEB model is general
enough to effectively model the existing protocols.
In the rest of this paper, Section 2, revisits the NDN net-

work model, articulates the concept of NDN trust domains,
and reviews related works. We then describe the TEB model
and its individual procedures (Section 3), our evaluation
based on protocol analysis (Section 4), and lessons learned
from the evaluation (Section 5). Finally, we summarize our
contribution, and mention the remaining questions and fu-
ture work in Section 6.

2 BACKGROUND AND RELATEDWORK
This section briefly reviews the NDN networking model
and related work to lay the groundwork for introducing the
Trust-domain Entity Bootstrapping TED design.

2.1 NDN Networking Model
An NDN is made of connected named entities, with vari-
ous trust relations among them. Entities utilize all available
connectivities to exchange named and secured data, and the
defined trust schema to authenticate all received data. Since
the trust schema expresses security policies by defining the
relations between the names of data and the names of crypto
keys used to sign and encrypt data, an NDN entity 𝐸 must
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have a semantically meaningful name to enable schematized
trust relations [17].
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Figure 1: Examples of Trust Relations Among Named
Entities

Trust relations can take different models. Two typical ones
are the hierarchical trust relations and the peer-to-peer trust
relations, as illustrated in Figure 1. Named entities that be-
long to the same administrative domain generally follow a
hierarchical trust model [23], where all the entities in the
domain share one single trust root. Independent entities, on
the other hand, may take a Web-of-Trust model to establish
their trust relations [3, 18], where they endorse each other’s
crypto keys in a peer-to-peer fashion. These twomodels com-
plement, rather than conflict, each other, and may coexist.
For example, a smart home made of networked IoT devices
can use the hierarchical trust model for all IoT devices in a
user’s home, while neighboring homes may establish peer-
to-peer trust relations, if they desire to communicate with
each other (e.g. when home-A’s ISP has an outage, neigh-
bor home-B may instructs its WiFi router to help forward
traffic for home-A, and prohibit all its other devices from
interacting with home-A’s traffic.
Sine the trust relations in a hierarchical trust model end

at one single trust root, realizing a hierarchical trust model
requires that each entity 𝐸 under the same administrative
control establishes a trust anchor that cryptographically iden-
tifies the trusted root, and installs the trust anchor into 𝐸.In
order to produce authenticatable data inside its domain, 𝐸
must also have its name(s) certified. The certified name(s)
uniquely identify 𝐸 in the system and each name’s authenti-
cation chain terminates at the same trust anchor. The trust
schema, defined by the trust root, limits the signing power
of each certificate to a specific data namespace, enabling
applications to enforce finer-grained security policies for
authentication, authorization, and access control.

2.2 Related Works
Our TEB model is built upon, and further extend, a few
pieces of previous work in NDN bootstrapping. Zhang et
al. [20, 26] identified the necessary security components that
must be obtained from NDN bootstrapping process.Later,
DCT [9] defines an NDN trust domain as a zero-trust network

governed by a single trust anchor and trust schema. The
concept of trust domains helps precisely define the scope of
security bootstrapping, i.e. configuring an NDN entity into
an NDN trust domain. Following [8], Yu et al. [16] further
introduced the concept of a trust domain controller as a trust
domain’s governing entity, and articulated the steps of the
security bootstrapping process for three different networking
scenarios, where the steps of authentication and naming vary
based on the application scenarios.
In this paper, we adopt the concept of trust domain con-

troller and introduce the new concept of elemental entities.
We show that TEB as a generalized bootstrapping model can
cover all three different networking scenarios described in
[16].

3 TEB MODEL
In this section, we formally define the concept of trust do-
mains, and then model the security bootstrapping, by first
describing themodel in an overview of TEB then introducing
each procedure in the model.

3.1 Trust Domain
The introduction of the NDN trust domain concept by [8]
simplifies the description of trust relation organization. A
trust domain is made of a collection of authorized named
entities under the same administrator’s control. The trust
schema for an entity 𝐸 is the set of rules that defines 𝐸’s trust
relations with the others in the same domain. The entity
who controls the trust relations of the domain is the trust
domain controller. Specifically, a domain controller can con-
trol the security within its domain by (i) authenticating and
authorizing each new entity 𝐸𝑛𝑒𝑤 as a domain member; (ii)
installing the trust anchor 𝑇 and the trust schema into 𝐸𝑛𝑒𝑤 ;
(iii) naming 𝐸𝑛𝑒𝑤 ; (iv) issuing a certificate to 𝐸𝑛𝑒𝑤 . We refer
to this set of operations as security bootstrapping. To set up an
NDN trust domain, one needs to first decide the name of the
trust domain, and set up a domain controller which will gen-
erate a self-signed certificate under that domain name; this
certificate is the domain’s trust anchor 𝑇 . Second, one needs
to design the trust domain namespace, and define the trust
schema of the domain and individual entities. Finally, one
bootstraps entities into the domain as they become available.
Among all bootstrapped entities, there may exist elemental
entities to whom the domain controller partially delegates
the control function (e.g. certificate issuance). In this case,
the domain controller coordinates the elemental entities to
manage the security within its domain. Since this work fo-
cuses on intra-domain bootstrapping, below we discuss how
the domain controller bootstraps 𝐸𝑛𝑒𝑤 .
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Figure 2: The relationships among the trust domains /ndnfit, /ndnfit/alice, and /ndnfit/bob2

In Figure 2 (which is adopted from [26]), we illustrate the
trust domain relationships using a prototype application ND-
NFit described in [21], which tracks and shares personal fit-
ness activities. The NDNFit developers start the trust domain
“/ndnfit” by setting up its trust domain controller, which au-
thenticates and authorizes Alice and Bob as its trust domain
members. It installs the “/ndnfit” trust anchor and the trust
schema into Alice’s and Bob’s NDNFit application instances,
then issues them the certificates “/ndnfit/alice/KEY/123
/controller/v=1” and “/ndnfit/bob/KEY/223/controller
/v=1”.

Alice can set up her own trust domain “/ndnfit/alice”,
by generating a self-signs “/ndnfit/alice” certificate as
her domain’s trust anchor. She runs a ”Sensor” app on her
smartphone to collect daily time-location information, and
runs an ”Analyzer” app on her laptop to produce analytics
and visualizations from the data produced by ”Sensor”. The
trust domain controller of “/ndnfit/alice” installs into “Sen-
sor” and “Analyzer” their trust anchor, certificates, and trust
schema. After security bootstrapping, the intra-domain data
communications between the “Sensor” app and the “Analyzer”
app can be secured.
On the left side of the figure, Bob bootstraps his appli-

cations in the same way by creating his own trust domain
“/ndnfit/bob”. If Alice wants to share her sensor data with
Bob, she can enable inter-domain data communications by
defining a proper trust schema for authentication between
two trust domains and data access control.

3.2 TEB Overview
TEB is designed as a security bootstrapping model for enti-
ties in a trust domain. TEB consists of four steps (Figure 3).
First, the entity to be bootstrapped, 𝐸𝑛𝑒𝑤 , and the trust do-
main controller need to perform mutual authentication in
order to securely communicate with each other. Second, 𝐸𝑛𝑒𝑤
needs to establish the trust relation with the trust domain
by installing the trust anchor and the trust schema obtained
from the controller. Third, the trust domain controller as-
signs 𝐸𝑛𝑒𝑤 a semantic meaningful NDN name. Lastly, the
trust domain controller issues 𝐸𝑛𝑒𝑤 a certificate under its
assigned name. After the above four steps are finished, 𝐸𝑛𝑒𝑤
is ready for secure intra-domain data communications.

Mutual Authentication

Certificate

Ready for Intra-domain 
Communication

Establishing Trust Relation

Certification

Naming

Trust Dom
ain 

Controller

𝐸
!"#

Trust Anchor, Trust Schema

Figure 3: An Overview of the Security Bootstrapping

3.3 Controller Authentication
From 𝐸𝑛𝑒𝑤 ’s perspective, the first step of security bootstrap-
ping is to authenticate the trust domain controller and accept
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it as its authority. We call this procedure Controller Authen-
tication. Because authentication relies on pre-established trust
relations, 𝐸𝑛𝑒𝑤 and controller need some prior existing trust
relation. We call this trust relation as Controller Authenti-
cation Context (𝐶𝐴𝐶) on 𝐸𝑛𝑒𝑤 side, and 𝐸𝑛𝑒𝑤 Authentica-
tion Context (𝐸𝐴𝐶) on the controller side. We further define
each party’s unique identifier in bootstrapping process as
Controller Identifier (𝐶𝑜𝑛𝑡𝐼𝐷) and 𝐸𝑛𝑒𝑤 Identifier (𝐸𝑛𝑒𝑤𝐼𝐷),
respectively. As a result of controller authentication, 𝐸𝑛𝑒𝑤
generates an 𝐸𝑛𝑒𝑤𝐴𝑝𝑝𝑟𝑜𝑣𝑎𝑙 to represent an entity identified
by 𝐶𝑜𝑛𝑡𝐼𝐷 as its trust domain controller.
We can define the binding between 𝐸𝑛𝑒𝑤𝐴𝑝𝑝𝑟𝑜𝑣𝑎𝑙 and

𝐶𝑜𝑛𝑡𝐼𝐷 as Proof of Authority (𝑃𝑂𝐴) and the controller au-
thentication procedure as 𝐶𝑜𝑛𝑡𝐴𝑢𝑡ℎ:

𝑃𝑂𝐴 = (𝐶𝑜𝑛𝑡𝐼𝐷, 𝐸𝑛𝑒𝑤𝐴𝑝𝑝𝑟𝑜𝑣𝑎𝑙)
𝐶𝑜𝑛𝑡𝐴𝑢𝑡ℎ : 𝐶𝐴𝐶 → 𝑃𝑂𝐴

Authentication Context: Both 𝐸𝑛𝑒𝑤 and the trust domain
controller need the initial out-of-band trust relation with
the other. For example, 𝐸𝑛𝑒𝑤 can securely obtain 𝐶𝐴𝐶 out-
of-band from either the installed application (which embeds
some configured trust) or human input at runtime (e.g. pre-
shared keys or passcode). In today’s TCP/IP network practice,
Certificate Authorities (CA) are implicitly authenticated by
end-users’ trust on the OS and browser vendors, as well as
the correct operation of their software. Whereas, IoT device
manufacturers burn the initial key materials into devices
as factory settings for 𝐶𝐴𝐶 , to be used for authentication
by smart home controllers. An NDN trust domain can also
make use of these existing trust relations to authenticate
its trust domain controller to 𝐸𝑛𝑒𝑤 . For example, the trust
domain controller can host its trust anchor and trust schema
at an HTTPS-enabled website and share the URL with 𝐸𝑛𝑒𝑤
out-of-band. In this case, the pre-shared URL, website X.509
certificate [2], and the corresponding CA root certificate
together serve as 𝐶𝐴𝐶 . We discuss this approach in detail in
Section 4.

3.4 Entity Authentication
In order to join the trust domain, 𝐸𝑛𝑒𝑤 can be authenticated
and approved by the trust domain controller through the
following two steps. First, the controller verifies 𝐸𝑛𝑒𝑤 ’s trust
domain membership. It checks whether the authentication
factor in 𝐸𝐴𝐶 is acceptable to the current trust domain. Then,
the controller verifies 𝐸𝑛𝑒𝑤 ’s identity with the authentication
factor. After this two-step process, the controller approves
𝐸𝑛𝑒𝑤 ’s to be a trust domain member with the temporary iden-
tifier 𝐸𝑛𝑒𝑤𝐼𝐷 . We refer to this binding between 𝐸𝑛𝑒𝑤𝐼𝐷 and
𝐶𝑜𝑛𝑡𝐴𝑝𝑝𝑟𝑜𝑣𝑎𝑙 as Proof of Membership (𝑃𝑂𝑀). We can define

𝑃𝑂𝑀 and the 𝐸𝑛𝑒𝑤 authentication procedure 𝐸𝑛𝑒𝑤𝐴𝑢𝑡ℎ as:

𝑃𝑂𝑀 = (𝐸𝑛𝑒𝑤𝐼𝐷,𝐶𝑜𝑛𝑡𝐴𝑝𝑝𝑟𝑜𝑣𝑎𝑙)
𝐸𝑛𝑒𝑤𝐴𝑢𝑡ℎ : 𝐸𝐴𝐶 → 𝑃𝑂𝑀

Authentication Context: The controller must securely
obtain 𝐸𝐴𝐶 before the security bootstrapping. Similar to
𝐶𝐴𝐶 , obtaining 𝐸𝐴𝐶 also relies on some trusted existing
authentication system, e.g. it can be obtained from either
the installed application or from human input at runtime.
Today’s applications over the existing TCP/IP architecture
take similar approaches to achieve end-user authentication.
For example, today’s practice for registering new accounts to
websites typically uses email authentication, which derives
the user authenticity from the existing (and trusted) email
systems.

3.5 Entity Trust Relations
After executing 𝐶𝑜𝑛𝑡𝐴𝑢𝑡ℎ, 𝐸𝑛𝑒𝑤 can use 𝑃𝑂𝐴 to establish
the initial trust relation via obtaining and installing the trust
anchor and trust schema from the controller. Obtaining the
trust anchor and trust schema enables 𝐸𝑛𝑒𝑤 to validate Data
packets received within the trust domain, including the cer-
tificate issued to it later. We name this procedure 𝐸𝑛𝑒𝑤𝑇𝑟𝑢𝑠𝑡 :

𝐸𝑛𝑒𝑤𝑇𝑟𝑢𝑠𝑡 : 𝑃𝑂𝐴 → (𝑇𝑟𝑢𝑠𝑡𝐴𝑛𝑐ℎ𝑜𝑟,𝑇𝑟𝑢𝑠𝑡𝑆𝑐ℎ𝑒𝑚𝑎)

Initial Trust Schema: Since the trust schema may need to
be updated over time, 𝐸𝑛𝑒𝑤𝑇𝑟𝑢𝑠𝑡 only installs initial trust
schema into𝐸𝑛𝑒𝑤 and considers deploying application-specific
trust schemas as a post-bootstrapping task for the controller.
The initial trust schema includes all necessary rules to val-
idate 𝐸𝑛𝑒𝑤 certificate and future trust schema updates. As
designed in [24], the trust domain controller can distribute
application-specific trust schemas as Data packets after 𝐸𝑛𝑒𝑤
bootstrapping.

The initial trust schema can be implicit, which means 𝐸𝑛𝑒𝑤
by default trust every data produced by the controller until
receiving a later trust schema that explicitly specifies the
data signing relationships. We discuss the usage of implicit
trust schema with details in Section 4.

3.6 Entity Naming
After 𝐸𝑛𝑒𝑤 ’s authentication, the controller assigns 𝐸𝑛𝑒𝑤 a
name under the trust domain’s namespace. In the 𝐸𝑛𝑒𝑤 nam-
ing procedure, the controller uses the trust domain’s Naming
Convention (𝑁𝑎𝑚𝑒𝐶𝑜𝑛𝑣) [19] to determine 𝐸𝑛𝑒𝑤 ’s name. The
naming convention defines a set of naming rules to facilitate
data publication and retrieval. The controller formally ap-
proves the binding of the assigned Name to 𝐸𝑛𝑒𝑤𝐼𝐷 .3 This
binding indicates 𝐸𝑛𝑒𝑤 ’s legitimately possessing 𝑁𝑎𝑚𝑒 . We
3The format of this approval is defined by specific bootstrapping
implementations.
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denote this binding as Proof of Possession (𝑃𝑂𝑃 ), and define
𝐸𝑛𝑒𝑤 naming procedure as:

𝑃𝑂𝑃 = (𝑁𝑎𝑚𝑒, 𝐸𝑛𝑒𝑤𝐼𝐷,𝐶𝑜𝑛𝑡𝐴𝑝𝑝𝑟𝑜𝑣𝑎𝑙)
𝐸𝑛𝑒𝑤𝑁𝑎𝑚𝑖𝑛𝑔 : (𝑃𝑂𝑀, 𝑁𝑎𝑚𝑒𝐶𝑜𝑛𝑣) → 𝑃𝑂𝑃

At the end of this section, we briefly explain the reason for
defining 𝑃𝑂𝑃 , rather than the certificate as the 𝐸𝑛𝑒𝑤𝑁𝑎𝑚𝑖𝑛𝑔

output. We also discuss it with more details in Section 3.8.

Naming Convention: An entity name must be unique and
semantically meaningful. Naming convention remains an
active research topic, so far we have identified two commonly
observed cases, and one can choose based on what identifiers
are used in the authentication step.

The first case is that the controller converts a semantically
meaningful and authenticated identifier to an NDN name.
In general, we may be able to satisfy both requirements by
making use of the already existing identifiers used in authen-
tication. In some scenarios, the new entity’s authentication
identifier (e.g. an email address, or a DNS name) semanti-
cally encodes its existing trust relations. For example, Alice is
identified by her email address “alice@example.com”, which
consists of a semantically meaningful domain name and a
user name. The trust domain controller of “/ndnfit” can in-
teprete this email address with the structure “user@sld.tld”.
If the trust domain defines its naming convention as “/ndnfit
/<tld>/<sld>/<user>”4, then the controller can assign Al-
ice the name “/ndnfit/com/example/alice”, with the con-
fidence that this name should be unique because email ad-
dresses are globally unique.
Another case is to manually assign names. For example,

if Alice is authenticated by her SSH [15] public key without
meaningful semantics5, The controller may request human
input (such as via out-of-band operations) to fill in a name.

Name Possession: As stated in the 𝑃𝑂𝑃 definition, 𝑃𝑂𝑃
only indicates the controller’s approval on binding a specific
name to an 𝐸𝑛𝑒𝑤𝐼𝐷 , thereby being different from a certificate.
Note that 𝐸𝑛𝑒𝑤𝐼𝐷 is not a cryptographic identifier for 𝐸𝑛𝑒𝑤 ,
but rather an identifier exclusively used during bootstrap-
ping before 𝐸𝑛𝑒𝑤 can be uniquely identified by its certified
name. 𝑃𝑂𝑃 conceptually decouples the naming procedure
from certification, so that the domain certificate issuer can
be agnostic to the entity naming convention and takes 𝑃𝑂𝑃
as input to certify 𝐸𝑛𝑒𝑤 .

4<> indicates a wildcard name component.
5A SSH key pair is uniquely identified by its public key (or fingerprint). The
default naming convention “user@hostname” cannot uniquely identify
a key.

3.7 Certification
After 𝐸𝑛𝑒𝑤 obtains its name assignment from 𝐸𝑛𝑒𝑤𝑁𝑎𝑚𝑖𝑛𝑔,
it needs to obtain the certificate from 𝑃𝑂𝑃 . The certifica-
tion procedure requires 𝑃𝑂𝑃 for name input, and Certifica-
tion Context (𝐶𝑒𝑟𝑡𝐶) as certificate issuer context. Moreover,
the procedure needs 𝑇𝑟𝑢𝑠𝑡𝐴𝑛𝑐ℎ𝑜𝑟 and 𝑇𝑟𝑢𝑠𝑡𝑆𝑐ℎ𝑒𝑚𝑎 to val-
idate the issued certificate conforming to the trust schema
of the domain. In our model, we describe certification as the
𝐸𝑛𝑒𝑤𝐶𝑒𝑟𝑡 procedure:

𝐸𝑛𝑒𝑤𝐶𝑒𝑟𝑡 :(𝑃𝑂𝑃,𝐶𝑒𝑟𝑡𝐶,𝑇𝑟𝑢𝑠𝑡𝐴𝑛𝑐ℎ𝑜𝑟,𝑇𝑟𝑢𝑠𝑡𝑆𝑐ℎ𝑒𝑚𝑎)
→ 𝐶𝑒𝑟𝑡𝑖 𝑓 𝑖𝑐𝑎𝑡𝑒

Certificate Issuer: Inside a trust domain, either the domain
controller itself, or another delegated entity, needs to be re-
sponsible for certificate issuance and revocation, as well as
making them available by publishing to some repository [13].
That is, a certificate issuer is not necessarily the trust do-
main controller itself.During certificate issuance, the issuer
validates 𝑃𝑂𝑃 and binds the contained name assignment to
𝐸𝑛𝑒𝑤 ’s public key. Today’s CAs, such as Let’s Encrypt [1],
issue domain-validated certificates (DV) following a simi-
lar logic. The domain validation process validates the re-
quester’s proof of DNS domain possession (e.g. publishing
a DNS TXT Record) by trusting the global routing system
for delivering all validation requests to correct destinations.
NDN certificate issuers rely on 𝑃𝑂𝑃 to provide authenticated
name–entity binding. Later in Section 4, we show individ-
ual security bootstrapping protocols have their own 𝑃𝑂𝑃

realizations, such as session encryption keys and temporary
certificates.

3.8 TEB Dataflow Graph
The previous subsections explained individual procedures in
security bootstrapping. Now we show how the procedures
of TEB work together to form a framework for the security
bootstrapping process.
Figure 4 shows the dataflow graph of security bootstrap-

ping, where 𝐶𝐴𝐶 and 𝐸𝐴𝐶 represent the pre-existing trust
relation between the domain controller and 𝐸𝑛𝑒𝑤 . When the
security bootstrapping starts, 𝐶𝑜𝑛𝑡𝐴𝑢𝑡ℎ ➊ and 𝐸𝑛𝑒𝑤𝐴𝑢𝑡ℎ ➋
generate 𝑃𝑂𝐴 and 𝑃𝑂𝑀 , respectively. Then, 𝐸𝑛𝑒𝑤𝑇𝑟𝑢𝑠𝑡 ➌ ob-
tains𝑇𝑟𝑢𝑠𝑡𝐴𝑛𝑐ℎ𝑜𝑟 and𝑇𝑟𝑢𝑠𝑡𝑆𝑐ℎ𝑒𝑚𝑎. In parrallel,𝐸𝑛𝑒𝑤𝑁𝑎𝑚𝑖𝑛𝑔

➍ takes 𝑃𝑂𝑀 and 𝑁𝑎𝑚𝑒𝐶𝑜𝑛𝑣 as input to produce 𝑃𝑂𝑃 . As
the final step, 𝐸𝑛𝑒𝑤𝐶𝑒𝑟𝑡 ➎ utilizes 𝑃𝑂𝑃 and 𝐶𝑒𝑟𝑡𝐶 to ob-
tain a certificate, and validates it with 𝑇𝑟𝑢𝑠𝑡𝐴𝑛𝑐ℎ𝑜𝑟 and
𝑇𝑟𝑢𝑠𝑡𝑆𝑐ℎ𝑒𝑚𝑎.
Modularized Bootstrapping Design: Since the dataflow
graph reveals the procedure dependencies in bootstrapping,
it informs a new possibility in the bootstrapping protocol
design. That is, the two-way authentication can be decoupled,
so that one can authenticate and name 𝐸𝑛𝑒𝑤 before 𝐸𝑛𝑒𝑤
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𝑃𝑂𝐴 𝑇𝑟𝑢𝑠𝑡 𝐴𝑛𝑐ℎ𝑜𝑟,
𝑇𝑟𝑢𝑠𝑡 𝑆𝑐ℎ𝑒𝑚𝑎

𝑃𝑂𝑃

𝐶𝐴𝐶

𝐶𝑜𝑛𝑡𝐴𝑢𝑡ℎ
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𝐸!"#𝐶𝑒𝑟𝑡

𝑃𝑂𝑀

𝐸𝐴𝐶 𝑁𝑎𝑚𝑒𝐶𝑜𝑛𝑣

𝐶𝑒𝑟𝑡𝐶

Figure 4: Dataflow Graph of the Bootstrapping Model

accepts the trust anchor and the initial trust schema. The
certification can be simplified to be a procedure that binds
𝐸𝑛𝑒𝑤 name assignment to a public-private key pair, which
requires accomplishing authentication and naming a prior,
rather than in real-time.
The dataflow graph also enables modularity in the pro-

tocol design and implementation. Because a valid security
bootstrapping process is a set of procedures that follow
the dataflow graph, developers can realize each procedure
separately with any execution order that satisfies the TEB
dataflow graph. Then a TEB implementation bootstraps 𝐸𝑛𝑒𝑤
by executing individual procedures in the specified order.
One can also summarize commonly used procedure imple-
mentations and plug them into various TEB-based bootstrap-
ping designs. For example, an 𝐸𝑛𝑒𝑤𝐴𝑢𝑡ℎ implementation that
authenticates 𝐸𝑛𝑒𝑤 based on email addresses can be shared
among multiple trust domain bootstrapping solutions to ease
the protocol development.

4 EVALUATION
We evaluate our model by analyzing several security boot-
strapping solutions.
SSP: SSP [6] is a security bootstrapping protocol aiming at
smart home device. In SSP, smart home devices (i.e. 𝐸𝑛𝑒𝑤)
pre-share a QR code to the home controller (i.e. trust domain
controller). The QR code includes a public key, a symmetric
key and the device identifier. In this case, 𝐸𝐴𝐶 is the shared
public key, symmetric key and device identifier, and 𝐶𝐴𝐶 is
the corresponding private key and symmetric key.

Firstly, the device initiates security bootstrapping by broad-
casting a sign-on Interest packet (➊). The sign-on Interest
carries the device identifier, device capability, and a nonce
𝑁 1, as 𝐸𝑛𝑒𝑤𝐼𝐷 , signed with the device’s private key. Before
broadcasting the Interest, the device hashes the all the four
parameters as a whole and appends it as the last name com-
ponent. After receiving the sign-on Interest, the controller
verifies the signature with the pre-shared public key (➋).

Upon successful verification, the controller replies an sign-
on Data packet with the same name. The sign-on Data en-
capsulates 𝑇𝑟𝑢𝑠𝑡𝐴𝑛𝑐ℎ𝑜𝑟 (controller’s self-signed certificate),
𝑇𝑟𝑢𝑠𝑡𝑆𝑐ℎ𝑒𝑚𝑎 (implicit), and nonce 𝑁2 as 𝐶𝑜𝑛𝑡𝐼𝐷 , signed
with the shared symmetric key. Because the sign-on Data
name carries the same digest of parameters with the sign-on
Interest, the data signature ensures the device membership in
the smart home trust domain. Meanwhile the symmetrically
signed data signature is verifiable to the device, thereby the
sign-on Data packet is both 𝑃𝑂𝑀 and 𝑃𝑂𝐴.
Secondly, the device receives and validates the sign-on

Data. It installs𝑇𝑟𝑢𝑠𝑡𝐴𝑛𝑐ℎ𝑜𝑟 and𝑇𝑟𝑢𝑠𝑡𝑆𝑐ℎ𝑒𝑚𝑎 from the sign-
on Data content (➌) and performs ECDH between its private
key with the controller’s public key. The temporary symmet-
ric key obtained from ECDH is the 𝐶𝑒𝑟𝑡𝐶 used later.

Thirdly, the device broadcasts a certificate request Interest
(➍). The certificate request Interest carries the device identi-
fier, 𝑇𝑟𝑢𝑠𝑡𝐴𝑛𝑐ℎ𝑜𝑟 digest, 𝑁1, 𝑁2, and a signature from the
device. Similar to the sign-on Interest, the device appends
the digest of parameters to the name. Upon successful verifi-
cation, the controller assigns a name to the device according
to 𝑁𝑎𝑚𝑒𝐶𝑜𝑛𝑣 , generates a new key pair for the device, and
certifies the device’s new public key under the name assign-
ment. It also performs ECDH between the controller private
key and the device pre-shared public key to negotiate a tem-
porary symmetric key for private key encryption. Then the
controller replies with a certificate Data carrying the same
name. The certificate Data contains the device’s certificate
and the encrypted device’s new private key and is signed
by the shared symmetric key. As 𝑃𝑂𝑃 , its data signature
authenticates the binding between 𝑁 1 and the device name
assignment.
Finally, the device validates the received certificate Data,

decrypts the new private key with 𝐶𝑒𝑟𝑡𝐶 , and installs the
certificate (➎) to complete the security bootstrapping process.
We summarize the SSP bootstrapping model in Table 1.

NDN Testbed: NDN Testbed distributes the trust anchor
through NDN Website [7] and NDNCERT codebase [14]
that implements the certificate issuance protocol of Testbed.
Testbed users authenticate, obtain and install 𝑇𝑟𝑢𝑠𝑡𝐴𝑛𝑐ℎ𝑜𝑟
and 𝑇𝑟𝑢𝑠𝑡𝑆𝑐ℎ𝑒𝑚𝑎 out-of-band (➊ ➌), then follows the ND-
NCERT [23, 27] protocol to request a certificate on Testbed.
NDNTestbed bootstraps users via authenticating users’ email
addresses and issuing certificates to users. In the bootstrap-
ping process, a user runs the NDNCERT protocol and acts
as a certificate requester.

Firstly, the certificate requester takes 𝐸𝐴𝐶 to initiate user
authentication (➋). 𝐸𝐴𝐶 contains the user’s email address
and the NDN Testbed Certificate Authority (CA) prefix. The
requester sends a NEW Interest that carries an ECDH public
key, the public key to be certified, and a signature generated
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Operations SSP Devices (D) SSP Controller (C)
Out-of-band (OOB) Obtaining 𝐶𝐴𝐶 Obtaining 𝐸𝐴𝐶 , 𝑁𝑎𝑚𝑒𝐶𝑜𝑛𝑣

D⇒ C: sign-on Interest 𝐸𝑛𝑒𝑤𝐼𝐷 Generation 𝐸𝑛𝑒𝑤𝐴𝑢𝑡ℎ(𝐸𝐴𝐶) → 𝑃𝑂𝑀

D⇐ C: sign-on Data 𝐸𝑛𝑒𝑤𝑇𝑟𝑢𝑠𝑡 (𝐶𝑜𝑛𝑡𝐴𝑢𝑡ℎ(𝐶𝐴𝐶)) →
𝑇𝑟𝑢𝑠𝑡𝐴𝑛𝑐ℎ𝑜𝑟,𝑇𝑟𝑢𝑠𝑡𝑆𝑐ℎ𝑒𝑚𝑎, 𝐶𝑒𝑟𝑡𝐶 Generation 𝐶𝑜𝑛𝑡𝐼𝐷 Generation

D⇒ C: certificate request
Interest 𝐸𝑛𝑒𝑤𝑁𝑎𝑚𝑖𝑛𝑔(𝑃𝑂𝑀, 𝑁𝑎𝑚𝑒𝐶𝑜𝑛𝑣) → 𝑃𝑂𝑃

D⇐ C: certificate Data 𝐸𝑛𝑒𝑤𝐶𝑒𝑟𝑡 (𝑃𝑂𝑃,𝐶𝑒𝑟𝑡𝐶,𝑇𝑟𝑢𝑠𝑡𝐴𝑛𝑐ℎ𝑜𝑟,𝑇𝑟𝑢𝑠𝑡𝑆𝑐ℎ𝑒𝑚𝑎) →
𝐶𝑒𝑟𝑡𝑖 𝑓 𝑖𝑐𝑎𝑡𝑒

Table 1: SSP Security Bootstrapping Model

Operations NDN Testbed Users (U) NDN Testbed CA (C)
OOB 𝑇𝑟𝑢𝑠𝑡𝐴𝑛𝑐ℎ𝑜𝑟,𝑇𝑟𝑢𝑠𝑡𝑆𝑐ℎ𝑒𝑚𝑎 installation Obtaining 𝐸𝐴𝐶 , 𝑁𝑎𝑚𝑒𝐶𝑜𝑛𝑣

U ⇔ C: NEW Interest-Data Obtaning 𝐸𝑛𝑒𝑤𝐼𝐷 𝐸𝑛𝑒𝑤𝐼𝐷 Generation
U ⇔ C: CHALLENGE
Interest-Data (Round-trip 1) Obtaning 𝑃𝑂𝑀 𝐸𝑛𝑒𝑤𝐴𝑢𝑡ℎ(𝐸𝐴𝐶) → 𝑃𝑂𝑀

U ⇔ C: CHALLENGE
Interest-Data (Round-trip 2) Obtaning 𝑃𝑂𝑃 , 𝐶𝑒𝑟𝑡𝐶 𝐸𝑛𝑒𝑤𝑁𝑎𝑚𝑖𝑛𝑔(𝑃𝑂𝑀, 𝑁𝑎𝑚𝑒𝐶𝑜𝑛𝑣) → 𝑃𝑂𝑃

U ⇔ C: Certificate
Interest-Data

𝐸𝑛𝑒𝑤𝐶𝑒𝑟𝑡 (𝑃𝑂𝑃,𝐶𝑒𝑟𝑡𝐶,𝑇𝑟𝑢𝑠𝑡𝐴𝑛𝑐ℎ𝑜𝑟,𝑇𝑟𝑢𝑠𝑡𝑆𝑐ℎ𝑒𝑚𝑎) →
𝐶𝑒𝑟𝑡𝑖 𝑓 𝑖𝑐𝑎𝑡𝑒

Table 2: NDN Testbed Security Bootstrapping Model

by the corresponding private key. In reply, the CA sends a
Data packet carrying 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝐼𝐷 , as 𝐸𝑛𝑒𝑤𝐼𝐷 , which is ran-
domly picked to identify the certificate request instance Note
that both Interest and Data contain the public information
used for the ECDH key agreement and are signed with the
timestamp and nonce to prevent replay attack.
Secondly, the requester sends a CHALLENGE Interest 1

carrying 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝐼𝐷 and the user’s email address which is
encrypted using the key negotiated from the NEW Interest-
Data exchange. The CA obtains the email address from the
CHALLENGE Interest 1 and decides whether it accepts this
email address in Testbed. Afterward, it sends a randomly
generated PIN to the email address and replies CHALLENGE
Data 1. Similar to the NEW step, CHALLENGE Interest
and Data packets are signed by the sender and verified by
the receiver. As 𝑃𝑂𝑀 , the CHALLENGE Data 1 binds the
𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝐼𝐷 with the CA signature. The Testbed user obtains
the PIN out-of-band and inputs it to the requester.
Thirdly, the requester sends CHALLENGE Interest 2 car-

rying 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝐼𝐷 and the encrypted PIN. Upon successful
PIN verification, the CA assigns a name, certifies it under
the requester public key, and replies CHALLENGE Data 2
(➍). As 𝑃𝑂𝑃 , CHALLENGE Data 2 contains 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝐼𝐷 , the
encrypted certificate name, and the CA signature. There-
after, the requester obtains and decrypts the 𝐶𝑒𝑟𝑡𝐶 from
𝑃𝑂𝑃 . 𝐶𝑒𝑟𝑡𝐶 consists of a certificate name and a forwarding
hint to facilitate certificate retrieval.

As the final step, the requester expresses Interest with the
certificate name and a forwarding hint to retrieve the issued

certificate to be installed locally (➎). We summarize the NDN
Testbed bootstrapping model in Table 2.

NDNViber: NDNViber[12] is an automated bootstrapping
protocol for IoT devices. It uses the vibration channel in
physical proximity to realize the two-way authentication.
The vibration channel information (e.g. coding scheme) is
the 𝐶𝐴𝐶 on 𝐸𝑛𝑒𝑤 side. NDNViber controller initiates the
bootstrapping process by expressing a TRIGGER Interest in
the vibration channel. The TRIGGER Interest includes the
trust domain name and a temporary encryption key. Because
of the secrecy of the vibration channel, the NDNViber device
considers the TRIGGER Interest as 𝑃𝑂𝐴 (➊) and replies with
the pre-installed device identifier as 𝐸𝐴𝐶 . When the con-
troller receives the corresponding TRIGGER Data, it obtains
the 𝐸𝐴𝐶 for device authentication.
After the TRIGGER Interest-Data exchange, the device

expresses ANCHOR Interest over the traditional channels
and uses the temporary encryption key from 𝑃𝑂𝐴 to ob-
tain 𝑇𝑟𝑢𝑠𝑡𝐴𝑛𝑐ℎ𝑜𝑟 and 𝑇𝑟𝑢𝑠𝑡𝑆𝑐ℎ𝑒𝑚𝑎 (implicit) (➌). Finally,
the device runs the NDNCERT protocol to obtain 𝑃𝑂𝑃 and
𝐶𝑒𝑟𝑡𝑖 𝑓 𝑖𝑐𝑎𝑡𝑒 . The controller authenticates (➋) and names the
device based on 𝐸𝐴𝐶 and 𝑁𝑎𝑚𝑒𝐶𝑜𝑛𝑣 , and issues certificates
(➎) to the device via the NDNCERT CHALLENGE Interest-
Data exchanges. We omit the detailed analysis because of its
similarity to the NDN Testbed 𝐸𝑛𝑒𝑤𝐴𝑢𝑡ℎ, 𝐸𝑛𝑒𝑤𝑁𝑎𝑚𝑖𝑛𝑔 and
𝐸𝑛𝑒𝑤𝐶𝑒𝑟𝑡 . The main difference is that 𝐸𝑛𝑒𝑤𝐴𝑢𝑡ℎ is over the
vibration channel. We model the protocol in Table 3.
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Operations NDNViber Devices (D) NDNViber Controller (C)
OOB Obtaining 𝐸𝐴𝐶 , 𝐶𝐴𝐶 Obtaining 𝑁𝑎𝑚𝑒𝐶𝑜𝑛𝑣

(Vibration Channel) D ⇔ C:
TRIGGER Interest-Data 𝐶𝑜𝑛𝑡𝐴𝑢𝑡ℎ(𝐶𝐴𝐶) → 𝑃𝑂𝐴 Obtaining 𝐸𝐴𝐶

D⇔ C: ANCHOR
Interest-Data

𝐸𝑛𝑒𝑤𝑇𝑟𝑢𝑠𝑡 (𝐶𝑜𝑛𝑡𝐴𝑢𝑡ℎ(𝐶𝐴𝐶)) →
𝑇𝑟𝑢𝑠𝑡𝐴𝑛𝑐ℎ𝑜𝑟,𝑇𝑟𝑢𝑠𝑡𝑆𝑐ℎ𝑒𝑚𝑎

D⇔ C: NDNCERT
Interest-Data (multiple rounds) Obtaining 𝑃𝑂𝑀 , 𝑃𝑂𝑃 , 𝐶𝑒𝑟𝑡𝐶 𝐸𝑛𝑒𝑤𝐴𝑢𝑡ℎ(𝐸𝐴𝐶) → 𝑃𝑂𝑀 ,

𝐸𝑛𝑒𝑤𝑁𝑎𝑚𝑖𝑛𝑔(𝑃𝑂𝑀, 𝑁𝑎𝑚𝑒𝐶𝑜𝑛𝑣) → 𝑃𝑂𝑃

D⇔ C: Certificate
Interest-Data

𝐸𝑛𝑒𝑤𝐶𝑒𝑟𝑡 (𝑃𝑂𝑃,𝐶𝑒𝑟𝑡𝐶,𝑇𝑟𝑢𝑠𝑡𝐴𝑛𝑐ℎ𝑜𝑟,𝑇𝑟𝑢𝑠𝑡𝑆𝑐ℎ𝑒𝑚𝑎) →
𝐶𝑒𝑟𝑡𝑖 𝑓 𝑖𝑐𝑎𝑡𝑒

Table 3: NDNViber Security Bootstrapping Model

Operations PION Devices (D) PION Authenticator (A) Controller (C)
OOB Obtaining 𝐶𝐴𝐶 Obtaining 𝐸𝐴𝐶 , 𝑁𝑎𝑚𝑒𝐶𝑜𝑛𝑣

A⇔ D: PAKE Interest-Data 𝐸𝑛𝑒𝑤𝐴𝑢𝑡ℎ(𝐸𝐴𝐶) → 𝑃𝑂𝑀

A⇔ D: CONFIRM
Interest-Data

𝐶𝑜𝑛𝑡𝐴𝑢𝑡ℎ(𝐶𝐴𝐶) → 𝑃𝑂𝐴,
𝐸𝑛𝑒𝑤𝑇𝑟𝑢𝑠𝑡 (𝑃𝑂𝐴) → 𝑇𝑟𝑢𝑠𝑡𝐴𝑛𝑐ℎ𝑜𝑟,𝑇𝑟𝑢𝑠𝑡𝑆𝑐ℎ𝑒𝑚𝑎,
Obtaining 𝑃𝑂𝑀 , 𝐶𝑒𝑟𝑡𝐶

A⇔ D: CREDENTIAL
Interest-Data 𝐸𝑛𝑒𝑤𝑁𝑎𝑚𝑖𝑛𝑔(𝑃𝑂𝑀, 𝑁𝑎𝑚𝑒𝐶𝑜𝑛𝑣) → 𝑃𝑂𝑃

A⇔ D: Certificate
Interest-Data Obtaining 𝑃𝑂𝑃

D⇔ C: NDNCERT
Interest-Data (multiple rounds) Obtaining 𝑃𝑂𝑃 ′, 𝐶𝑒𝑟𝑡𝐶 𝐸𝑛𝑒𝑤𝐶𝑒𝑟𝑡1 (𝑃𝑂𝑃) → 𝑃𝑂𝑃 ′

D⇔ C: Certificate
Interest-Data

𝐸𝑛𝑒𝑤𝐶𝑒𝑟𝑡2 (𝑃𝑂𝑃 ′,𝐶𝑒𝑟𝑡𝐶,𝑇𝑟𝑢𝑠𝑡𝐴𝑛𝑐ℎ𝑜𝑟,𝑇𝑟𝑢𝑠𝑡𝑆𝑐ℎ𝑒𝑚𝑎) →
𝐶𝑒𝑟𝑡𝑖 𝑓 𝑖𝑐𝑎𝑡𝑒

Table 4: PION Security Bootstrapping Model

PION: PION [10, 11] is a password-based security bootstrap-
ping for IoT devices. Different from the aforementioned pro-
tocols, in PION, the controller delegates authentication and
naming to an elemental entity called the PION authenticator.
The PION authenticator authenticates and names 𝐸𝑛𝑒𝑤 with
a temporary certificate as 𝑃𝑂𝑃 , and 𝐸𝑛𝑒𝑤 further uses the
temporary certificate to apply the formal certificate from the
controller. It realizes the two-way authentication through
the first pre-shared password as both 𝐸𝐴𝐶 and 𝐶𝐴𝐶 , then
derives a shared secret following the SPAKE2 [5] scheme to
secure communications during bootstrapping.

As a trusted elemental entity, the PION authenticator ini-
tiates the bootstrapping process by sending PAKE Interest,
which includes the authenticator SPAKE2 public share pA.
The device receives PAKE Interest and processes pA based
on the password, then replies PAKE Data which includes its
public share pB and key confirmation message cB. When the
authenticator receives this PAKE Data, the authenticator (i)
processes pB, verfies cB, generates its confirmation message
cA; (ii) assigns SID as 𝐸𝑛𝑒𝑤𝐼𝐷 , and names 𝐸𝑛𝑒𝑤 according
to the 𝑁𝑎𝑚𝑒𝐶𝑜𝑛𝑣 obtained OOB; (iii) derives a temporary
encryption key Ke from the previous SPAKE2 exchanges; (iv)
sends a CONFIRM Interest as 𝑃𝑂𝑀 (➋) that carries SID and
Ke encrypted 𝐸𝑛𝑒𝑤 name assignment. Upon successful cA
verfication, the device accepts the received CONFIRM Inter-
est as 𝑃𝑂𝑀 and 𝑃𝑂𝐴 (➊). It extracts the 𝑇𝑟𝑢𝑠𝑡𝐴𝑛𝑐ℎ𝑜𝑟 and

the 𝑇𝑟𝑢𝑠𝑡𝑆𝑐ℎ𝑒𝑚𝑎 (implicit) from the 𝑃𝑂𝐴 (➌), and replies a
CONFIRM Data. The CONFIRM Data includes SID and Ke en-
crypted 𝐸𝑛𝑒𝑤 self-signed certificate. The PION authenticator
receives this Interest, signs a temporary 𝐸𝑛𝑒𝑤 certificate as
𝑃𝑂𝑃 , and sends the Ke encrypted certificate name back to the
device through a CREDENTIAL Interest (➍). In order to ob-
tain 𝑃𝑂𝑃 , the device uses Ke to decrypt the certificate name
from CREDENTIAL Interest with, then fetch and temporary
certificate.
Afterwards, the device follows the NDNCERT protocol

and uses 𝑃𝑂𝑃 and 𝐶𝑒𝑟𝑡𝐶 to obtain the name of the formally
issued certificate from the trust domain controller (➎). In
PION, Since the temporary certificate as 𝑃𝑂𝑃 already binds
the controller’s approval on 𝐸𝑛𝑒𝑤 ’s identifier to the name, we
model the CHALLENGE Data of the NDNCERT exchanges
in PION as 𝑃𝑂𝑃 ′. The device first follows the NDNCERT
protocol to obtain 𝑃𝑂𝑃 ′ and update 𝐶𝑒𝑟𝑡𝐶 to 𝐶𝑒𝑟𝑡𝐶′, then
uses 𝐶𝑒𝑟𝑡𝐶′ to decrypt the certificate name from 𝑃𝑂𝑃 ′ and
expresses Interest to fetch the formally issued certificate.
We use the following two subprocedures to describe the
𝐸𝑛𝑒𝑤𝐶𝑒𝑟𝑡 .

𝐸𝑛𝑒𝑤𝐶𝑒𝑟𝑡1 :(𝑃𝑂𝑃) → 𝑃𝑂𝑃 ′

𝐸𝑛𝑒𝑤𝐶𝑒𝑟𝑡2 :(𝑃𝑂𝑃 ′,𝐶𝑒𝑟𝑡𝐶,𝑇𝑟𝑢𝑠𝑡𝐴𝑛𝑐ℎ𝑜𝑟,𝑇𝑟𝑢𝑠𝑡𝑆𝑐ℎ𝑒𝑚𝑎)
→ 𝐶𝑒𝑟𝑡𝑖 𝑓 𝑖𝑐𝑎𝑡𝑒
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Table 4 shows the PION protocol analysis.
DCT: DCT [8] is a data-centric toolkit for secure NDN IoT
applications. In order to bootstrap entities inside a DCT trust
domain, developers specify the trust anchor and the trust
schema for a trust domain, and generate Identity Bundle
for each entity. The Identity Bundle contains the trust an-
chor, trust schema, certificate chain, and the corresponding
private keys. Human operators bootstrap each entity by se-
curely installing its Identity Bundle. Specifically, DCT sug-
gests operators install bundles via command line within the
development environment, and it leaves other installation
mechanisms to individual trust domain deployment.
Although DCT bootstrapping does not involve explicit

data communications, it still follows the TEBmodel. Securely
installing bundles requires the trust domain controller and
𝐸𝑛𝑒𝑤 mutually authenticating each other (➊ ➋). Then the
parties can establish a secured channel in between and en-
able the controller securely transfer (e.g. command line) the
bundle into 𝐸𝑛𝑒𝑤 (➌ ➍ ➎).

Besides the above representative bootstrapping protocols,
[16] proposes three cases of security bootstrapping. The first
case assumes a secure environment between the trust do-
main controller and the new entity (𝐸𝑛𝑒𝑤), which is similar
to the DCT deployment scenario (Section 4). While the sec-
ond case assumes the new entity is within the trust domain
controller’s physical vicinity, where our analyses of SSP (Sec-
tion 4) and NDNViber (Section 4) are applicable. The third
case leverages existing authentication solutions in today’s
Internet and NDNCERT for both authentication and certifi-
cation. This case naturally fits into our analysis of the NDN
Testbed bootstrapping model (Section 4). Therefore, TEB
covers all three different networking scenarios in [16].

5 DISCUSSION
Having described the TEB design and evaluation, in this
section we discuss TEB’s design decisions and the lessons
learned from the evaluation.

5.1 Authentication and Certification
A certificate represents the trust domain controller’s endorse-
ment of the binding between an entity’s name and its public
key. In order to issue a certificate, the controller must (i)
authenticate the public key owner and binds it to a name;
and (ii) endorse the name–key binding through digital signa-
ture. If a domain supports multiple certificate issuers, these
issuers can share the same 𝐸𝐴𝐶 and 𝑁𝑎𝑚𝑒𝐶𝑜𝑛𝑣 .
TEB breaks the aforementioned two steps into three pro-

cedures: 𝐸𝑛𝑒𝑤𝐴𝑢𝑡ℎ, 𝐸𝑛𝑒𝑤𝑁𝑎𝑚𝑖𝑛𝑔, and 𝐸𝑛𝑒𝑤𝐶𝑒𝑟𝑡 . Since each
procedure serves one specific purpose, their realizations are
relatively simple. In this regard, PION separates the name
authenticator from the certificate issuer. The authenticator

issues a temporary certificate that carries the authenticated
name assignment. Consequently, the certificate issuer can
be 𝐸𝐴𝐶 and 𝑁𝑎𝑚𝑒𝐶𝑜𝑛𝑣 agnostic by re-signing a formal cer-
tificate to the public key owner.

5.2 Multi-Named Entities
TEB allows an entity to have multiple names within a trust
domain, with each name uniquely identifying the entity. A
typical scenario that may need multiple names for one entity
is Name-based Access Control (NAC) [25]. In the example of
Figure 2, the NDNFit controller can assign Alice two addi-
tional names “/ndnfit/alice/admin” and “/ndnfit/alice
/customer”, each representing a different user role. When
the controller specifies access control policies, it can let Alice
request decryption keys based on role names.
To support multi-named entities, the controller assigns

multiple names in 𝐸𝑛𝑒𝑤𝑁𝑎𝑚𝑖𝑛𝑔. The certificate issuer of
each name takes actions according to the trust schema and
𝐸𝑛𝑒𝑤𝐶𝑒𝑟𝑡 realization. A possible approach is to certify “/ndnfit
/alice” first, and then to certify the two additional names.
We observed the same design pattern in DCT, where the DCT
controller certifies devices and the devices further sign their
capability certificates (e.g., light). Therefore, each DCT de-
vice may have multiple names, depending on the capability
it equips with.

5.3 Trust Schema: Implicit vs. Explict
As we mentioned earlier, the trust schema is a critical secu-
rity component that must be obtained during bootstrapping.
Designing the trust schema for a trust domain requires un-
derstanding both application semantics and security require-
ments.
TEB allows the initial trust schema to be implicit (Sec-

tion 3.5), which provides a shortcut for the out-of-band con-
figuration of the new entity before bootstrapping. However,
since the implicit trust schema only allows data produced by
the controlled to be trusted, the new entity cannot securely
communicate with any other entity, until it learns how to
validate data produced by others. In other words, distribut-
ing an explicit and finer-tuned trust schema after security
bootstrapping is necessary, which leads to extra overheads.
We believe that the best practice is to explicitly specify

an initial trust schema in 𝐸𝑛𝑒𝑤𝑇𝑟𝑢𝑠𝑡 . DCT achieves this by
putting the certificate chain and the trust schema into the
identity bundle. All entities in a trust domain are able to
validate others’ data publication once obtaining the bundle.

6 CONCLUSION AND FUTUREWORK
NDN’s network model requires all named entities to estab-
lish trust relations with others. As explained in [16], security
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bootstrapping fulfills this requirement by answering two ba-
sic questions: from where a new entity can obtain its name(s)
and security credentials, and how the initial trust relations
can be configured into the entity. However, our observa-
tions on recent NDN application development suggest that
it is non-trivial for developers to understand the necessary
procedures to perform security bootstrapping and properly
implement entity bootstrapping operations.

To address the above issues, we proposed TEB to formally
define the goal and procedures of security bootstrapping
based on the concept of NDN trust domain. We evaluated
TEB against various existing security bootstrapping solu-
tions and show that those individual protocols all fit into
the TEB model. Our experience so far gives us confidence
in the model’s generality in support security bootstrapping
for most, if not all, application scenarios in a trust domain.
We believe we have contributed a meaningful step towards a
reusable approach in bootstrapping protocol designs: defin-
ing abstract variables, realizing logical procedures, and exe-
cuting procedures based on functional dependencies.
Note that security bootstrapping is only the first step in

securing data communications. One remaining research ques-
tion is where to store these security components and how to
automatically execute trust policies. Since TEB focuses on se-
curing intra-domain data communications, another question
is how to establish inter-domain trust relations. Communi-
cating with semantically named and signed data empowers
one to leverage naming conventions and automate security
workflows. However, we need well-integrated and easy-to-
use implementations that realize such automation, and hide
security primitives from the application developers. As our
future work, we plan to develop solutions to the two afore-
mentioned questions, and provide a complete framework to
realize the TEB model.
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