
CertRevoke: A Certificate Revocation Framework for Named
Data Networking

Tianyuan Yu
UCLA

Los Angeles, USA

tianyuan@cs.ucla.edu

Hongcheng Xie
City University of Hong Kong

Hong Kong, China

hongcheng.xie@my.cityu.edu.hk

Siqi Liu
UCLA

Los Angeles, USA

siqi.liu@ucla.edu

Xinyu Ma
UCLA

Los Angeles, USA

xinyu.ma@cs.ucla.edu

Xiaohua Jia
City University of Hong Kong

Hong Kong, China

csjia@cityu.edu.hk

Lixia Zhang
UCLA

Los Angeles, USA

lixia@cs.ucla.edu

ABSTRACT

Named Data Networking (NDN) secures network communications

by requiring all data packets to be signed upon production. This

requirement makes usable and efficient NDN certificate issuance

and revocation essential for NDN operations. In this paper, we first

investigate and clarify core concepts related to NDN certificate

revocation, then proceed with the design of CertRevoke, an NDN

certificate revocation framework. CertRevoke utilizes naming con-

ventions and trust schema to ensure certificate owners and issuers

legitimately produce in-network cacheable records for revoked cer-

tificates. We evaluate the security properties and performance of

CertRevoke through case studies. Our results show that deploying

CertRevoke in an operational NDN network is feasible.

CCS CONCEPTS

• Networks→ Security protocols; • Security and privacy→

Authentication.

KEYWORDS

Named data networking, Information-centric networking, Trust

management, Certificate revocations

ACM Reference Format:

Tianyuan Yu, Hongcheng Xie, Siqi Liu, Xinyu Ma, Xiaohua Jia, and Lixia

Zhang. 2022. CertRevoke: A Certificate Revocation Framework for Named

Data Networking. In 9th ACM Conference on Information-Centric Networking

(ICN ’22), September 19–21, 2022, Osaka, Japan. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3517212.3558079

1 INTRODUCTION

Securing data communications requires usable solutions for data

integrity, authenticity, and confidentiality. Named Data Network-

ing (NDN) [45] offers essential building blocks for data security

by signing data during production and encrypting data whenever

needed [49]. These security supports require effective and efficient

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICN ’22, September 19–21, 2022, Osaka, Japan

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9257-0/22/09.
https://doi.org/10.1145/3517212.3558079

mechanisms to handle certificate issuance and revocation. A num-

ber of existing works [20, 26, 46, 48] have explored the design space

of NDN certificate issuance. However, a systematic understanding

of certificate revocation design approaches is still missing. Although

NDNCERT [46] proposed a simple procedure to let the certificate

owner notify its issuer that the certificate should be revoked, this

procedure does not provide a general solution for certificate revo-

cation.

A certificate revocation designs need to answer the following

three research questions:

RQ1: Which entity can legitimately revoke a certificate? Each

certificate has its issuer and verification chain, which terminates at

the trust anchor. If the certificate issuer (e.g., a site CA on the NDN

Testbed [39]) is not the trust anchor, one also needs to consider the

role that the trust anchor may play in the revocation process.

RQ2: What procedures are needed to revoke a certificate? Cer-

tificate revocation needs protocol designs to ensure the legitimacy

of each step in the process. For example, one needs to define data

structures to record certificate revocation events regarding who

revokes which certificate at when, and the corresponding procedures

to legitimately produce and secure the recordings.

RQ3: How do data consumers learn certificates’ revocation

status? To enable data consumers to learn the validity status of

the revoked certificate, the revocation design must consider data

authenticity and timeliness without incurring high communication

costs in the data validation process.

In this work, we propose a framework for NDN certificate revo-

cation and make the following contributions:

• We clarify the concepts between certificate revocation and

key revocation.

• We investigate the design space of certificate revocation by

articulating the system model and design requirements.

• We design and implement CertRevoke as a certificate revo-

cation framework for NDN.

In the rest of this paper, §2 provides an overview of NDN security

design. §3 describes the necessity of certificate revocation and clar-

ifies the concept of certificate versus key revocation. §4 presents

our certificate revocation framework CertRevoke, and §5 discusses

our prototype implementation and evaluations. We describe related

works in §6 and discuss some of our design decisions and lessons

learned in §7. Finally, we conclude our work in §8.

80

ICN ’22, September 19–21, 2022, Osaka, Japan Tianyuan Yu, Hongcheng Xie, Siqi Liu, Xinyu Ma, Xiaohua Jia, and Lixia Zhang

2 BACKGROUND

NDN views a network as a collection of named entities with trust

relations with each other. NDN entities are applications or any

communicating parties in the network, each belonging to a trust

zone [24]. In order to join a trust zone, an entity needs to go through

the security bootstrapping step to obtain three basic pieces of NDN

security information from the trust zone controller [43]: trust anchor,

certificate, and trust schema.

• Trust anchor : The trust anchor is a self-signed certificate for

the trust zone, which the trust zone controller owns. It is the

termination point of cryptographical authentication inside

the trust zone, thereby establishing an entity’s initial trust

relation to its trust zone controller.

• Certificate: The trust zone controller endorses an entity by

signing the binding between a name and public key; the re-

sult of this endorsement is an NDN certificate. A certificate is

a piece of named data, and its name follows the naming con-

vention “/<prefix>/KEY/<keyid>/<issuer>/<version>”. A
certificate named “/ndn/siteA/depart/cs/KEY/223/alice
/001” conveys that the entity “/ndn/siteA/depart/cs” is
the certificate owner, and its key ID (e.g. app-1) uniquely

identifies a public-private key pair belonging to this entity.

Furthermore, the certificate name also indicates it is issued

by “alice” with version number “001”.
• Trust Schema: NDN defines trust schema [44] to restrict the

signing power of keys. In authenticating received data pack-

ets, applications use trust schema to verify whether the data

is produced by the right party by checking whether its name

and signer’s key follow defined name patterns.

After security bootstrapping, an NDN entity can produce and con-

sume data authentically.

3 WHENWE NEED CERTIFICATE
REVOCATION

3.1 Invalidating Bad Certificates

A certificate represents the trust zone controller’s endorsement of

a name-key binding within a validity period. However, there can

be times when this endorsement may need to be terminated before

the validity period expires. For example, when the entity renews

its certificate before the expiration time, when the entity’s private

key gets compromised, or when the trust zone controller finds that

it issued a certificate to a wrong entity by mistake. All the above

cases require the issued certificates to be invalidated.

There exist several possible approaches to invalidate an NDN

certificate.

Trust Schema Renewal: A revised trust schema can inform data

consumers to reject the certificates that have been invalidated. This

approach requires the trust zone controller to promptly distribute

the renewed trust schema to all affected entities within its trust

zone. Data consumers that do not receive the trust schema renewal

in time will still consider the invalidated certificates legitimate.

Therefore, although revoking certificates by renewing the trust

schema can be a viable solution for small trust zones with intra-

zone data communications, it is not an effective solution in general.

Short-lived Certificates: If a certificate is issued with a short va-

lidity period, it automatically becomes invalidated upon expiration,

reducing the chance of getting compromised or causing big dam-

ages even in case it gets compromised. A certificate’s validity period

may be a few days [41] or even a few hours [12]. The drawback

of this approach is the increased workload of certificate issuers,

which goes up reversely proportional to the certificates’ validity

period lengths. However, the recent success of Let’s Encrypt [1]

in the existing Certificate Authorities (CA) market suggests that

one can effectively manage certificate renewal tasks through au-

tomation, such as by using the Automatic Certificate Management

Environment (ACME) protocol [4] or CertBot [7]. NDN-based se-

curity solutions can further facilitate automated key management

by leveraging naming conventions.

Using short-lived certificates can make an effective engineering

alternative to certificate revocations for leaf or edge (e.g., user)

certificates. However, renewing higher-level certificates may still

incur substantial cost, as a change to a high-level certificate leads to

re-issuing the certificates for all the entities beneath it. Therefore,

upstream certificates in a trust chain of non-trivial length may

need a relatively long validity period (e.g., at the scale of multiple

months). The flip side of a lengthened validity period is an increased

chance of needing to revoke a certificate before it expires.

Certificate Revocation: Certificate revocation becomes necessary

in cases where both of the above two approaches are deemed infea-

sible. This infeasibility can be illustrated by using the NDN Testbed

as an example. The Testbed trust anchor certifies each participating

organization, which may further delegate its sub-namespaces to in-

dividual departments and issue corresponding certificates. Because

certificates for user applications may be further downstream along

this multihop trust chain, short-lived organization-level certificates

burden user applications with reissuing their downstream certifi-

cates frequently1. The above operational feasibility concerns lead

to the need for issuing organizational certificates with a relatively

long lifetime. This lengthened lifetime must be combined with a

certificate revocation tool to handle the cases where a long-lived

certificate must be revoked before its expiration. The revocation

tool needs to record revocation events and provide means to inform

data consumers of the revocation status of the certificates.

3.2 An Example Scenario

We introduce an example scenario below,whichwill be used through-

out the paper to facilitate the explanation and discussion.

As shown in Figure 1, an organization site owner delegates her

signing power to a few site administrators to manage each depart-

ment, and each department owner delegates the signing power

to a few department administrators to manage individual users.

The routers of each department register department-level prefixes

to the site router, while the site router aggregates and registers

site prefix with the external network. Figure 1 shows two routers

from “ee” and “cs” department register name prefixes “/ndn/siteA
/depart/cs” and “/ndn/siteA/depart/ee” on the site A router, re-
spectively. The two routers use their monthly renewed certificate

to sign prefix announcements [40] and propagate them to the site

1In practice, we observe that the current NDN Testbed issues year-long certificates to
participating organizations.

81

CertRevoke: A Certificate Revocation Framework for Named Data Networking ICN ’22, September 19–21, 2022, Osaka, Japan

/ndn/siteA/depart/cs

/ndn/siteA/depart/ee

/ndn/siteA

siteA Router
Alice

Revokes
Rejects CS Router

EE Router

Outside
Network

Site Owner Site Admin Depart. Owner
certifies certifies

Depart. Admin
certifies

User
certifies

Figure 1: A Prefix Registration Scenario

router. The site router validates the certificate and registers routes

for the two departments, then further uses site certificate to sign

prefix announcement for “/ndn/siteA” and propagates them to the
outside network.

Consider a site administrator Alice discovers that the certificate

of “/ndn/siteA/depart/cs” was mis-issued and revokes it. Then,
the site A router should know about this revocation event and reject

the next prefix announcement signed by this certificate.

3.3 Revoking Name-Key Endorsements

Revoking a certificate indicates the removal of a name-key endorse-

ment from a specific certificate issuer, which breaks the correspond-

ing edge in the authentication graph. Note that revoking one’s cer-

tificate does not necessarily revoke one’s authenticity completely,

when multi-path authentications exist [44]. For the example shown

in Figure 2, the trust schema allows the site owner “/ndn/siteA”
to certify administrators Alice and Bob for the name prefix “/ndn
/siteA/admin”, and both administrators can further certify depart-
ment owners for the name prefix “/ndn/siteA/depart”. Thus the
entity “/ndn/siteA/depart/cs” has two authentication chains, and
entities who trust “/ndn/siteA” can validate “/ndn/siteA/depart
/cs” through either Alice or Bob. In this case, when Alice revokes
her issued certificate for “/ndn/siteA/depart/cs”, it does not dis-
able the downstream authenticity but only removes one of the

authentication chains. If the CS router receives certificates from

both Alice and Bob, it can use the other certificate from Bob to sign

prefix announcements. The site A router will consider the routing

announcement as legitimately produced data.

Revoking a certificate means removing an edge that connects

two entities in the authentication graph. In this paper, we allow

either end node of an edge to remove the edge. In order words,

the name-key binding endorser (i.e., the certificate issuer) and the

endorsee (i.e., certificate owner) can legitimately invalidate the

certificate. Although the certificate owner is not the “producer” of

the certificate, it can use its private key to sign a revocation record.

4 THE CERTREVOKE FRAMEWORK

In this section, we show how the CertRevoke design answers the

three research questions and fulfills the design goals.

/ndn/siteA

/ndn/siteA/admin/alice

/ndn/siteA/admin/bob

/ndn/siteA/depart/cs

Site Owner Site Admin Depart. Owner

certifies certifies

Certificate
Revocation

Key
Revocation

Depart. Admin

Depart. Admin

Depart. Admin
certifies

Figure 2: An Example of Multi-Path Authentication

Revoker Ledger Checker

1. Revocation record to revoke 2. Revocation record interest

3. Revocation record

Figure 3: CertRevoke System Model

4.1 Problem Statements

In this section, we analyze the certificate revocation problem in

NDN and propose a model to investigate the design spaces.

SystemModel:We consider a certificate revocation framework, as

shown in Fig. 3. There are three categories of entities in this protocol,

i.e., the ledger, revokers, and checkers. Their roles are discussed as

follows:

• Ledger : The ledger is a set of entities that as a whole provides

immutable data storage. It receives the revocation records

from revokers and responds to checkers’ Interests to re-

trieve revocation records. In a practical deployment, the

ledger’s immutable data storage may be implemented by a

distributed-style scheme, such as Merkle Tree [17, 18] or

DAG replicas [21, 47]. Thus, the single-point failure can be

avoided.

• Revoker : Revokers are the entities that revoke certificates.

They send a revocation record to the ledgerwhen they revoke

a specific certificate.

• Checker : Checkers are the entities that want to knowwhether

a given certificate is revoked. They send an Interest to re-

trieve the revocation record from Ledger when they check

the revocation status of a certificate.

Assumptions: Since the checker is the party interested in the actual

revocation status, it has no incentive to be malicious. We assume

that some malicious revokers may try to revoke the certificates

illegitimately, i.e., to revoke the certificates they are not permitted to

revoke. Ledger is honest but not trustworthy. Similar to Certificate

Transparency [19], the ledger’s honesty needs to be checked by

external auditors, and we leave the specific design of CertRevoke

auditing for future research. Ledger’s data immutability can be

realized in several ways, e.g., immutable database and distributed

ledger technologies (DLT). For example, following the designs of

DLedger [47] or Mnemosyne [21], revocation records can be linked

together with their names and hash value; whenmultiple parties are

involved, records generated from different parties can interlock each

other for better security. We also assume that the ledger, revokers

and checkers are in same trust zone. The trust zone controller

bootstraps the aforementioned entities with the zone’s trust anchor,

82

ICN ’22, September 19–21, 2022, Osaka, Japan Tianyuan Yu, Hongcheng Xie, Siqi Liu, Xinyu Ma, Xiaohua Jia, and Lixia Zhang

issues them certificates and defines their trust schema. Thus their

operations will follow the security policies defined by the controller.

Moreover, the ledger has a well-known prefix inside the trust zone

(e.g.,“/ndn/siteA/LEDGER”).
In this preliminary work, we consider providing revocation sup-

port for intra-zone data communications only and KeyLocators

are certificate names. Generally speaking, practical deployments

will utilize inter-zone communication, thus certificate checkers

may query the revocation records from ledgers operated by en-

tities external to the local trust zones. Securing inter-zone data

communications is a research topic which is being explored at the

moment [42]. Once the inter-zone trust design matures, we plan

to add inter-zone revocation check to CertRevoke as part of our

future work.

Design Goals: Based on the above system model and assumptions,

the design goals of our proposed framework are defined as follows:

• Validating Revocation Legitimacy: The framework can deter-

mine the legitimacy of a revoker in a certificate revocation

attempt.

• Maintaining Revocation Recording: Revocation attempts are

recorded by the ledger with the revoker information to prove

its legitimacy.

• Providing Record Accessibility: Checkers can access legitimate

revocation records to determine the revocation status of a

certificate.

4.2 Revocation Records

Each revocation record is a semantically named, signed Applica-

tion Data Unit (ADU) [3]. A revoker generates a revocation record

to revoke a certificate. Let 𝑅𝐶 denote the revocation record of a
certificate 𝐶 . 𝑅𝑐 is defined as Eq. 1.

𝑅𝑐 = {𝑛𝑎𝑚𝑒, {𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑟𝐶𝑜𝑑𝑒, 𝑐𝐾𝑒𝑦𝐻 }, 𝑠𝑖𝑔} (1)

where 𝑛𝑎𝑚𝑒 is the name of 𝑅𝐶 , 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 indicates the time of
data signing, 𝑟𝐶𝑜𝑑𝑒 is the code that indicates the reason why 𝐶 is
revoked, 𝑐𝐾𝑒𝑦𝐻 is the hash value of the public key in 𝐶 , and 𝑠𝑖𝑔 is
the corresponding data signature produced by revoker.

𝑅𝐶 binds itself to the corresponding certificate 𝐶 by naming
conventions. 𝑅𝐶 name is defined as “/<prefix>/REVOKE/<keyid>
/<issuer>/<version>/<revoker>”, where the name components
“<prefix>”, “<keyid>”, “<issuer>” and “<version>” are the same
as the corresponding parts of the name of 𝐶 , while “<revoker>”
carries the revoker information. The naming convention enables

checkers to automate the revocation status checking by converting

the 𝐶’s name into the corresponding 𝑅𝐶 name and expressing the
Interest to retrieve it (see §4.4) .

Revocation Legitimacy: Since revokers sign revocation records

with their certificates and the 𝑅𝐶 names reveal the corresponding
𝐶s, the trust zone controller manages the revoker’s legitimacy by
controlling the signing restrictions in the trust schema. CertRevoke

considers the certificate issuer and certificate owner are legitimate

revokers (see §3.3).

We illustrate how we leverage the trust schema to ensure revo-

cation legitimacy in Figure 4, where Alice as the certificate issuer

revokes the certificate of “/ndn/siteA/depart/cs” by producing
the revocation record “/ndn/siteA/depart/cs/REVOKE/223/alice

(signed by)SignatureValue: d33b…

Name: /ndn/siteA/depart/cs/REVOKE/223/alice/001/alice

Content Type: KEY; Freshness Period: 720h

Trust Schema

MetaInfo:

PublicKeyHash: 4ed3…

RevocationTimestamp: 2022-05-22 11:59:59
Content:

RevocationReason: SUPERSEDED

KeyLocator: /ndn/siteA/admin/alice/KEY/222/owner/002
Signature:

Name: /ndn/siteA/depart/cs/KEY/223/alice/001

Content Type: KEY; Freshness Period: 720hMetaInfo:

Allowing “admin”
revokes “depart”

NotBefore: 2022-05-01 11:59:59

(signed by)SignatureValue: d33b…
KeyLocator: /ndn/siteA/admin/alice/KEY/222/owner/002

Signature:

NotAfter: 2022-05-30 11:59:59

Content:

Enforcing revoker info
equals to the issuer info

Enforcing same
signing key

Figure 4: Site administrator Alice revokes the certificate of

CS department

Revoker Ledger

Trust
Schema

Revocation
Legitimacy Validation

Trust
Schema

Figure 5: Interest-Data exchanges between Revoker and

Ledger

/001/alice”. Trust schema enforces the revoker component in 𝑅𝐶

name must be equal to the issuer component; (ii) the records under

the name prefix “/ndn/siteA/depart” must be signed by revok-
ers under the name prefix “/ndn/siteA/admin”; (iii) “/ndn/siteA
/admin/alice” uses the same signing certificate to produce the
corresponding revocation record.

If the certificate owner revokes the certificate, CertRevoke uti-

lizes trust schema to enforce (i) the revoker component must be

“self”; (ii) the signing key must be the same as the key name prefix
in this certificate.

4.3 Revocation Submission Protocol

In this section, we show the protocol that revokers submit the revo-

cation records to the ledger, and the ledger utilizes the trust schema

and key matching policy to ensure the revocation legitimacy.

As shown in Figure 5, a revoker attempts to revoke a certifi-

cate 𝐶 by generating a revocation record 𝑅𝐶 and submitting 𝑅𝐶

to Ledger. It initiates the submission process by expressing In-

terest “/<ledger-prefix>/submit/notify/<param-digest>” to no-
tify the ledger on the submission event. The notification Interest

I1 carries the revoker’s prefix and a nonce to reach this revoker2,

while “<param-digest>” is the digest of three parameters. I1 in-
dicates the submission is under name “/<revoker-prefix>/msg
/<ledger-prefix>/submit/<nonce>” and retrievable.

2I1 can also carry an optional forwarding hint if this revoker is not directly reachable

83

CertRevoke: A Certificate Revocation Framework for Named Data Networking ICN ’22, September 19–21, 2022, Osaka, Japan

After receiving I1, the ledger further expresses the Interest I2:

“/<revoker-prefix>/msg/<ledger-prefix>/submit/<nonce>” to re-
trieve the submission Data D2. Then the revoker encapsulates the

revocation record into D2 with the same name, signs it, and replies.

Because signed D2 contains the 𝑅𝐶 , the ledger executes trust
schema and key matching policy on D2 to validate (i) whether

D2 itself is legitimately produced; (ii) whether 𝑅𝐶 is legitimately
produced; (iii) whether 𝑅𝐶 ’s signer and the𝐶’s signer satisfy certain
name constraints. Upon successful validation, the ledger inserts the

record into its storage backend. Note that CertRevoke decouples the

submitter legitimacy from the revoker legitimacy via validating D2

and its content separately, which enables other parties voluntarily

submit collected revocation records to the ledger.

After the submission validation, the ledger replies I1 with signed

D1, which has the same name and encapsulates the submission

status. Like the ledger, the revoker also executes the trust schema

to validate D1’s legitimacy and learns the submission status from

the validated data content.

Batch Submission: The record submission protocol allows the

submitter to batch revocation records in D2. Accordingly, the ledger

encodes the submission status for each record inD1. When the batch

size is large, the submitter needs to segment D1 into “/<D1-name>
/<segment-number>”, and use the FinalBlockId field of the Data
packet to specify the highest segment number.

4.4 Certificate Revocation Checking

CertRevoke designs each 𝑅𝐶 as a piece of semantically named and
secured data. Thus checking a certificate’s revocation status is a

data accessibility problem: How can the checker access the revocation

record in the ledger? CertRevoke addresses this problem by using

Application Layer NACK and dynamically controlling Freshness

Period.

Since we consider the certificate issuer and owner are legit-

imate revokers, checkers can start from 𝐶’s name to automati-
cally construct the 𝑅𝐶 ’s name, if it exists, by following the de-
fined naming convention below. In order to access the records,

it expresses two Interests “/<prefix>/REVOKE/<keyid>/<issuer>
/<version>/<issuer>” and “/<prefix>/REVOKE/<keyid>/<issuer>
/<version>/self” together with the forwarding hint to the ledger.
If the ledger finds 𝑅𝐶 corresponding to the data name carried in
the Interest in its backend storage, it replies to the Interest with the

𝑅𝐶 . Receiving either record indicates the checked certificate was
revoked. If the corresponding 𝑅𝐶 does not exist, the ledger replies
with a Data packet that carries an application layer NACK. This

Data packet has the name “/<record-prefix>/nack/<timestamp>”
with empty content and is signed by the ledger. After checkers

validate the received NACK with trust schema, it learns that the

certificate has not been revoked at this time.

In-network Caching: Because an 𝑅𝐶 NACK is a named Data
packet, the ledger can dynamically adjust its Freshness Period to

balance the NACK timeliness and traffic load. A long freshness

period indicates the chance that future checkers’ Interest packets

may hit the 𝑅𝐶 NACK from the in-network cache, and reduces the
workload at the ledger. On the flip side, it increases the chance that

the certificate in question may be revoked, making the 𝑅𝐶 NACK
in the cache no longer valid. In short, the Freshness Period of each

𝑅𝐶 NACK must be carefully selected to minimize the chance of
obsolete data in the cache while keeping ledger and network traffic

at a reasonable level.

4.5 Putting Together a Case Study

The previous sections explained the individual procedures of CertRe-

voke. This section shows how everything works together to build

a certificate revocation framework that answers the three design

questions (see Section 1).

When starting the site network, Site A specifies the trust schema

only administrators can legitimately revoke a department’s certifi-

cate. The revoker component in 𝑅𝐶 must be the same as the issuer
component in 𝐶’s name. Site A’s owner also runs a ledger instance
“/ndn/siteA/LEDGER” on Site A’s router. During security bootstrap-
ping, Site A’s owner installs the trust schema into all site routers.

Alice, as the site administrator, revokes its previously issued certifi-

cate “/ndn/siteA/depart/cs/KEY/223/alice/001” by producing a
revocation record (see Figure 4), then submits 𝑅𝐶 to “/ndn/siteA
/LEDGER” following the protocol we mentioned in Section 4.3. An
hour later, the CS router signs the prefix announcement and sends it

to the site router. The routing application on Site A’s router checks

the revocation status of the signing certificate using the mechanism

in §4.4 and learns the signing certificate was revoked for the reason

“SUPERSEDED” thereby rejecting the announcement.
Meanwhile, the routing application on the site router also re-

ceives the prefix announcement from the EE department router. It

checks the revocation status and receives an 𝑅𝐶 NACK from the
ledger. Upon successful 𝑅𝐶 NACK validation, the routing applica-
tion proceeds to validate the prefix announcement and renews the

route of “/ndn/siteA/depart/ee”.

5 IMPLEMENTATION AND EVALUATION

5.1 Implementation

We have implemented CertRevoke in C++ and provide the library

for developers to integrate the CertRevoke protocols into their

specific applications3. Our implementation supports the ledger for

serving revocation records using memory and persistent storage

(e.g., SQL database). It can also seamlessly work with other ledger

implementations (i.e., DLedger [47]) to provide distributed and

immutable data storage.

5.2 Evaluation Scenario

Figure 6 depicts the evaluation scenario.We assume an environment

with three forwarders. The hosts of each forwarder are connected

through IP overlay links. Checkers and the revoker are virtually

connected to the forwarder running on the same host through a

Unix socket. The ledger can be connected to Forwarder 1 via IP

overlay or virtual links. We assume there is no packet loss on each

link, but the latency of each IP overlay link between the forwarders

varies from 0.5 ms to 6 ms. Forwarders know the route to each

entity. Thereby no route configuration is needed. Additionally, all

caches on the forwarder are empty when the evaluation started.

We emulated the hosts by running three containers on a Ubuntu

20.04 server. This server features an AMD EPYC 7702P processor

3Code has been published at https://github.com/UCLA-IRL/ndnrevoke

84

ICN ’22, September 19–21, 2022, Osaka, Japan Tianyuan Yu, Hongcheng Xie, Siqi Liu, Xinyu Ma, Xiaohua Jia, and Lixia Zhang

Figure 6: Evaluation scenario where checker and ledger, re-

voker and ledger are multiple hops away.

0 1 2 3 4 5 6
Delay Per Link (ms)

0

20

40

60

La
te

nc
y

(m
s)

Size 1
Size 10
Size 20

Figure 7: The latency of Revoker submitting revocation

records to the Local Ledger

0 1 2 3 4 5 6
Delay Per Link (ms)

0

10

20

La
te

nc
y

(m
s) Checker 1

Checker 2

Figure 8: The latency of checking revocation records from

the Local Ledger

with 64 physical cores (128 threads) and 256 GB of RAM. We first

evaluate the record submission and check performance with a lo-

cal ledger connected to Forwarder 1 (see §5.3 and §5.4). We also

deployed the ledger at a remote host that is connected to Host 1

with 100 ms propagation delay and investigated the effect of cache

against data freshness period and certificate popularity in §5.5.

5.3 Revocation Submission

In this section, we evaluate the record submission performance

with different link delays and different batch sizes, as illustrated

in Fig. 7. We let the revoker revoke 100 certificates and submit the

revocation records to the ledger. The results show that the time

cost grows linearly with the increasing link delay but is stable

at 2RTT. With the increasing batch size, the latency also grows

slightly. Specifically, it just takes 54.4 ms when the RTT is set as 24
ms, and the batch size is 20. The results show that our submission

protocol is usable in a practical network.

5.4 Revocation Record Checking

In this section, we assume Checker 1 and 2 learn a certificate out-

of-band and check its revocation status by expressing Interests for

corresponding revocation records. We assumed that both Checker 1

and Checker 2 were interested in 100 potential certificate revocation

records, inwhich two percent of them existed.We disabled the cache

so that every Interest packet reaches the ledger. As we can see from

Fig. 8, the time costs of both Checker 1 and Checker 2 increase

linearly along with the per-link delay. With the same per-link delay,

the latency of Checker 1 is smaller because it is closer to the ledger.

For instance, when the per-link delay is 6 ms, the latency of Checker

2 is 24.21 ms, while the latency of Checker 1 is 12.41 ms.

5.5 Benefit from In-network Caching

CertRevoke relies on in-network caching for efficiently distributing

revocation records and record NACK packets. If the local network

does not have enough resources to run a ledger, the trust zone

administrator may bootstrap an entity remotely as ledger deploy-

ment. The performance improvement from cache depends on the

network topology, data freshness period, and average RTT of record

checking. In this experiment, we particularly focused on the record

NACK distribution due to two reasons. First, revocation records are

supposed to be long-lived data. Therefore the cache benefit largely

depends on the network topology and cache capacity. Second, re-

voked certificates only account for a small portion of all issued

certificates. In most cases, when an application checks a revocation

record, it will receive a record NACK.

In this experiment, we deployed the ledger on theNDNTestbed [39]

and investigated the record-checking latency. We assumed Checker

1 and 2 were interested in the same 100 potential revocation records

in §5.4, and randomly requested one of them every second. Each ex-

amination event was scheduled with a 1 to 250 ms random backoff.

In order to have a better comparison, we also normalized the latency

with the average RTT latency from the checker to the ledger.

As we can see from Figure 9a, the normalized latency follows a

similar downward trend as the data freshness period increases. That

is because the caches in intermediate forwarders can respond some

requests. The longer the freshness period, the greater proportion of

requests that hit the cache.When the caching benefit converged, the

record checking latency was improved by 45%. We also investigate

the number of requests that Remote Ledger exactly received in

Figure. 9b. For the same reason, the number of received requests

also decreases along with the data freshness period. For example,

among the first 200 requests that the two Checkers sent, the ledger

only received 87 requests when the freshness period was 100 s. In

other words, in-network caching decreases the ledger’s load by

56.5%.

However, if the average RTT takes 200 ms (approximately from

Southern Europe to North America on NDN Testbed), 45% improve-

ment still requires the checker application to wait >100 ms while

checking a record. Fortunately, in real applications, not every cer-

tificate has the same possibility of being checked. We know that

content popularity on today’s Internet closely follows a Zipf distri-

bution [5, 8, 37]. We can assume NDN certificates, as data content

signers, follow the same popularity distribution. Higher ranked

85

CertRevoke: A Certificate Revocation Framework for Named Data Networking ICN ’22, September 19–21, 2022, Osaka, Japan

0 20 40 60 80 100
Freshness Period (s)

0.6

0.8

1

N
or

m
al

iz
ed

 L
at

en
cy

Checker 1
Checker 2

(a) Normalized latency of revocation record checking

0 20 40 60 80 100
Freshness Period (s)

100

150

200

R
ec

ei
ve

d
R

eq
ue

st
s

Uniform

(b) Requests received by Local Ledger

Figure 9: Evaluation when checked records follow Uniform

distribution

0 20 40 60 80 100
Freshness Period (s)

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 L
at

en
cy

Checker 1
Checker 2

(a) Normalized latency of revocation record checking

0 20 40 60 80 100
Freshness Period (s)

50

100

150

R
ec

ei
ve

d
R

eq
ue

st
s

Zipf

(b) Requests received by Remote Ledger

Figure 10: Evaluation when checked records follow Zipf dis-

tribution

certificates are checked more often and thus benefit more from

in-network caching.

0 20 40 60 80 100
Popularity Rank

0

1

2

N
or

m
al

iz
ed

 L
at

en
cy

10s
100s
12h

Figure 11: Normalized latency with popularity rank

Therefore in the third setting, to illustrate the real performance,

we use the same ledger deployment on the NDN Testbed but as-

sume the certificate popularity follows Zipf distribution with 𝑠 = 2.
As illustrated in Fig. 10a and Fig. 10b, both average normalized

latency and the received requests decrease exponentially. More-

over, they are also significantly lower than those when certificates

share the same popularity. For example, the latency of Checker 2 in

Zipf distribution is only 15.5% of original RTT when the freshness

period is 100 s, which is significantly smaller than the converged

performance 45% in Figure 9a. The number of received requests

among the first 200 requests was only 23 when the freshness period

was 100 s.

In order to have a closer look at how certificate popularity af-

fects the record checking latency, we also measured the average

record checking performance for each certificate. Similar to previ-

ous experiments, we normalized the latency with the average RTT

from the checker to the ledger. When data expires more often (e.g.,

10 s), checking a popular certificate benefits less from in-network

caching. As we can see from Fig. 11, the normalized latency quickly

converges to 1 as the popularity rank goes down. Only the top 20%

certificates take a shorter time to examine. This number becomes

the top 40% when the data freshness period is set to 100 s, and the

top 10% takes 0.5 RTT for Checkers to examine their revocation
statuses. According to the above evaluations, we show that even

when the ledger is deployed remotely, the record checking latency

is acceptable with the appropriate configuration of caches.

Cache Utilization in Practical Deployments: There are two

major factors that affect the cache utilization in practical CertRe-

voke deployments: network topology and revocation record NACK

freshness period.

We are aware that the network topology used in our experiments

enables every record Interest hitting the cache. In order to improve

the cache utilization in a practical deployment, one may bootstrap

distributed ledger [21, 47] instances in different locations in the

network.

A practical revocation record NACK’s freshness period can be

multiple hours or even a few days. Our evaluation shows the per-

formance of record checking promptly converges as the NACK

freshness period increases, even the freshness period in this experi-

ment is significantly smaller than the practical network uses (e.g.,

one day or more).

86

ICN ’22, September 19–21, 2022, Osaka, Japan Tianyuan Yu, Hongcheng Xie, Siqi Liu, Xinyu Ma, Xiaohua Jia, and Lixia Zhang

6 RELATEDWORKS

Today’s Internet has a history of addressing the need for certificate

revocations. In fact, about 2% of all TLS certificates in today’s Inter-

net are revoked, according to a study in 2021 [15]. The Certificate

Revocation List (CRL) [34] and the Online Certificate Status Check-

ing (OCSP) [35] have become the two pillars of today’s revocation

system.

CRL: CRLs are files containing lists of unexpired revoked certifi-

cates. They are signed by the corresponding CA or a party it dele-

gates to. A certificate can only be revoked by the CA, and the CA

revokes certificates by appending the identification of the certifi-

cate and the revocation reason to the CRL. CRLs are usually hosted

at stable URLs, and the CA informs the consumer about the URL

in the certificate. Data consumers check the certificate status by

fetching the CRL and confirming that the certificate in question is

not on the list.

However, CRL suffers from performance issues. The consumer

needs to make another request for the CRL, which creates another

RTT. In particular, as the service of the CA expands, the size of the

CRLmay grow. Although a number of solutions [9, 14, 16, 25, 27, 38]

are proposed to enable fast CRL checkings, the fundamental issue of

CRL is that the revocation list is merely a file or data structure rather

than a piece of named data at the network layer. As a result, one

has to find the server address and retrieve the file at the application

layer. A lesson we learned from CRL is that revocation records

should be named data and only contain the revocation information

of one certificate, so the revocation status of each certificate can be

fetched separately.

OCSP: OCSP is another approach for providing revocation updates.

Like CRL, CA configures OCSP responders at stable URLs, and

informs the responder URL in the issued certificate. Data consumers

follow the OCSP protocol to query the certificate status from the

URL, and the OCSP responders provide signed revocation status

for each query. OCSP avoids the CRL problem on the size of the

data responses, but it still contains the same problem as the CRL

on the additional RTT. It also requires the responder to be always

online for OCSP queries, which creates a large burden for OCSP

responders for responding all queries. OCSP Stapling [6] and the

later OCSP Must-Staple [10] solve the problems by allowing the

server to include the cached OCSP responses from the issuer during

a TLS handshake with the data consumer.

Compared to CRL, OCSP makes revocation records as named

data at the application layer. From OCSP, we learned that record

accessibility is an important factor that affects adoption. Therefore,

CertRevoke takes one step further by directly making revocation

record as named data at the network layer, thereby enabling in-

network caching and providing better data accessibility.

Ledger-based Revocation System: There are also works to design

the revocation system by leveraging ledger technologies such as

Certificate Transparency [17]. Enhanced Certificate Transparency [33]

proposes the use of a Merkle tree to store revoked certificates in

the Certificate Transparency log. Revocation Transparency [18] by

Google uses append-only log to store and verify certificate revoca-

tions. There are also proposals to use blockchain to build revoca-

tion logs [2, 28]. CertRevoke shares a similar approach of utilizing

immutable logs, but also enjoys its unique advantage of efficient

Time

/ndn/siteA/depart/cs

/ndn/siteA/depart/cs/author

Also invalid

Revoked

Figure 12: Example of Revocation Impact

distribution of all revocation records via NDN’s built-in multicast

delivery and in-network caching.

DNSSECandDANE: In today’s Internet infrastructure, DNSSEC [30–

32] is another solution to endorse name-key bindings between do-

main names and cryptographic keys. LeveragingDNSSEC, DANE [11]

can further specify a TLS certificate for a domain name in TLSA

Resouce Records (RR) published under the certificate owner’s do-

main name. In a recent presentation [13], Huston pointed out that,

as DNS uses relatively short TTLs to control the TLSA RR live-

ness, after cached results time out quickly, future requests for TLSA

records will be forwarded to the DNS server to handle, eliminat-

ing the needs of certificate revocation. Huston argued taht using

DANE to manage TLS certificates can achieve the same, or better

and simpler, effect in TLS key management, as compared to today’s

practices of either deploying revocation solutions, or otherwise

letting CAs issue short-lived X.509 certificates.

7 DISCUSSION

After presenting the lessons learned from related works in exist-

ing X.509 certificate revocation solutions, this section discusses

potential optimizations and remaining questions.

7.1 Revocation Impact

When an upstream, long-lived certificate is revoked, it invalidates

all downstream Data in the authentication chain, including the po-

tentially innocent packets. For example, as shown in Figure 12, Alice

discovers the certificate of “/ndn/siteA/depart/cs” is misused at
T1 and decides to revoke it. The downstream certificate “/ndn/siteA
/depart/cs/author” issued at T0, which is earlier than T1, might
be innocent. In order to reduce the revocation impact, one can add

an optional field “notBefore” in the revocation record to indicate
the start timestamp of invalidation. When the checker receives a

revocation record containing “notBefore”, it compares the certifi-
cate validity period with “notBefore” to determine whether it can
be exempted. Note that “notBefore” is based on the revoker’s best
estimate. Thereby the usage of “notBefore” objectively increases
the security risk and is not recommended.

7.2 Record Checking Latency

Checking revocation status for each certificate along the certificate

chain requires data consumers to take at least one RTT per certifi-

cate to retrieve revocation records. Although in-network caching

mitigates this issue, one can take the following approaches to fur-

ther reduce the record checking latency: (i) Sending the record

fetching Interests together with the Interest to fetch the upstream

certificate. (ii) Similar to OCSP Stapling, providing fresh Record

NACK packets in the certificate bundle [22]. (iii) Only performing

87

CertRevoke: A Certificate Revocation Framework for Named Data Networking ICN ’22, September 19–21, 2022, Osaka, Japan

revocation record checking for long-lived certificates (e.g., validity

period longer than a threshold).

Also note that, unlike OCSP, a CertRevoke revocation record

is not a certificate status, and the record name can be directly

converted from the corresponding certificate name. Therefore a

CertRevoke ledger does not need to manage the revocation status

for each certificate, but rather a key-value storage. This advantage

enables fast record look up and at the ledger side.

7.3 Certificate Revocation versus Key
Revocation

In Section 3.3, we mentioned that certificate revocation is to re-

move the relation between two entities. It is worth mentioning that

certificate revocation does not revoke the corresponding key pair.

Key revocation is a separate concept that directly invalidates the

key, i.e., removing the corresponding node in the authentication

graph. We show the difference between the certificate revocation

and key revocation in Figure 2. If each entity node in the authentica-

tion graph has only one key, revoking the key of entity “/ndn/siteA
/depart/cs” breaks all authentication chains from “/ndn/siteA” to
this entity by distrusting the revoked key itself. Of course an entity

may possess multiple keys to mitigate the impact of losing one key.

Nevertheless, we believe that key revocation is a separable research

problem in the trust management, and leave it for our future work.

7.4 Privacy Implications

The privacy of a certificate checker is an important concern in

certificate revocation designs. For example, The OCSP design lets

each client check with an OCSP server about whether a given

certificate has been revoked, and this OCSP request allows the OCSP

server to learn that a specific client is visiting the domain being

checked [16]. In contrast, because NDN Interest packets do not

carry identity information of consumers, the Interests for checking

revocation records do not disclose any checker information. If a

checking request does not hit a cache along the way before reaching

a ledger, the ledger can only learn the domain being checked, but

not the consumer who sent the record checking Interest.

7.5 Certificate Revocation versus Short
Certificate Lifetime

Under the assumption that there is a general need for NDN certifi-

cate revocation, this paper presented the design of CertRevoke and

some preliminary evaluation of its effectiveness and efficiency. The

need for certificate revocations becomes evident when the imple-

mentation of an NDN-based application directly puts the certificate

name into the KeyLocator field in its Data packets. Assuming that
the authentication chains of Data packets are defined by the applica-

tion’s trust scheme, using KeyLocator to carry the certificate name
is a simple, straightforward way to enforcing the authentication

chain starting from the trust anchor down to the Data packet’s

producer. At the same time, this implementation approach also ties

together the entire authentication chain, resulting in any change to

the trust anchor or other keys at higher level triggering a rippling

changes to all the certificates downstream from it. Reducing the

frequency of such undesired ripple effects requires using longer

certificates lifetime (see Section 3), which in turn increases the

chance that a certificate may need to be revoked before it expires.

As we described in Section 6, Huston suggested to do away

with certificate revocation entirely by assigning all certificates

with relatively short lifetime [13]. To avoid the ripple effect due

to higher level key changes, one can decouple each step in the

authentication chain by putting the signing key name, instead of

the certificate name, in Data’s KeyLocator field. To retrieve the
corresponding certificate, the consumer can construct a certificate

name of the signing key from the information provided by trust

schema, but without knowing the certificate’s version number. Thus

the consumer needs a means to retrieve the certificate of the latest

version quickly.

We note that the strict authentication chain should be explicitly

defined by the trust schema. and that carrying certificate name in

KeyLocator and the proposed solution in [13] represent different
design tradeoffs in authentication chain enforcement. The former

is a simple way to strictly enforce the chain, by paying the cost of

deploying certificate revocation solutions (such as the one designed

in this paper). The latter does away from certificate revocation but

requires an effective means to quickly retrieve the latest certificate

without knowing its version number.

7.6 Remaining Work

We have identified two pieces of remaining work to be done in

order to operate CertRevoke effectively and securely.

Realization of a Distributed Immutable Ledger. CertRevoke re-

quires a ledger design to provide immutable data storage. The de-

sign of this ledger can be tailored specifically to meet the needs

for certificate management requirements. The questions of how to

design a simple certificate management ledger and bootstrap it into

a given trust zone remain to be answered. We consider this as one

of our future works.

Effective Cache Poisoning Mitigation. Malicious attackers can

poison in-network caches by requesting a prepared fake revocation

record or revocation NACK from a colluding server. Such fake data

packets do not conform to the trust schema, therefore checkers

can easily detect and discard them. However the cache poisoning

essentially becomes a Denial-of-Service (DOS) attack, we need

effective means to either remove fake data packets from in-network

caches, and/or route checkers requests around poisoned caches.

Since cache poisoning is a well-recognized problem in NDN, many

efforts have been devoted to identifying effective solutions [23, 29,

36]. We hope to identify, and implement, an effective solution from

the existing literature.

8 CONCLUSION AND FUTUREWORK

NDN architecture secures communication by semantically named

and signed data packets, which requires an easy-to-use mechanism

to issue and revoke certificates. Certificate revocation is an essential

part of NDN certificate management, which has not attracted ade-

quate attention. This work articulated the necessity of certificate

revocation, and presented a usable certificate revocation framework

CertRevoke. CertRevoke leverages NDN’s naming convention, trust

88

ICN ’22, September 19–21, 2022, Osaka, Japan Tianyuan Yu, Hongcheng Xie, Siqi Liu, Xinyu Ma, Xiaohua Jia, and Lixia Zhang

schema, and in-network caching to systematically validate revo-

cations and enable efficient distribution of certificate revocation

records. Our evaluation shows CertRevoke significantly benefits

from in-network caching and provides acceptable latency for revo-

cation checking. We also identified the remaining work to be done,

and plan to deploy a fully operational certificate revocation system

in the NDN Testbed in a near future.

ACKNOWLEDGEMENT

We want to thank all the anonymous reviewers and the shepherd

Nikos Fotiou for their valuable comments. This work was supported

in part by National Science Foundation under awards 2019085 and

2126148, and Research Grants Council of Hong Kong under CityU

11202419.

REFERENCES
[1] Josh Aas, Richard Barnes, Benton Case, Zakir Durumeric, Peter Eckersley, Alan

Flores-López, J Alex Halderman, Jacob Hoffman-Andrews, James Kasten, Eric
Rescorla, et al. 2019. Let’s Encrypt: an automated certificate authority to encrypt
the entire web. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. 2473–2487.

[2] Yves Christian Elloh Adja, Badis Hammi, Ahmed Serhrouchni, and Sherali
Zeadally. 2021. A blockchain-based certificate revocation management and
status verification system. Computers & Security 104 (2021), 102209.

[3] Alex Afanasyev, Jeff Burke, Tamer Refaei, Lan Wang, Beichuan Zhang, and Lixia
Zhang. 2018. A brief introduction to Named Data Networking. In MILCOM
2018-2018 IEEE Military Communications Conference (MILCOM). IEEE, 1–6.

[4] Richard Barnes, Jacob Hoffman-Andrews, Daniel McCarney, and James Kasten.
2019. Automatic certificate management environment (acme). Technical Report.

[5] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. 1999. Web
caching and Zipf-like distributions: Evidence and implications. In IEEE INFO-
COM’99. Conference on Computer Communications. Proceedings. Eighteenth Annual
Joint Conference of the IEEE Computer and Communications Societies. The Future
is Now (Cat. No. 99CH36320), Vol. 1. IEEE, 126–134.

[6] D. Eastlake. 2011. Transport Layer Security (TLS) Extensions: Extension Definitions.
Technical Report. IETF Network Working Group, Fremont, CA, USA, 2021.

[7] EFF. 2022. Certbot. Online at https://certbot.eff.org/.
[8] Seyed Kaveh Fayazbakhsh, Yin Lin, Amin Tootoonchian, Ali Ghodsi, Teemu

Koponen, Bruce Maggs, KC Ng, Vyas Sekar, and Scott Shenker. 2013. Less pain,
most of the gain: Incrementally deployable icn. ACM SIGCOMM Computer
Communication Review 43, 4 (2013), 147–158.

[9] Mark Goodwin. 2015. Revoking Intermediate Certificates: Introducing OneCRL.
Online at https://blog.mozilla.org/security/2015/03/03/revoking-intermediate-
certificates-introducing-onecrl/.

[10] P. Hallam-Baker. 2015. X.509v3 Transport Layer Security (TLS) Feature Extension.
Technical Report. IETF Network Working Group, Fremont, CA, USA, 2021.

[11] Paul E. Hoffman and Jakob Schlyter. 2012. The DNS-Based Authentication of
Named Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA. RFC
6698. https://doi.org/10.17487/RFC6698

[12] Yung-Kao Hsu and Stephen Seymour. 1997. Intranet security framework based
on short-lived certificates. In Proceedings of IEEE 6th Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises. IEEE, 228–234.

[13] Geoff Huston. 2022. Revocation. Presentation at RIPE 84. https://www.potaroo.
net/presentations/2022-05-20-revocation-ripe84.pdf

[14] Paul C Kocher. 1998. On certificate revocation and validation. In International
conference on financial cryptography. Springer, 172–177.

[15] Nikita Korzhitskii and Niklas Carlsson. 2021. Revocation Statuses on the Internet.
In International Conference on Passive and Active Network Measurement. Springer,
175–191.

[16] James Larisch, David Choffnes, Dave Levin, Bruce M. Maggs, Alan Mislove, and
Christo Wilson. 2017. CRLite: A Scalable System for Pushing All TLS Revocations
to All Browsers. In 2017 IEEE Symposium on Security and Privacy (SP). 539–556.
https://doi.org/10.1109/SP.2017.17

[17] Ben Laurie. 2014. Certificate transparency: Public, verifiable, append-only logs.
Queue 12, 8 (2014), 10–19.

[18] Ben Laurie and Emilia Kasper. 2012. Revocation transparency. Google Research,
September 33 (2012).

[19] B. Laurie, E. Messeri, and R. Stradling. 2021. RFC 9162-Certificate Transparency
Version 2.0. Technical Report. IETF Network Working Group, Fremont, CA, USA,
2021.

[20] Yanbiao Li, Zhiyi Zhang, Xin Wang, Edward Lu, Dafang Zhang, and Lixia Zhang.
2019. A secure sign-on protocol for smart homes over named data networking.
IEEE Communications Magazine 57, 7 (2019), 62–68.

[21] Siqi Liu, Philipp Moll, and Lixia Zhang. 2021. Mnemosyne: an immutable dis-
tributed logging framework over named data networking. In Proceedings of the
8th ACM Conference on Information-Centric Networking. 130–132.

[22] Manika Mittal, Alex Afanasyev, and Lixia Zhang. 2017. NDN Certificate Bundle
(Version 0.1). University of California, Los Angeles, Tech. Rep. NDN-0054 (2017).

[23] Tan Nguyen, Xavier Marchal, Guillaume Doyen, Thibault Cholez, and Rémi
Cogranne. 2017. Content poisoning in named data networking: Comprehensive
characterization of real deployment. In 2017 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM). IEEE, 72–80.

[24] Kathleen Nichols. 2021. Trust Schemas and ICN: Key to Secure Home IoT (ICN
’21). Association for Computing Machinery, New York, NY, USA, 12 pages.

[25] Kobbi Nissim andMoni Naor. 1998. Certificate Revocation and Certificate Update..
In USENIX Security Symposium. Citeseer.

[26] Davide Pesavento, Junxiao Shi, KerryMcKay, and Lotfi Benmohamed. 2022. PION:
Password-based IoT Onboarding Over Named Data Networking. In 2022 IEEE
International Conference on Communications. IEEE.

[27] The Chromium Projects. 2022. CRLSets. Online at
https://www.chromium.org/Home/chromium-security/crlsets/.

[28] Bo Qin, Jikun Huang, Qin Wang, Xizhao Luo, Bin Liang, and Wenchang Shi.
2020. Cecoin: A decentralized PKI mitigating MitM attacks. Future Generation
Computer Systems 107 (2020), 805–815.

[29] Zeinab Rezaeifar, Jian Wang, and Heekuck Oh. 2018. A trust-based method for
mitigating cache poisoning in name data networking. Journal of Network and
Computer Applications 104 (2018), 117–132.

[30] Scott Rose, Matt Larson, Dan Massey, Rob Austein, and Roy Arends. 2005. DNS
Security Introduction and Requirements. RFC 4033. https://doi.org/10.17487/
RFC4033

[31] Scott Rose,Matt Larson, DanMassey, RobAustein, and RoyArends. 2005. Protocol
Modifications for the DNS Security Extensions. RFC 4035. https://doi.org/10.
17487/RFC4035

[32] Scott Rose, Matt Larson, Dan Massey, Rob Austein, and Roy Arends. 2005. Re-
source Records for the DNS Security Extensions. RFC 4034. https://doi.org/10.
17487/RFC4034

[33] Mark D. Ryan. 2014. Enhanced Certificate Transparency and End-to-End En-
crypted Mail. In NDSS Symposium 2014.

[34] S Santesson, S Farrell, S Boeyen, R Housley, W Polk, and D Cooper. 2008. RFC
5280-Internet X. 509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile. Technical Report. IETF Network Working Group, Fremont, CA,
USA, 2008.

[35] S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. 2013.
X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP.
Technical Report. IETF Network Working Group, Fremont, CA, USA, 2021.

[36] Divya Saxena, Vaskar Raychoudhury, Neeraj Suri, Christian Becker, and Jiannong
Cao. 2016. Named data networking: a survey. Computer Science Review 19 (2016),
15–55.

[37] Thomas C Schmidt, Sebastian Wölke, Nora Berg, and Matthias Wählisch. 2016.
Let’s collect names: How PANINI limits FIB tables in name based routing. In 2016
IFIP Networking Conference (IFIP Networking) and Workshops. IEEE, 458–466.

[38] Trevor Smith, Luke Dickinson, and Kent Seamons. 2020. Let’s revoke: Scalable
global certificate revocation. In Network and Distributed Systems Security (NDSS)
Symposium 2020.

[39] The NDN Team. 2022. NDN Testbed. Online at https://named-data.net/ndn-
testbed/.

[40] The NDN Team. 2022. Prefix Announcement Protocol. Online at
https://redmine.named-data.net/projects/nfd/wiki/PrefixAnnouncement.

[41] Emin Topalovic, Brennan Saeta, Lin-Shung Huang, Collin Jackson, and Dan
Boneh. 2012. Towards short-lived certificates. Web.

[42] Tianyuan Yu, Xinyu Ma, Hongcheng Xie, Yekta Kocaoğullar, and Lixia Zhang.
[n.d.]. Intertrust: Establishing Inter-Zone Trust Relationships. In 9th ACM Con-
ference on Information-Centric Networking (ICN 2022). ACM.

[43] Tianyuan Yu, Philipp Moll, Zhiyi Zhang, Alexander Afanasyev, and Lixia Zhang.
[n.d.]. Enabling Plug-n-Play in Named Data Networking. In MILCOM 2021-2021
IEEE Military Communications Conference (MILCOM). IEEE, 562–569.

[44] Yingdi Yu, Alexander Afanasyev, David Clark, KC Claffy, Van Jacobson, and Lixia
Zhang. 2015. Schematizing trust in named data networking. In proceedings of the
2nd ACM Conference on Information-Centric Networking. 177–186.

[45] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, KCClaffy, Patrick
Crowley, Christos Papadopoulos, Lan Wang, and Beichuan Zhang. 2014. Named
data networking. ACM SIGCOMM Computer Communication Review 44, 3 (2014),
66–73.

[46] Zhiyi Zhang, Alexander Afanasyev, and Lixia Zhang. 2017. Ndncert: universal
usable trust management for ndn. In Proceedings of the 4th ACM Conference on
Information-Centric Networking. 178–179.

[47] Zhiyi Zhang, Vishrant Vasavada, Xinyu Ma, and Lixia Zhang. 2019. Dledger:
An iot-friendly private distributed ledger system based on dag. arXiv preprint

89

CertRevoke: A Certificate Revocation Framework for Named Data Networking ICN ’22, September 19–21, 2022, Osaka, Japan

arXiv:1902.09031 (2019).
[48] Zhiyi Zhang, Su YongWong, Junxiao Shi, Davide Pesavento, Alexander Afanasyev,

and Lixia Zhang. 2020. On Certificate Management in Named Data Networking.
arXiv preprint arXiv:2009.09339 (2020).

[49] Zhiyi Zhang, Yingdi Yu, Alexander Afanasyev, Jeff Burke, and Lixia Zhang. 2017.
NAC: Name-based access control in named data networking. In Proceedings of
the 4th ACM Conference on Information-Centric Networking. 186–187.

90

