
Kua: A Distributed Object Store over Named Data Networking
Varun Patil

varunpatil@cs.ucla.edu
UCLA

Los Angeles, USA

Hemil Desai
hemil10@cs.ucla.edu

UCLA
Los Angeles, USA

Lixia Zhang
lixia@cs.ucla.edu

UCLA
Los Angeles, USA

ABSTRACT
Applications such as machine learning training systems or log col-
lection generate and consume large amounts of data. Object storage
systems provide a simple abstraction to store and access such large
datasets. These datasets are typically larger than the capacities of
individual storage servers, and require fault tolerance through repli-
cation. In this paper, we present Kua, a distributed object storage
system built over Named Data Networking (NDN). The data-centric
nature of NDN helps Kua maintain a simple design while catering to
requirements of storing large objects, providing fault tolerance, low
latency and strong consistency guarantees, along with data-centric
security. Our prototype Kua implementation provides easy-to-use
primitives to let applications store and access data securely, and our
initial evaluation suggests that Kua can leverage NDN’s capabilities
of multicast data delivery and in-network caching to achieve higher
efficiency than existing object storage systems.

CCS CONCEPTS
• Networks → Cloud computing; • Information systems →
Distributed storage; Storage replication.

KEYWORDS
Named Data Networking, Object Store, Distributed Storage

ACM Reference Format:
Varun Patil, Hemil Desai, and Lixia Zhang. 2022. Kua: A Distributed Object
Store over Named Data Networking. In 9th ACM Conference on Information-
Centric Networking (ICN ’22), September 19–21, 2022, Osaka, Japan. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3517212.3558083

1 INTRODUCTION
Data is ubiquitous in software systems, and the size of this data has
grown exponentially over the last two decades, so have the systems
that store and process this data. Initial distributed storage systems
included distributed file systems, such as the Hadoop File System
(HDFS) [19] and Google File System (GFS) [5], scaled storage to
petabytes of data, yet were restricted to a single tenant. With the
advent of the cloud platform, new storage systems such as the
Amazon Simple Storage Service (S3) [7] emerged, which provided
the same scale, fault-tolerance and reliability in a multi-tenant
architecture. Similar systems are now offered across different cloud
platforms such as Google Cloud Storage, Azure Storage, etc.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICN ’22, September 19–21, 2022, Osaka, Japan
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9257-0/22/09.
https://doi.org/10.1145/3517212.3558083

Amazon S3 and similar systems provide data storage services
to users as an object store, where data is stored as objects refer-
enced by a unique key. These objects can be very large in size, and
data can be written to and read from objects using simple primi-
tives provided by the store. Object storage services have grown in
popularity over the past decade, and have become data storage of
choice for a variety of workloads, including datasets for machine
learning, media items, unstructured data lakes, large file caches, etc.
Object storage systems can range from on-disk storage like S3 that
persist objects to disk, to in-memory systems like Plasma [13] and
Redis [3] for high performance applications. Some of these systems,
e.g. Plasma, are part of a bigger distributed system like Ray [13],
showcasing the importance of object storage in software systems
we use today.

To meet the scalability requirements of today’s applications, data
object stores need to be implemented as distributed systems running
on multiple storage servers, or nodes. A set of nodes, or a cluster, is
typically controlled by a single administrative entity, and can have
hundreds of nodes. Users of the object store communicate with
nodes in the cluster for data storage and retrieval, and the nodes
also communicate internally for bookkeeping and data replication.
As a result, efficient communication, both internally and with the
users of the system, is the key for a fast and efficient distributed
storage system.

Today, the majority of these systems communicate using the
TCP/IP [15] protocol stack. Unfortunately, IP’s point-to-point data-
gram delivery service is incongruent with the data-centric nature
of object storage services. Since IP identifies end hosts and appli-
cations identify chunks of data, IP-based storage systems need to
consistently map application data identifiers to the locations of
the data, i.e. the IP addresses of the storage nodes. Further, several
of these systems require a large number of TCP connections, in
the worst case 𝑁 × 𝑁 connections with 𝑁 being the number of
storage nodes (such as in the case of Redis Cluster [1], a distributed
implementation of Redis). This represents a scaling challenge. IP
multicast, a key enabler for efficient data replication, is not widely
deployed in IP networks, and lacks performant transport protocols
and usable security implementations.

In this paper, we present the design of a distributed immutable
object store, Kua, that uses Named Data Networking [2] as its
network layer. NDN’s data-centric nature enables multicast data
delivery and in-network caching, providing promise of superior
performance in distributed object storage systems as compared to
existing designs over IP. We utilize the basic concepts from exist-
ing distributed database and storage systems, such as consistent
hashing and chain replication, and apply them in the context of an
information centric network to realise the design of Kua.

One distinguishing factor of Kua from existing object stores built
over TCP/IP is the simplicity of the design. NDN’s data-centric

56

https://doi.org/10.1145/3517212.3558083
https://doi.org/10.1145/3517212.3558083

ICN ’22, September 19–21, 2022, Osaka, Japan Varun Patil, Hemil Desai, and Lixia Zhang

architecture allows clients to fetch data using semantically mean-
ingful identifiers directly at the network layer, without a layer of
indirection to locate the data first. Kua also provides strong consis-
tency guarantees without complex distributed consensus or locking
mechanisms. We also discuss how Kua can utilize NDN’s security
model to provide strong guarantees about the authenticity of data
along with confidentiality and access control, without relying on
trusted storage servers and secured channels through the use of
Transport Layer Security (TLS).

The rest of the paper is organized in the following manner – in
§2, we provide some background on networking in object stores
and NDN. In §3, we discuss the design goals and applicability of
Kua, along with an overview of the design. We then discuss the
design in detail in §4, the results of the evaluations in §5, followed
by further discussion in §6, and the conclusion.

2 BACKGROUND
In this section, we provide the requisite background of object stores
and a perspective from the network layer.

2.1 Object Storage
Early research on distributed storage led to the development of
network attached disks [6] as an alternative to distributed filesys-
tems. The concept of moving the functions of storage, namely reads
and writes, and more complex functions such as namespace ma-
nipulation into separate layers further evolved into object storage
systems. Separating the filesystem functions from the underlying
storage offers both better performance and scalability compared to
distributed filesystems, such as the Network File System (NFS) [16]
and Andrew File System (AFS) [8] protocols.

Object stores represent storage as a collection of binary blobs
and associated metadata, with the storage namespace defined by
the storage system rather than the application. Applications us-
ing object stores perform operations such as creating new objects,
writing to and reading from objects [4]. Some of the key aspects
in which objects in an object stores differ from files in a filesystem
are enlisted below.
(1) Flat Identifiers Objects are not structured hierarchically in

directories1. Instead, the object store assigns a unique identi-
fier to a newly created object, which the application can then
use to perform further operations on the object. Modern object
stores typically provide APIs to store and retrieve objects us-
ing application-defined keys, similar to a key-value database.
As a result of using flat identifiers, the application must keep
track of what data is stored in which object. In file systems, the
equivalent function is achieved through the use of semantically
meaningful directory structures, which in turn is enabled by the
storage module itself that may be part of the operating system
or the distributed filesystem.

(2) Immutability Once an object is created and written, the
contents of the object cannot be altered. A new object must be
created if the data needs to be updated2. In filesystems, on the

1Object stores may provide filesystem-like overlays to help applications track objects
using familiar development primitives. Internally, objects are still referenced and
manipulated using flat identifiers.
2Object stores may provide APIs for overwriting entire objects keeping the same
identifier; such changes are tracked internally through versioning.

other hand, the user may make a partial update to any part of
the file any number of times. A result of this difference is that
objects, unlike files, do not require read and write locks during
operations.

(3) Simplified Security In object stores, operations can be se-
cured easily by enforcing access control to individual objects
through the use of application credentials, and individual ob-
jects can also be independently encrypted using different keys
for security at rest. In filesystems, the complexity of hierarchical
access control can increase significantly when multiple users
belonging to different semantic groups need to access the same
piece of data. Data encryption is usually performed at a block
or disk level, encrypting all files with the same key.

Popularity of object stores has increased massively over time, and
are used for a variety of workloads today. Requirements from ob-
ject stores ranges from the ability to store very large objects for
long term to achieving ultra-low latency through the use of in-
memory storage, and the ability to run on heterogeneous hardware
with varying storage capacities. As a result of these requirements,
most object stores are distributed systems, which makes efficient
communication a key component of their design.

2.2 Networking in Distributed Storage
Much of existing research geared towards improving storage sys-
tems places focus on local optimizations, such as in-memory caching
of frequently accessed objects, speculative access [25], or faster
reads using techniques such as RDMA [10]. Some of these opti-
mizations may further increase the cost of communication, both in
terms of network overhead and complexity of the system. This work
takes a different approach towards improving distributed storage,
by revisiting communication in these systems.

In a distributed data store, a large amount of overhead is in-
curred due to bookkeeping and coordination between the nodes. In
context of object stores, since applications only understand object
identifiers and the network only understands IP addresses, stores
need functions to keep track of which object is stored where. Main-
taining a consistent view of such information requires coordination
between the nodes, contributing significantly to the increasing
complexity of data storage systems.

The root cause of this problem is the host-centric nature of IP.
The knowledge of the exact location where the data is stored is
largely irrelevant to users of a data-centric system such as an object
store. However, users are forced to locate the data before they
can fetch it, since the network layer only provides point-to-point
communication. The overhead of communication is also aggravated
by the lack of multicast in TCP/IP, over which existing systems
are built. Several functions of data stores such as replication and
state change notifications require the same data to be delivered
to multiple nodes. This is generally achieved by unicasting the
information to each node, typically through a central master node or
one or more message brokers. Further, the point-to-point nature of
communication also entails that requests for accessing data stored
in a distributed storage must first pass through multiple gateways,
such as an authentication layer or one or more load balancers.

NDN, as described in the next section, provides a data-centric
network layer in lieu of IP’s host-centric model. In NDN, Data is

57

Kua: A Distributed Object Store over Named Data Networking ICN ’22, September 19–21, 2022, Osaka, Japan

identified, requested and secured using semantically meaningful
application layer identifiers at the network layer. As a result, ap-
plications running over NDN do not need to know what data is
stored where, as long as they can identify what data they need.
This property of NDN opens up possibilities for designing simpler
distributed storage systems over NDN.

2.3 Named Data Networking
In the NDN architecture [2], individual data packets are identified
using semantically meaningful names. Consumers that desire a
certain Data packet send an Interest packet with the name of the
data, and the network attempts to find this data and return it to the
consumer. Thus, NDN uses application layer identifiers of data, i.e.
the name, as opposed to using separate addresses at the network
layer like IP.

A key difference between NDN and IP is the absence of the
address of destination in a data request. Because an NDN network
directly uses application derived data identifiers in network routing,
a data store design over NDN does not need to provide clients
with a mapping between data identifiers and addresses of storage
nodes. NDN also provides a mechanism to forward requests of
data in the right direction even when data name are not used in
routing and forwarding. It does so by including in the Interest
packet a Forwarding Hint which contains a name that is in routers’
forwarding table. Consumers can include in an Interest the name
of the requested data, together with a Forwarding Hint that directs
the Interest towards (one of) the node with the requested data.

Fetching data by name naturally results inmulticast data delivery,
which is a key requirement for efficient data replication. In systems
over IP, copies of the same data must be unicast to each replica,
increasing unnecessary network traffic. NDN enables us to avoid
this problem by supporting both synchronous multicast delivery
and asynchronous delivery through in-network caching. Multicast
also helps alleviate server load when a large number of clients
request the same piece of data from the storage.

NDN also provides a data-centric security model that simplifies
security and access control. Every Data packet in NDN is signed by
the producer of the data. As a result, the contents of each packet
are cryptographically bound to the name and the producer. Such a
model makes it straightforward to implement verification of data
at the consumer using trust schemas, regardless of whether the
data was obtained from the producer, a data store or network cache.
Confidentiality and access control is enabled by Name-based Access
Control (NAC) [26], which works by encrypting content at the time
of production and automating the distribution of keys.

With this background, we design a new distributed object store
that can leverage NDN’s capabilities, leading to improved perfor-
mance and reduced system complexity.

3 OVERVIEW
In this section, we outline the intended usage, assumptions and
design goals for building Kua, along with an overview of the design.

Storage Layer

Gateway Layer

Designs over TCP/IP Kua Design

Security Layer

Applications / Clients

Backend API

Storage Layer

Figure 1: Design simplification with NDN3

3.1 Applicability & Assumptions
While large corporations running data centers may have the tech-
nical expertise required to manage complex systems, smaller or-
ganizations typically do not. Enterprises such as hospitals require
solutions for reliable on-premise data storage, with properties such
as fine-grained access control, while having low maintenance over-
head. We target the design of Kua towards such enterprises with
data storage requirements and security considerations. At the same
time, we attempt to keep the design equally applicable for other
scenarios, such as the storage and processing of large amounts of
data in datacenters, especially with further development of high
performance NDN forwarders [17]. We also note that the store may
run in an NDN overlay on an IP network, using TCP or UDP as the
link layer of NDN.

Since the target usage is inside a single enterprise, we assume
that all storage nodes in the enterprise are controlled by a single
administrative entity. This is a key simplifying assumption in the
design, since it also entails that individual nodes have no preference
on what pieces of data they store. Note that this does not make
assumptions in regards to heterogeneity of hardware, storage ca-
pacities of individual nodes or network topology. We also assume
the usage of an existing security solution, entailing that every node
in the storage system as well as all producers and consumers of data
are configured with appropriate certificates, and can authenticate
each other.

3.2 Design Goals
In order to meet the requirements described above, we identify the
following design goals.
Simple design Our foremost goal of building a new object store
is to simplify the designs of both the store itself and the applications
using it. A simple design can help reduce network and processing
overhead, while making maintenance easier for operators running
the system at the same time. Reducing application complexity also
makes finding and fixing bugs easier, thus lowering development
related costs.
Automated operation Similar to plug-and-play, easy and auto-
mated operation is an important goal of the design of a distributed
storage system. The store should be able to function with mini-
mal configuration even if used on heterogeneous hardware with
varying processing, storage and network capacities across nodes.
3This simplified view only showcases how NDN applications do not require several
access gateways for storage, and does not imply e.g. the absence of a security layer.

58

ICN ’22, September 19–21, 2022, Osaka, Japan Varun Patil, Hemil Desai, and Lixia Zhang

The system should also be fault tolerant and continue to function
without human intervention in the event of failures.
Ease of use To reduce application complexity, we recognize the
requirement of simple APIs as a design goal. Applications should not
need to perform operations such as opening connections, obtaining
locks and performing extensive bookkeeping. Since the store may
be used for mission-critical data, we recognize providing strong
consistency as a design goal to simplify application logic. Any read
operations that take place after a successful write must always
succeed and return the correct data.
Security Security is generally considered as an afterthought
in data storage systems. We aim to design Kua to be secure from
ground up, instead of adding security as an overlay over data stor-
age. Using a security framework, applications should be able to
identify and verify the producer of each piece of data, providing
strong authenticity guarantees. The security framework should
also provide means for access control and confidentiality through
encryption for sensitive data.

3.3 Design Overview
To realize the goals described in the previous section, we design
Kua as a distributed immutable object store running over NDN. We
identify three questions for a data store design, and answer these
with the Kua design.
What to store? We define the storage unit or Object as the
smallest Application Data Unit that has semantic meaning to an
application. As a result, the application can assign a semantically
meaningful identifier to the object. Applications use this identifier
directly to store and access data from a Kua cluster. At a lower level,
applications insert objects into the store as a collection of NDN
Data packets, which are semantically identified across layers using
this identifier as the name. Larger objects first need to be segmented
into multiple packets, with the name of each packet including a
segment number. These packets, and hence the entire object, can
then be fetched later by using the same identifier, i.e. by sending an
Interest for the object name. As every NDN Data packet must be
signed by the producer, this process preserves the cryptographic
binding of the name and contents, since the packets include the
producers’ signatures. The identification and storage of objects in
Kua is described in further detail in §4.1.
Where to store? In a distributed store, we need a mechanism to
determine which piece of data is stored at which node. To realize
this, we use a hash function to divide the namespace of data into a
predefined number of subsets called buckets, and assign each storage
node one or more buckets to store. To perform this assignment, we
design the Auction protocol, as described in §4.2.
How to locate? When applications desire to access data in exist-
ing systems that run over TCP/IP, they need to first locate the data
in order to establish a TCP connection to request the data. In the
Kua design, data is located simply by computing which bucket the
data belongs to; a trivial task. The storage nodes in a Kua cluster
register a route for each bucket that they are assigned. As a result,
an NDN network can forward Interests for the data to the correct
nodes using a Forwarding Hint containing the bucket identifier, as
described in §4.3.

Node 1

#1 #2 #3
Buckets

Data Store

Registered Prefixes

Auction Module

Storage Module

Bucket #3
/app/alice/data1
/app/bob/data5

/node1/
/node2/
/node4/

518e6q84

/kua/1
/kua/2
/kua/3

/kua/sync

/node1/1
/node1/2
/node1/3

SVS

/kua/sync
SVS Auction

Processor
Health

Checker

Heartbeat

Bidder

Heartbeat

Bidder

Heartbeat

Bidder

Heartbeat

Bidder

Node 3

#1 #2 #4
Buckets

Registered Prefixes

Auction Module

Storage Module

Auction Master Module

/kua/1
/kua/2
/kua/4

/kua/sync

/node3/1
/node3/2
/node3/4

SVS

Node 4

#2 #3 #4
Buckets

Registered Prefixes

Auction Module

Storage Module

/kua/2
/kua/3
/kua/4

/kua/sync

/node4/2
/node4/3
/node4/4

SVS

Node 2

#3 #4 #1
Buckets

Registered Prefixes

Auction Module

Storage Module

/kua/3
/kua/4
/kua/1

/kua/sync

/node2/3
/node2/4
/node2/1

SVS

Hash

mod 4

Replica List

Figure 2: Kua Design Overview

Thus, the three important components of Kua’s design are the
storage unit and identifier, the distribution of data in the store,
and the storage and access interfaces. We describe each of these
components in detail in the next section.

4 KUA DESIGN
In this section, we discuss the design of Kua in further detail. We
elaborate on the naming system used by objects in a Kua store, and
its advantages, specify the distribution and replication of data inside
Kua through the Auction protocol in further detail, followed by the
object storage API and functionality, and some optimizations.

4.1 Object Identification & Storage
Since NDN uses application layer names at the network layer, in
building Kua over NDN, we apply the same paradigm to storage,
where the identifier of the object is a meaningful description of
the data. Consequently, the same semantic identifier is used across

59

Kua: A Distributed Object Store over Named Data Networking ICN ’22, September 19–21, 2022, Osaka, Japan

layers, i.e. at the network layer and for addressing storage. As a
result, an NDN Data packet is the smallest addressable unit of data
stored in a Kua cluster. To realize this design, Kua directly stores the
original data packets produced by a client application. Since packets
in NDN are immutable, Kua is naturally an immutable object store,
and changes to objects must be tracked by versioning the object
names. Applications must also ensure that identifiers for objects
are not reused; such a requirement is considered reasonable similar
to existing key-value databases.

Being able to store and address data directly has several key
advantages. Since the names of objects (and thus packets) already
have semantic meaning to the application, developers do not need
to worry about having a separate namespace for object identifiers.
Since each Data packet is signed by the producer, storing the packet
also allows consumers to directly verify the signatures of the data.
This allows applications using Kua to directly utilize existing NDN
security solutions, as discussed further in §6.1. Since queries are
made directly for semantic data names, the system can also fully
leverage NDN’s in-network caching for frequently accessed data.

It must be noted here that while the network MTU limits the
size of the addressable storage unit, i.e. an NDN Data packet, this
is expected to have minimal impact on performance due to the
optimizations described in §4.4. This includes the use of signing
manifests to reduce the overhead of storing public key signatures
for each packet, by only signing a list of digests of multiple packets.

For effective distribution and replication of the stored data, Kua
needs amechanism to determinewhich node should store what data.
We describe the Auction protocol next, which enables allocation of
subsets of data to storage nodes in a distributed manner.

4.2 Auction Protocol
In a distributed storage system, it is essential to determine which
data is stored and replicated on which machine. While a real system
would require more guarantees, such as data not being replicated
on servers inside the same rack, our initial design simply attempts
to distribute the data of an object store efficiently to nodes in the
system. In several storage systems such as HDFS, storage nodes
are assigned data for storage by a central master controller. The
master can collect information, such as the available storage space
from all nodes and make storage decisions with a view of the entire
system. However, such a system has the obvious disadvantage
of having a single point of failure, or needs to achieve locking
and consistency through complex mechanisms between multiple
master nodes. In contrast, the protocol presented next works in a
decentralized fashion, where storage nodes express willingness to
store data, and the data is assigned to the most willing nodes.

Kua divides the namespace of all addressable units in the store
equally into a fixed number of partitions using consistent hashing.
This can be achieved simply by hashing the identifier of the address-
able unit, i.e. name of the data packet, and performing a modulo
operation. Such a partition is referred to as a storage bucket. Since
the size of each addressable unit, i.e. the packet, can be assumed
to be relatively small, consistent hashing ensures that resources
at all nodes are utilized nearly equally. Existing systems such as
Cassandra [9] employ similar techniques, which have been scaled
to thousands of nodes.

Master Node 1 Node 2

AUCTION

AUCTION_END

BID

WIN_ACK

WIN
{

{

Collect
All Bids

Collect
All ACKs

Figure 3: Kua Auction Protocol

Kua distributes data among storage nodes at the granularity of
buckets. At a high level, each bucket is auctioned by an elected
auction master node periodically. Each storage node then places a
bid for the particular bucket by considering only the local conditions
at the node, such as available resources and the amount of data
the node is currently storing for the auctioned bucket. The master
collects all such bids and announces the winners of the bucket,
which are the nodes corresponding to the top 𝑛 bids, where 𝑛 is the
replication factor. Object operations for objects in the auctioned
bucket are then routed to the winning nodes. The master repeats
this process for each bucket, thus auctioning the entire namespace.

The auction protocol is illustrated in Fig. 3, and is executed over
the distributed pub/sub framework, SVS-PS4 [12]. The auction mas-
ter first announces a new auction for a bucket using the AUCTION
message. All storage nodes in the cluster subscribe to messages
from the master node, and receive this announcement. The nodes
then reply to the auction message with a BID message, containing
the auction identifier and the bid amount. The master collects all
such bids and announces each winner using the WIN message. The
winners acknowledge the win using a WIN_ACK, following which
the master ends the auction using an AUCTION_END message. The
AUCTION_END message also carries a list of winners, so that the
storage nodes can keep track of the replicas of a bucket.

The auction process brings up two important requirements that
must be addressed. First, storage nodes must decide how much to
bid for an auctioned bucket. To determine the amount to bid, a node
only considers its local state and resource availability. The final bid
amount is engineered to be inversely proportional to the number
of buckets currently stored by the node, and directly proportional
to the amount of data that the node stores for the bucket being
currently auctioned, and the resources available on the node. A
random component is used for tie-breaking. The amount to bid for
a certain bucket 𝑏 can be calculated as,

Bid(𝑏) = 𝛼

|𝐶 | + 𝛽 · 𝐻𝑏 + _ · 𝑆 (𝑏) + 𝑟 (1)

𝑆 (𝑏) = 𝐹 −𝑊avg (1 − 𝐻𝑏) −
∑︁
𝑖∈𝐼

𝑊 (𝑖) + 𝐻𝑏

∑︁
𝑜∈𝑂

𝑊 (𝑜) (2)

4Since SVS-PS provides reliable delivery of all publications, factors such as latency
and/or losses do not affect the auction process significantly.

60

ICN ’22, September 19–21, 2022, Osaka, Japan Varun Patil, Hemil Desai, and Lixia Zhang

𝐶 = set of buckets currently stored
𝐼 = set of incoming buckets
𝑂 = set of outgoing buckets

𝐻𝑏 =

{
1 𝑏 ∈ 𝐶

0 otherwise
𝑊 (𝑏) = storage consumed by bucket 𝑏
𝑊avg = average size of stored bucket
𝐹 = available free storage space
𝑟 = small random number
𝛼, 𝛽, _ = constants

Such a mechanism ensures stability in steady state and recovery
from faults and overloads. In steady state, since the existing replicas
have the largest amount of data for an auctioned bucket, they would
always win the auction for that bucket. On failure of a node, buckets
at the node would be transferred to other nodes most willing to
accept new data, e.g. by virtue of having the least number of buckets
stored, or the highest amount of available free space. In case a node
is overloaded, it may also choose to lower its bids for some buckets
it currently stores, thus leading to another node winning the bucket
in the next auction5. This would initiate a transfer of the bucket
out of the overloaded node, providing automatic load balancing.
Further discussion on the behavior of the Auction process during
failure recovery can be found in §6.3. We note here that the precise
engineering of the bidding function is critical to the performance
of the Auction protocol.

The second and simpler requirement is that the master must
know the number of expected bids before declaring the results of
an auction. Kua employs a periodic heartbeat that is multicast from
each node to all the other nodes in the cluster for discovery and
health monitoring. This heartbeat also enables the master to deter-
mine the number of bids it should expect. Since SVS-PS provides
reliable and fast delivery of messages, the auction can be expected
to have minimal delay and overhead. However, if all bids are not
received within a timeout period, the master may cancel an auction
and attempt to detect any potential failures.

It must be noted here that while the Auction protocol does em-
ploy a master node for collecting bids and announcing results, the
master node is elected only periodically and ephemerally. In the
event of failure of the master node, the system continues to func-
tion as normal, since the only state carried at the master is that
of the currently ongoing auction. In this event, the Auction can
be triggered again by re-electing6 the master node as long as the
rest of the nodes can achieve quorum. Since the master does not
perform any other operations and maintains no state, it does not
become a single point of failure in the system.

With the Auction protocol, the storage nodes in a Kua cluster
can reach consensus about the buckets they must store, along with
the locations of other replicas of the buckets. Next, we describe the
protocol used by applications to store objects inside these buckets.

4.3 Object Protocol
Kua implements a very simple interface for the basic functions
of an object store. Since NDN does not name end hosts for data

5All buckets are auctioned periodically by the master or on request. Steady state
stability of the bidding function ensures the same nodes win a bucket at each auction.
6An election is triggered when no heartbeat is detected from the master.

Client

Node 2

Node 3

Node 4

Node 5

Node 1

Node 6

NDN

1

1

2
2

3

3

44
5

5

INSERT
INSERT / NO_REPLICATE

ACK to Node 1
Data Interest / Reply

ACK to Client

Figure 4: Object Insertion

transfers, Kua also adopts a data-centric design for the storage API.
This enables minimal configuration and setup at the client before
accessing a Kua cluster, since the client does not need to know the
IP address of a master or each node of the cluster for storing and
accessing data.

On winning a bucket, a Kua storage node registers two prefixes
with the network as soon as the AUCTION_END message is received.
The first prefix identifies the cluster and the bucket identifier, while
the second identifies the individual node and the bucket identifier.
In subsequent examples, we assume that the cluster runs under
the prefix /<kua-prefix>/ which is common to all nodes, and a
representative node uses the prefix /<node-prefix>/, which is
unique to each node in the cluster. Thus, on winning an auction for
bucket number <bucket-id>, the node registers the prefixes:

(1) /<kua-prefix>/<bucket-id>
(2) /<node-prefix>/<bucket-id>

The second prefix is only used for internal Kua communication,
and is not disclosed to clients using the object store, which use only
the cluster prefix for all commands.
Object Insertion When a client wants to insert an object into
the store, it sends one INSERT Interest for each packet in the object.
An insertion Interest contains the name of a single NDN Data
packet. The store fetches this Data from the client and returns
an acknowledgement on successful insertion. Since the hashing
algorithm and number of buckets can be pre-configured into the
client, the client can calculate the target bucket for a particular
packet name. The identifier of the bucket, prefixed by the cluster
prefix for forwarding and suffixed by the name of the Data packet
to be stored, form the insertion Interest. All INSERT Interests are
signed by the client for authentication [14]. As a result, the signed
portion of the name of the Interest looks like:

/<kua-prefix>/<bucket-id>/INSERT/<data-name>
As described earlier, each Kua node only registers routing prefixes
for buckets they are actively storing. As a result, when the client
sends such an insertion Interest to the network, NDN forwards
it to the nearest storage node in the cluster which is a replica
for the corresponding bucket. On receiving this Interest, the node
duplicates the request and sends it to all replicas for the bucket
including itself. This interest is prefixed with <node-prefix>, and
is thus forwarded to only a particular replica. A NO_REPLICATE flag
in the application parameters of the Interest is used to prevent loops
of chain replication.

61

Kua: A Distributed Object Store over Named Data Networking ICN ’22, September 19–21, 2022, Osaka, Japan

Client

Node 2

Node 3

Node 4

Node 5

Node 1

Node 6

NDN

1

1

Data Interest
FETCH ForwardingHint

2

2

Data Reply

Figure 5: Object Fetching

When a node receives an INSERT with the NO_REPLICATE flag
set, it fetches the <data-name> packet directly from the client and
stores it in the storage backend. Since all replicas fetch the object
together, only one request is forwarded to the client due to Interest
aggregation and in-network caching. On successful completion,
the storage node replies to the insertion Interest with a positive
acknowledgement, indicating the object was inserted successfully.
The node receiving the original INSERT from the client tracks ac-
knowledgements from all replicas. When all acknowledgements
have been received, it replies to the Interest sent by the client with
an acknowledgement, completing the insertion process. Thus, an
acknowledgement received by the client guarantees that the object
is inserted and replicated in the system, thus providing strong con-
sistency. If a replica does not respond to an insertion Interest before
the Interest timeout, the client’s Interest is also allowed to timeout,
following which the client may retry the request. The insertion
process has been illustrated in Fig. 4.
Object Retrieval To fetch an object from Kua, the client sends an
Interest for the original data name7 of a stored segment. The Interest
is routed to the Kua cluster using a Forwarding Hint, carrying the
cluster prefix and the bucket identifier, which the client can compute
since it knows the name of the data. Thus, a data fetching Interest
takes the form of:

Name: /<data-name>/
FwHint: /<kua-prefix>/<bucket-id>

NDN forwards such an interest to the nearest node in the cluster
that is a replica for the corresponding bucket. Since this node is
guaranteed to have a copy of the data if it was inserted, the node
receiving the fetching interest looks up its local storage backend
and replies to the Interest if the data is found. Since the name of the
stored Data packet matches the name of the FETCH Interest, NDN
directly forwards it back to the client(s) requesting the data. If the
requested data is not found, the node replies with an application
layer NACK containing an error code.

The nature of the object fetching protocol has three properties.
First, since all objects are fetched using the actual data names of the
packets, the network can cache packets with semantically correct
names. As a result, any Interests for the data intended for the
producer application may also be satisfied by the network cache if
the same data was previously fetched from a Kua cluster. Interests to
fetch the same object are also aggregated in the network, leading to

7The means for obtaining this name is left to the application or Sync transport.

/app/alice/data1/seg=1
/app/alice/data1/seg=2
/app/alice/data1/seg=3
/app/alice/data1/seg=4

/app/alice/data1/seg=5
/app/alice/data1/seg=6
/app/alice/data1/seg=7
/app/alice/data1/seg=8

Bucket #3
Bucket #1
Bucket #2
Bucket #3
Bucket #4

Bucket #1

Unoptimized Optimized

Figure 6: Chunk Optimization

efficient multicast of data. Second, since NDN forwards the fetching
interest with anycast to the nearest node which, in the absence of
failures, is guaranteed to have the corresponding object, latency of
fetching an object is kept at a minimum. The client is guaranteed
to start receiving the object in one network round trip if it exists,
without the need of extrametadata queries. Third, since data packets
are stored directly, the corresponding signatures are also stored and
returned in replies to FETCH Interests, ensuring that data is always
secure in transit and at rest.
Reclaiming Space While Kua is an immutable store, practical
applications require the ability to reclaim space from unused ob-
jects. To delete an object no longer needed by the application, the
client may send a FREE Interest, which is then propagated to repli-
cas similar to an insertion Interest. Such an Interest is signed and
contains the name of the object to be deleted.

/<kua-prefix>/<bucket-id>/FREE/<data-name>
It must be noted here that object deletion may be asynchronous,
and reusing keys may lead to undefined behavior. Further, a deleted
object may continue being available to clients by virtue of being
cached in the network.
Client API The Kua library provides simple primitives for ap-
plications to interact with the data store, masking operations such
as calculating the bucket number. The object insertion API accepts
a binary blob and an object name, along with a data signer, and
inserts the object into the store. Similarly, the object retrieval API
accepts an object name and data validator, and returns the binary
blob from the store. These familiar primitives enable application
developers to easily interact with the data store.

4.4 Optimizations
In NDN, large data blobs are segmented into smaller Data packets
and named using the NDN segment naming convention. As a result,
large objects are uniformly distributed across all nodes in the Kua
cluster, leading to faster read and write speeds, similar to existing
systems such as Ceph [24]. However, since each packet is fairly
small, objects may become highly fragmented and require a large
number of random lookups during access. Storing asymmetric sig-
natures with each packet also adds to the storage overhead. Further,
having to insert each segment individually with an acknowledge-
ment as described earlier can result in a large volume of control
messages, leading to poor performance and issues with congestion
control. To counter these effects, we implement a few optimizations.
Chunk storage To reduce random accesses to disks, we tweak
the consistent hashing function to ensure that segmented objects
are stored in larger chunks rather than packets, as illustrated in
Fig. 6. With an assumption that that all objects are segmented using

62

ICN ’22, September 19–21, 2022, Osaka, Japan Varun Patil, Hemil Desai, and Lixia Zhang

NDNnaming conventions, the hash function is modified to generate
the same hash for a range of contiguous segment numbers. This
enables optimizations to reduce the number of random lookups
to disk that must be made for fetching a single object, by caching
locations of recently fetched chunks.
Fast Insertion To mitigate the high overhead of insertion Inter-
ests required to insert large objects, we allow multiple8 segments to
be inserted with a single request. With the IS_RANGE flag, a single
INSERT Interest may insert multiple objects belonging to a single
large segmented object, and receive a single acknowledgement.
Such an Interest includes start and end segment numbers to be
inserted along with the name prefix of the data excluding the seg-
ment number. It must be noted here that the FETCH protocol still
retrieves objects one segment at a time. This does not have per-
formance implications, since it allows direct usage of existing and
future NDN congestion control solutions at the transport layer. We
recognize that reads may be further optimized, e.g. with in-memory
caching of data for expected future queries for sequential reads.
Signing Manifests Producers may use signing manifests to
reduce the overhead due to asymmetric signatures on individual
packets. When using manifests, each packet only contains a digest
of its contents that can be directly verified. The digests of multiple
such packets are enlisted in a special packet called a signingmanifest,
and this packet is then signed with the private key of the producer.
As a result, the processing and storage overhead due to packet
signing can be significantly reduced.
Our preliminary evaluation showed us that these optimizations can
have a large impact on the performance of Kua.

5 EVALUATION
We implemented Kua in C++ to cater to the requirements of high
performance. The implementation uses the ndn-cxx library and
implements storage functions, the Auction protocol as well as some
of the optimizations described earlier. Our implementation allows
usage of any key-value storage backend for the storage of actual
data, such as in-memory, file or database storage.

We evaluate Kua by comparing it with two very popular and
successful distributed storage systems – Hadoop Distributed File
System (HDFS) and Redis Cluster. By highlighting the differences
between the systems in the context of efficient communication,
we demonstrate how NDN helps Kua achieve its function with
relatively lower overhead.

5.1 Comparison with HDFS
We note here that while HDFS is a file system rather than an object
store, it serves as a good general comparison for distributed stor-
age due to its popularity and simple design. We only perform an
analytical comparison of the Kua and HDFS designs here.

HDFSworks on amaster/slave architecture. A single central node
called the NameNode acts as a master that manages the filesystem
namespace and access control. Each storage node is called a DataN-
ode and stores the actual contents of the data. The NameNode
executes namespace operations such as opening and closing files,
and stores the mapping of the data blocks to the DataNodes.
8The number of segments inserted with one request should not be too large, and can
be controlled with an algorithm similar to congestion control.

For replication, HDFS divides files into equally sized blocks.
These blocks are then replicated across multiple nodes. The Na-
meNode centrally determines which blocks go to which DataNode
during replication. The NameNode tracks state at the DataNodes
through a period heartbeat and block report, containing a list of all
blocks stored by the DataNode.

The simple design of HDFS by virtue having a central master
node comes at a cost – all file operations must pass through the
NameNode. When a client wants to write to a file, it first needs to
obtain an exclusive lease on the file from the NameNode, which
must be periodically renewed. The client can then directly interact
with the DataNode to write content to the file blocks, which are
chain replicated. If a new block is created, each replica DataNode
must inform the NameNode about creation of the new block, so the
NameNode can maintain a consistent global state.

One obvious disadvantage of having a master node is that it
becomes a single point of failure and a potential performance bot-
tleneck. If the NameNode of Hadoop fails, the cluster cannot func-
tion until the NameNode is restarted. In contrast, Kua does not
maintain any global state. Since the network automatically routes
requests to the correct storage nodes, it eliminates the need for a
central master node that keeps track of what data is stored where.
If a node fails then the rest of the system can continue functioning
in an alarm state, e.g. having only two replicas for a few buckets,
until the system is re-balanced. Further, most read requests will
continue to succeed if a node fails, since only the the clients closest
to the failed node will be affected. As soon as the failure is detected
and routing updates propagate through the network, requests from
these clients will also be forwarded to alternative storage nodes.
Further, chain replication in HDFS happens over point-to-point
TCP/IP connections between replicas, increasing outgoing traffic at
each node. Replication of data is much more efficient in Kua, since
it uses NDN’s multicast data delivery to directly fetch data from
the client at each replica.

Another advantage of the Kua design is the lack of redirects.
To access a file in a HDFS cluster, a client must first open a TCP
connection to the NameNode, request the location of the blocks,
and subsequently open more TCP connections to the DataNodes.
The latency may be increased further if the protocol requires any
form of authentication after the connections are opened. In Kua,
the network directly forwards requests for data to the storage node
containing the data. As a result, the overall latency of Kua for fetch-
ing a file can be expected to be much lower than HDFS, especially
when the dataset has a large number of small files.

The above comparison demonstrates howKua can perform better
than HDFS due to NDN’s data-centric properties. Next, we compare
the Kua design with Redis Cluster, a distributed version of the
popular in-memory store, Redis.

5.2 Comparison with Redis Cluster
Redis [3] is a very popular in-memory key-value data store known
for its very high performance. Redis Cluster [1] is a distributed im-
plementation of Redis for horizontal scaling, which distributes and
replicates data across multiple nodes. Data is sharded by hashing
the key and distributing keys among 16384 hash slots. Each hash
slot is assigned to one master and one or more slave nodes, and data

63

Kua: A Distributed Object Store over Named Data Networking ICN ’22, September 19–21, 2022, Osaka, Japan

0

250

500

750

1000

1250

To
ta

l D
at

a
Tr

an
sf

er
 (M

B)

Insert 5m
Insert 100k

Fetch 5m-1
Fetch 100k-1

Fetch 5m-2
Fetch 100k-2

Fetch 5m-3
Fetch 100k-3

0

200

400

600

800

Th
ro

ug
hp

ut
 (m

b/
s)

Redis
Kua
Kua (Cache)

Figure 7: Comparison of Kua with Redis Cluster

is replicated from the master to slave asynchronously. To insert or
retrieve data, users may contact any node in the cluster, and are
redirected to the correct node for the specified key by the contacted
node. Redis Cluster employs 𝑁 × 𝑁 TCP connections for internal
communication using a gossip protocol.

The design of Kua has several similarities to Redis Cluster. Both
storage systems use semantically meaningful identifiers to store and
retrieve data, and distribute data between nodes using a hash func-
tion. However, since Redis runs over TCP/IP, all data is transferred
over point-to-point connections. Unlike Kua, Redis also requires
redirects to other nodes for reads and writes. Clients opening con-
nections to each node they need to access data from, along with
the internal 𝑁 × 𝑁 connections may make scaling challenging.

We evaluated Kua against Redis by inserting and fetching objects
from both stores in an emulated topology over MiniNDN [11]. We
used a datacenter-like topology for the evaluation, with nodes
connected to rack switches, which are interconnected by multiple
core switches. Each “switch” and storage node was configured to
run instances of the NDN Forwarding Daemon (NFD) and the NDN
Link State Routing (NLSR) [23] daemon for forwarding and routing
respectively. We set the link delay to 2ms for all links, with no
bandwidth limits or link losses. Both data stores were configured to
replicate each piece of data three times across 9 nodes, connected
to switches in groups of three. The Kua cluster was configured to
use a total of 32 buckets.

We ran three experiments for the comparison. In each exper-
iment, 100MB data was inserted into both stores. The data was
inserted as objects of 5MB and 100KB size in separate runs. In the
first experiment, we fetch the data from the client that inserted the
data. In the second and third experiments, we simultaneously fetch
the data from one and two other clients in the network respectively,
along with the client that originally inserted the data. The results
in terms of total network traffic are shown in Fig 7. For Kua, the
orange bars represent results after clearing the network cache at
all forwarders between operations, while the green bars represent
results without clearing the cache.

We observe that for the same degree of replication, Redis Clus-
ter needs to transfer approximately 45% extra data for insertions
compared to Kua. This is a result of data multicast in NDN – since

each Kua replica fetches the same data at approximately the same
time, the Interests are aggregated inside the NDN network, reduc-
ing total traffic. A similar effect can be observed when the data is
simultaneously fetched by multiple clients. Since all clients send
fetch Interests with the same name, data is multicast from the stor-
age to the clients, reducing network traffic. We note that fetching
overhead is very low when the caches are not cleared between
operations, since almost all data can be cached in the network. It
can also be noted that all NDN data is signed, while Redis does not
provide any form of security in this experiment.

Finally we observe that Redis provides 2-5x throughput com-
pared to Kua. However, we note here that Redis is a very mature
system known for its high performance, while Kua is still in early
stages of development. We can also attribute the lower throughput
of Kua to the processing overhead of emulating a large number
of NFDs, the lack of mature congestion control in NDN and the
additional guarantees of strong consistency provided by Kua. At
this stage, we consider being able to provide throughput of similar
orders of magnitude compared to Redis as encouraging.

6 DISCUSSION
In this section, we present further discussion on some issues, in-
cluding the security model of Kua, functions of locating data and
some related work.

6.1 Data-Centric Security
In existing data store designs over TCP/IP, authenticity of data is
typically established by verifying the identity of the node trans-
mitting the data. This is achieved by securing the transport pipe
using TLS, and verifying the certificate provided by the data store
using public key infrastructure. Such a model implicitly requires
data consumers to trust the data store and its operators, ultimately
providing limited guarantees about authenticity of the data.

The design of Kua allows for direct usage of existing NDN secu-
rity solutions. Since every Data packet generated by the producer
application is directly stored and returned in response to requests,
consumers can directly verify fetched data using the producers’
certificates. Since certificates in NDN are also simply Data pack-
ets, these may also be inserted into the Kua store, enabling offline
access. Such a model does not need to secure transport channels,
and consequently eliminates the implicit trust relationship between
consumers and the data store.

Kua can also be used with Name-based Access Control (NAC) for
confidentiality and access control. Producers can encrypt objects
before they are inserted into the store, and only authorized con-
sumers can decrypt these objects using keys provided by NAC. As
a result, all data is end-to-end encrypted, providing confidentiality
both during transit and at rest. With Attribute-Based Encryption
(NAC-ABE), access control can also be scaled to large groups of
consumers while providing fine-grained access to data. We omit
further details regarding the usage of NDN security solutions with
Kua in this paper due to space limitations.

Kua also provides a starting point for enforcing accountability
and resource allocation through the use of signed insertion and
deletion Interests. We consider the design of these features as part
of our future work.

64

ICN ’22, September 19–21, 2022, Osaka, Japan Varun Patil, Hemil Desai, and Lixia Zhang

6.2 Locating Data in Distributed Storage
Many existing data storage systems use some form of a global index
to locate data. Such an index may be stored in a single master node
or distributed inside the entire system. When users need to access
data in the store, they must first look up this index to locate the
data, and then open separate channels to the storage nodes to fetch
the actual data pieces.

In the Kua design, because NDN directly use application derived
names in network routing and forwarding, Kua can directly forward
requests towards the nodes which contain desired data, without
reliance on any redirection. This design eliminates the need for
an index to locate objects, and reduces overhead and complexity.
As a result, Kua enables users to fetch data from the store with
low latency, while requiring almost no configuration. Furthermore,
since Kua routing is based on object identifiers, and nodes holding
replicated objects announce the same identifiers, all object requests
are anycast, which improves availability of the data store.

We note here that the performance and reliability of such a design
is dependent on routing support at the network layer, including
low propagation delay for failover and routing scalability for a
large number of buckets. The interplay between routing and Kua’s
performance needs further investigation.

6.3 Failure Recovery
The bidding function described in (1) provides a starting point
for engineering failover functions using the Auction protocol. We
describe two scenarios requiring failover support and describe the
intended behavior of the Auction protocol.

In the first scenario, a node fails completely. We note here that
first, all write requests for buckets stored by the node would now
fail due to the missing replica, but read requests would still succeed,
especially as soon as routes to the failed node expire. On detecting
the failure, if the remaining replicas can achieve quorum, they
may continue accepting write requests in a compromised state9.
Next, the currently elected master would initiate a new auction
for the buckets in the node. The new node winning the bucket
must indicate in the WIN_ACK message that it needs to transfer data
from the bucket. The master would then indicate the same in the
AUCTION_END message (Fig. 3).

The nodes storing the bucket (which are already authoritative
for this bucket) would now take a snapshot of the currently stored
data in the bucket10. The new replica can then start asynchronously
fetching this snapshot to reconcile the existing data in the bucket.
Simultaneously, the new node also registers the bucket route with
<node-prefix>, but not the route with <kua-prefix> (§4.3). Since
the registered route enables internal replication requests, new write
requests to the bucket can now succeed, with the replicas includ-
ing the new node. However, since the node does not register the
kua-prefix route, it does not handle any read requests from clients.
After the data transfer completes, the new node becomes fully ca-
pable of handling read requests, and thus becomes authoritative
for the bucket by registering the <kua-prefix> route. It can then

9The replicas are required to exit the compromised state and stop acknowledging write
requests with fewer replicas before bidding in the next auction for the bucket.
10Snapshot performance may be improved using filesystem support.

signal the other nodes to delete the snapshot, thus completing the
failover process and restoring steady state.

In the second failover scenario, a node may voluntarily give up a
bucket due to lack of resources or the need for maintenance. In this
case, failover proceeds similarly to failures, and the node lacking
resources can free up the space used for the bucket as soon as the
new node becomes authoritative.

This failover mechanism ensures that every piece of data that
was successfully written to the store is consistent across all replicas,
and handles all potential race conditions. Since each write requires
all three replicas to provide confirmation, new writes to the bucket
can only succeed after the new node starts accepting write requests,
including route registration and propagation. As a result, the snap-
shot will also necessarily contain all pieces of data from writes
completed before the new node started accepting write requests.
Consequently, the entire bucket will be consistent once the snap-
shot is fetched, regardless of the order in which the messages are
received and routes propagated.

We note that the above design serves only as a starting point
for implementing failover, and more investigation is required to
understand the nuances of failover and the behavior of the Auction
protocol under various conditions such as network partitions. We
consider this investigation as a part of our future work.

6.4 Related Work
We briefly compare Kua’s design with other storage systems built
over NDN.
Repo Several designs of storage repositories have been imple-
mented over NDN, such as repo-ng [20] and fast-repo [21]. However,
these repositories are not designed as distributed systems, and thus
their designs cannot be directly compared to the Kua design.
Object Storage The most notable attempt to build an object store
over NDN is Chipmunk [18]. Kua can potentially achieve superior
performance compared to Chipmunk due to its simpler protocol
and lack of metadata fetching. Unlike Chipmunk, Kua leverages the
network to forward requests to the nearest nodes that can handle
the requests, reducing latency and improving throughput. Kua also
provides strong consistency and a replication mechanism.

7 CONCLUSION & FUTUREWORK
We presented the design and evaluations from an initial version
of Kua, a distributed object store running over NDN. Kua directly
forwards user requests to the correct storage nodes through the
use of consistent hashing of data names, improving efficiency and
reducing system complexity. Kua is designed to provide high perfor-
mance, strong consistency, and fault tolerance through replication.
The data-centric nature of NDN also simplifies security in the data
store, enabling applications to provide strong guarantees about the
authenticity of data.

Our future work includes the implementation of resilient failure
recovery, integration of security frameworks, a highly usable API to
enable application development, as well as further investigation into
efficient and robust storage backends.With these improvements, we
aim to make Kua a fully functional and robust object store to cater
to today’s big data storage needs. The open source implementation
of Kua can be accessed at GitHub [22].

65

https://github.com/pulsejet/kua

Kua: A Distributed Object Store over Named Data Networking ICN ’22, September 19–21, 2022, Osaka, Japan

ACKNOWLEDGEMENT
We would like to thank the anonymous reviewers and the shepherd
Marc Mosko for their valuable comments which helped us improve
the paper’s quality significantly. This work was supported in part by
National Science Foundation under awards 2019085 and 2126148.

REFERENCES
[1] 2022. Scaling with Redis Cluster. https://redis.io/docs/manual/scaling/. Accessed:

2022-05-18.
[2] Alexander Afanasyev, Tamer Refaei, Lan Wang, and Lixia Zhang. 2018. A Brief

Introduction to Named Data Networking. In Proc. of MILCOM.
[3] Josiah Carlson. 2013. Redis in action. Simon and Schuster.
[4] M. Factor, K. Meth, D. Naor, O. Rodeh, and J. Satran. 2005. Object storage: the

future building block for storage systems. In 2005 IEEE International Symposium
on Mass Storage Systems and Technology. 119–123. https://doi.org/10.1109/LGDI.
2005.1612479

[5] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google file
system. In Proceedings of the nineteenth ACM symposium on Operating systems
principles. 29–43.

[6] Garth A. Gibson, David F. Nagle, Khalil Amiri, FayW. Chang, Eugene M. Feinberg,
Howard Gobioff, Chen Lee, Berend Ozceri, Erik Riedel, David Rochberg, and
Jim Zelenka. 1997. File Server Scaling with Network-Attached Secure Disks.
SIGMETRICS Perform. Eval. Rev. 25, 1 (jun 1997), 272–284. https://doi.org/10.
1145/258623.258696

[7] Developer Guide. 2008. Amazon Simple Storage Service. (2008).
[8] John H. Howard. 1988. On Overview of the Andrew File System. In USENIX

Winter.
[9] Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decentralized

Structured Storage System. SIGOPS Oper. Syst. Rev. 44, 2 (apr 2010), 35–40.
https://doi.org/10.1145/1773912.1773922

[10] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus: an RDMA-enabled
Distributed Persistent Memory File System. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17). USENIX Association, Santa Clara, CA, 773–785.
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lu

[11] Mini-NDN Authors. 2021. Mini-NDN: A Mininet-based NDN emulator. minindn.
memphis.edu/ accessed: 2021-05-10.

[12] Philipp Moll, Varun Patil, Lixia Zhang, and Davide Pesavento. 2021. Resilient
Brokerless Publish-Subscribe Over NDN. In MILCOM 2021 - Special Session on
Named Data Networking (MILCOM 2021 - NDN Session). San Diego, USA.

[13] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan,
et al. 2018. Ray: A distributed framework for emerging {AI} applications. In 13th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
18). 561–577.

[14] NDN Project team. 2021. NDN Packet Format Specification version 0.3: Signed
Interest. (2021). https://named-data.net/doc/NDN-packet-spec/current/signed-
interest.html accessed: 2021-07-29.

[15] Jon Postel. 1981. RFC793: Transmission Control Protocol. Technical Report.
[16] Russel Sandberg. 2000. The Sun Network File System: Design, Implementation

and Experience. (09 2000).
[17] Junxiao Shi, Davide Pesavento, and Lotfi Benmohamed. 2020. NDN-DPDK:

NDN Forwarding at 100 Gbps on Commodity Hardware. In Proceedings of the
7th ACM Conference on Information-Centric Networking (Virtual Event, Canada)
(ICN ’20). Association for Computing Machinery, New York, NY, USA, 30–40.
https://doi.org/10.1145/3405656.3418715

[18] Yong Yoon Shin, Sae Hyong Park, Namseok Ko, and Arm Jeong. 2020. Chipmunk:
Distributed Object Storage for NDN. In Proceedings of the 7th ACM Conference on
Information-Centric Networking (Virtual Event, Canada) (ICN ’20). Association
for Computing Machinery, New York, NY, USA, 161–162. https://doi.org/10.
1145/3405656.3420231

[19] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.
The hadoop distributed file system. In 2010 IEEE 26th symposium on mass storage
systems and technologies (MSST). Ieee, 1–10.

[20] NDN Project Team. 2014. repo-ng. https://github.com/named-data/repo-ng
[21] NDN Project Team. 2018. Fast Repo. https://github.com/remap/fast-repo
[22] The Kua Team. 2022. Kua: Distributed Object Storage over Named Data Networking.

https://github.com/pulsejet/kua
[23] Lan Wang, Vince Lehman, A. K. M. Mahmudul Hoque, Beichuan Zhang, Yingdi

Yu, and Lixia Zhang. 2018. A Secure Link State Routing Protocol for NDN. IEEE
Access 6 (2018), 10470–10482. https://doi.org/10.1109/ACCESS.2017.2789330

[24] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos
Maltzahn. 2006. Ceph: A Scalable, High-Performance Distributed File System. In
Proceedings of the 7th Symposium on Operating Systems Design and Implementation
(Seattle, Washington) (OSDI ’06). USENIX Association, USA, 307–320.

[25] Huaxia Xia and Andrew A. Chien. 2007. RobuSTore: a distributed storage ar-
chitecture with robust and high performance. In SC ’07: Proceedings of the 2007
ACM/IEEE Conference on Supercomputing. 1–11. https://doi.org/10.1145/1362622.
1362682

[26] Zhiyi Zhang, Yingdi Yu, Sanjeev Kaushik Ramani, Alex Afanasyev, and Lixia
Zhang. 2018. NAC: Automating Access Control via Named Data. In MILCOM
2018 - 2018 IEEE Military Communications Conference (MILCOM). 626–633. https:
//doi.org/10.1109/MILCOM.2018.8599774

66

https://redis.io/docs/manual/scaling/
https://doi.org/10.1109/LGDI.2005.1612479
https://doi.org/10.1109/LGDI.2005.1612479
https://doi.org/10.1145/258623.258696
https://doi.org/10.1145/258623.258696
https://doi.org/10.1145/1773912.1773922
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lu
minindn.memphis.edu/
minindn.memphis.edu/
https://named-data.net/doc/NDN-packet-spec/current/signed-interest.html
https://named-data.net/doc/NDN-packet-spec/current/signed-interest.html
https://doi.org/10.1145/3405656.3418715
https://doi.org/10.1145/3405656.3420231
https://doi.org/10.1145/3405656.3420231
https://github.com/named-data/repo-ng
https://github.com/remap/fast-repo
https://github.com/pulsejet/kua
https://doi.org/10.1109/ACCESS.2017.2789330
https://doi.org/10.1145/1362622.1362682
https://doi.org/10.1145/1362622.1362682
https://doi.org/10.1109/MILCOM.2018.8599774
https://doi.org/10.1109/MILCOM.2018.8599774

	Abstract
	1 Introduction
	2 Background
	2.1 Object Storage
	2.2 Networking in Distributed Storage
	2.3 Named Data Networking

	3 Overview
	3.1 Applicability & Assumptions
	3.2 Design Goals
	3.3 Design Overview

	4 Kua Design
	4.1 Object Identification & Storage
	4.2 Auction Protocol
	4.3 Object Protocol
	4.4 Optimizations

	5 Evaluation
	5.1 Comparison with HDFS
	5.2 Comparison with Redis Cluster

	6 Discussion
	6.1 Data-Centric Security
	6.2 Locating Data in Distributed Storage
	6.3 Failure Recovery
	6.4 Related Work

	7 Conclusion & Future Work
	References

