
Effective NDN Congestion Control Based on Queue Size
Feedback

Sichen Song
University of California, Los Angeles

Los Angeles, CA, USA
songsichen@cs.ucla.edu

Lixia Zhang
University of California, Los Angeles

Los Angeles, CA, USA
lixia@cs.ucla.edu

ABSTRACT

Named data networking (NDN) can improve the consumer data
retrieval throughput with its built-in multicast data delivery, in-
network caching, and ability to support multi-path forwarding.
However, their realization brings challenges. In this work, we first
examine howmulti-path forwarding and in-network caching can in-
terfere with consumer measurements for congestion control. Based
on the results, we propose a congestion control solution, NDN-QSF,
that can work effectively in the presence of in-network caching. In
NDN-QSF, forwarders estimate upstream bandwidth and use queue
size as congestion feedback to inform downstream routers to limit
interest transmission rates. We further adapt and extend NDN-QSF
to enable routers to make informed multi-path forwarding deci-
sions. We evaluated NDN-QSF through simulation experimentation
and our results show that NDN-QSF can effectively control con-
gestion by using queue size as congestion feedback and improve
network throughput with multi-path forwarding.

CCS CONCEPTS

• Networks → Intermediate nodes;

KEYWORDS

Congestion Control, Named Data Networking, Multi-Path Forward-
ing

ACM Reference Format:

Sichen Song and Lixia Zhang. 2022. Effective NDN Congestion Control
Based on Queue Size Feedback. In 9th ACM Conference on Information-

Centric Networking (ICN ’22), September 19–21, 2022, Osaka, Japan. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3517212.3558088

1 INTRODUCTION

Data multicast, in-network caching, and multi-path forwarding
are desired features that improve the performance of data object
retrieval in computer networks. Data multicast and in-network
caching reduce network traffic when multiple consumers request
the same data, and multi-path forwarding explores and utilizes all
available network resources to further improve throughput.

The above three desired features for data retrieval are enabled by
networks running the Named Data Network (NDN) [14] protocol
stack. NDN forwarders are stateful with built in data caches, and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICN ’22, September 19–21, 2022, Osaka, Japan

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9257-0/22/09.
https://doi.org/10.1145/3517212.3558088

data is retrieved by names. Data consumers fetch content by send-
ing interest packets carrying content names, which are forwarder
towards data producers. If an interest hits a forwarder cache, it
brings the matching data packet back. If multiple interests carry the
same data name, they are aggregated. Data packets are delivered to
consumers following the reverse path of the interest packets, creat-
ing a feedback loop. Therefore NDN automatically supports data
multicast (through interest aggregation) and in-network caching. Its
interest-data exchange feedback loop enables forwarders to detect
and eliminate packet loops and make fine-grain measurement of
data retrieval performance. Based on the measurement, forwarders
can send interests to best paths and to multiple paths dynamically.

While caching, multicast data delivery, and multi-path forward-
ing reduce the contention of network resources, congestion is still
possible. The existing TCP/IP congestion control algorithms operate
on end-to-end connections following a single path. NDN interest
packets can be satisfied by in-network caches and forwarded dy-
namically along different paths towards requested data locations.
When data transmission no longer goes along a single path, the
concepts such as “queuing delay” and “bandwidth-delay product”
of a single path used in TCP/IP congestion control, are no longer
applicable as interests can be satisfied at different nodes. Thus, a
congestion control algorithm for NDN must consider the new fea-
tures. Consequently, end-to-end congestion control widely used in
IP is not a well fit for NDN, and a congestion control algorithm for
NDN must consider its new features.

Congestion control and multi-path forwarding remain active
research areas in NDN. This work aims to design a multi-path
forwarding with congestion control for NDN forwarders that 1)
utilizes multiple forwarding paths tomaximize network throughput,
2) controls congestion, and has a low queuing delay. Both goals
should be achieved in the presence of in-network caching and multi-
path forwarding. In addition, we hope to explore whether these
goals can be achieved without imitating flows in IP networks to
establish an end-to-end single-path flow concept and adapt existing
solutions in IP.

We take the first step to tackle the above challenges; thus, the
results from our preliminary investigation are limited in scope. Our
simulations focus on the scenarios with one or more consumers
fetching the same data object, which can be large in size and seg-
mented into multiple NDN data packets. Our evaluation metric
measures consumer throughput and network congestion levels.

This work investigates the effect of multi-path forwarding and in-
network caching on consumer congestion control measurements. It
then presents a congestion control design for NDN, NDN-QSF, that
uses queue size as congestion feedback and works in the presence
of in-network caching. NDN-QSF is lastly extended to work under
multi-path forwarding and make multi-path forwarding decisions.

11



ICN ’22, September 19–21, 2022, Osaka, Japan Sichen Song and Lixia Zhang

Our main contributions can be highlighted as the follows.

• Weuse simulation study to investigate the effect of in-network
caching and multi-path forwarding on end measurements
and observe that these two features make it difficult for end
consumer to accurately detect network congestion.

• We design a congestion control algorithm, NDN-QSF, that
uses upstream queue size as congestion feedback and con-
trols congestion hop by hop to effectively control congestion
in NDN.

• To have multi-path forwarding decisions adapting to net-
work loads, we extend NDN-QSF to make multi-path for-
warding decisions based on upstream congestion feedback.

• We implement NDN-QSF as a forwarding strategy of NFD
and evaluates it with ndnSIM simulation.

The rest of this paper is organized as the following: we discuss
the related works in §2 and the effect of NDN features on consumer
congestion control measurements in §3. We present the design of
NDN-QSF in §4 . The NDN-QSF is extended to work with multi-
path forwarding in §5 and evaluated in §6. We discuss the results
in §7. Lastly we draw our conclusion in §8.

2 RELATEDWORK

A number of works investigate NDN congestion control and multi-
path forwarding. They share the same goal of building a effective
feed back loop and differ in their network load measurements,
congestion feedback, and how and where the reaction takes place.

Some works are based on the idea of distinguishing end-to-end
single path flows and adapting existing solutions in IP networks. For
example, In [4], Carofiglio et al. formulate the problem of dynamic
multi-path forwarding and congestion control as a network util-
ity maximization problem. Its solution shows that network utility
can be maximized by having forwards make multi-path forward-
ing decisions and consumers control congestion using congestion
window. Local measurements are enough for both forwarders and
consumers. However, forwarding paths are marked on Data packets
as feedback to enable consumers to measure queuing delay. Multi-
path forwarding decisions are made based on balancing pending
interest table (PIT) entries towards each upstream.

Another example is the multi-path aware rate-based congestion
control (MIRCC)
[10], Mahdian et al. designed a congestion control and multi-path
forwarding algorithm. The design is based on the idea that the
bottleneck forwarder detects congestion and assigns a per-flow
sending rate to each consumer, and the consumers send out interest
of each flow following their assigned rate. Path marking on data
packets is used to allow consumers to distinguish different flows.
Consumers make multi-path forwarding decisions by including
path hints in Interest packets that direct traffic to a specific for-
warding path. The work points out that maximized throughput and
max-min fairness may not be achieved together in some networks
that have multi-path forwarding.

Other works do not rely on distinguishing end-to-end single-
path flows. In PCON [11], Klauset al. proposed a framework for
congestion control and multi-path forwarding based on congestion
marking. PCON forwarders monitor queuing delays on outgoing
links to detect congestion and apply congestion marks on data

packets traversing through the congested link. Congestion marks
are used at consumers for congestion control and downstream
forwarders for multi-path forwarding. Consumers run window-
based congestion control and control the window size using rules
similar to TCP AIMD [6] and Cubic [8]. Congestion marks on data
packets will trigger a multiplicative window decrease. Multi-path
forwarding is based on the idea of “balancing the frequency of
congestion mark from all upstream.” A “split ratio” is used to control
the split of traffic among upstream. Whenever ECN is received from
one upstream, the share of traffic to this upstream is reduced by
a fixed amount. The split ratio stabilizes when upstream receives
congestion marks at the same frequency.

The VIP framework [13] that jointly make caching and forward-
ing decisions to optimize network throughput also does not rely on
distinguishing end-to-end flows. VIP uses queue size information
as feedback to neighbors to detect congestion and make multi-path
forwarding decisions. However, to learn the resource’s popularity
and optimize caching decisions, a virtual control plane is used to
keep track of the queue size of each object without the effect of
interest aggregation. The actual NDN forwarders use queue size
from the virtual plane to route interests for different objects to
different paths and evict cached objects. The work does not provide
a method to control congestion. Interests for segments of the same
object follow the same forwarding path.

These existing works inspires our design of NDN congestion
control and multi-path forwarding. Similar to PCON and VIP, our
design, NDN-QSF, sends queue size related information towards
the consumer as congestion feedback. NDN-QSF also shares the
idea of controlling rates directly and “using smart forwarders with
dumb consumers” with MIRCC. Lastly, NDN-QSF is hop by hop
similar to VIP and does not distinguishing end-to-end flows. The
hop-by-hop design avoids the assumption that data can be satisfied
by a relatively fixed endpoint in the network.

3 NDN AFFECTS CONSUMERS’ LOCAL

CONGESTION MEASUREMENTS

Many congestion control algorithms in TCP/IP, such as BBR [3] and
Copa [2], rely on round trip time (RTT) and data arrival rate mea-
surements of an end-to-end single-path connection to detect net-
work congestion. Dynamic multi-path forwarding and in-network
caching in NDN invalidate the assumption of end-to-end single-
path connection and make it difficult to detect network congestion
using local RTT and rate measurements.

3.1 Effect of Dynamic Multi-path Forwarding

on Consumer Measurements

Consider the simple network topology in fig.1, where forwarder
1 makes multi-path forwarding decisions to split traffic between
two paths with different delays. The consumer requests data at
a constant 50mb/s rate. At time t , forwarder 1 will forward r%
of traffic to replica 1 and the remaining to replica 2 where r =
1
2 −0.2×sin(t ∗4)×100%. r changes over time to emulate forwarders’
dynamic multi-path forwarding adjustments.

Our simulation result of the above scenario is illustrated in fig. 2.
As shown in the bottom left figure, RTT samples from different
forwarding paths are mixed, making the raw RTT samples hard

12



Effective NDN Congestion Control Based onQueue Size Feedback ICN ’22, September 19–21, 2022, Osaka, Japan

to interpret. Without distinguishing the two forwarding paths, a
consumer can use an averaged RTT, which is affected by multi-path
forwarding. The average RTT increases asmore packets are directed
to the path with a longer delay. The consumer throughput is also
affected by multi-path forwarding adjustments. When the portion
of traffic directed to the long delay path increases, the consumer
measures a throughput below its interest sending rate.

100mb/s, 5ms
Consumer

Replica 1

50mb/s, 15ms

50mb/s, 5ms

Forwarder 1
(Cache)

Replica 2

Figure 1: Network topology to simulate the effect of multi-

path forwarding on consumer measurements

3 4 5 6
time(s)

48

49

50

51

52

ra
te

(m
b/

s)

Throughput

3 4 5 6
time(s)

26

28

30

32

34

36

R
TT

(m
s)

Average RTT

4.47 4.48 4.49 4.5 4.51
time(s)

20

25

30

35

40

45

R
TT

(m
s)

RTT samples

3 4 5 6
time(s)

0

20

40

60

80

100

pe
rc

en
ta

ge

Traffic % Splitted to Replica 1

Figure 2: Effect ofmulti-path forwarding on ConsumerMea-

surements

3.2 Effect of In-Network Caching on Consumer

Measurements

Let us consider the network topology illustrated in fig.3. Both con-
sumers request the segments of a large object with a fixed interest
sending rate in sequential order. The size of each data packet is
around 4500 bytes. Consumer 1 starts first to request data at 16mb/s.
Consumer 2 starts half a second later and requests data at 20mb/s.
Forwarder 1, which both consumers share, has a large cache. Con-
sumer 2 will initially be satisfied by the cache and eventually drain
it and be satisfied by the producer as it is requesting data faster
than consumer 1.

The simulation result is shown in fig. 4. The top sub-figure shows
the consumers’ highest requested segment number at a given time.
At around 3.55 seconds, the two lines intersect, indicating that
consumer 2 has just passed consumer 1 in the progress of retrieving
the object. The round trip time (RTT) and data arrival rate measured
by consumer 2 in catching up with consumer 1 have three different
stages. Initially, before 3.46 seconds, consumer 2 is satisfied by the
cache. Thus, it measures the RTT to the cache, and its data receiving

16mb/s, 5msConsumer 1
(start at 1s)

Producer
40mb/s, 10msForwarder 1

(Cache)

20mb/s, 5ms
Consumer 2
(start at 1.5s)

Figure 3: Network topology to simulate the effect of caching

on consumer measurements

3.4 3.45 3.5 3.55 3.6 3.65 3.7
time(s)

1000

1050

1100

#s
eg

m
en

ts

Segment Request Time

Consumer 1
Consumer 2

3.4 3.45 3.5 3.55 3.6 3.65 3.7
time(s)

16

18

20

th
ro

ug
hp

ut
 (m

b/
s)

C2 data arrival rate

3.4 3.45 3.5 3.55 3.6 3.65 3.7
time(s)

10

20

30

R
TT

(m
s)

C2 RTT

Figure 4: Effect of Caching on Consumer Measurements

rate is the same as the interest sending rate. Eventually, after 3.61
seconds, interests from consumer 2 are forwarded to the producer.
Consumer 2 measures RTT to the producer while its data arrival
rate is the same as interest sending rate. However, between these
two stages, there is a “middle stage” where consumer 2 receives
data at 16mb/s, which equals to the data request rate of consumer
1. The RTT consumer 2 measures gradually increase from around
10ms to around 30ms.

The effect of interest aggregation is closely related to the rate
and delay consumer 2 measured in the “middle stage”. By the time
interest of consumer 2 reaches the forwarder, the corresponding
data is not in the cache, but consumer 1’s interest for the same
segment is pending at the forwarder. Consequently, the interest
from consumer 2 will be aggregated, and the data requested by
consumer 1’s interest will be multicasted to both consumers. The
RTT measurements at consumer 2 in this stage depend on how
long the interest for the same segment from consumer 1 has been
pending by the time consumer 2’s interest reaches the forwarder,
which is related to the progress difference between the consumers.
As consumer 2 has a faster interest sending rate, its progress in
retrieving the large object will gradually catch up with consumer
1’s progress. Meanwhile, RTT measured by consumer 2 gradually
increases. Also, the data arrival rate measured by consumer 2 in
this stage is the data arrival rate of consumer 1 as consumer 2 is
receiving multicasted data requested by consumer 1.

3.3 False Detection of Congestion when

Misinterpreting Measurements

If one adopts the same interpretation used in IP’s end-to-end conges-
tion control algorithms, one will misinterpret measurements under

13



ICN ’22, September 19–21, 2022, Osaka, Japan Sichen Song and Lixia Zhang

multi-path forwarding and in-network caching as network conges-
tion. When more traffic is directed to a path with longer RTT under
multi-path forwarding or in the“middle stage” under in-network
caching, consumer measurements can be misinterpreted as a con-
gestion event: the RTT gradually increases as if queuing delay is
growing, and the interest sending rate is faster than the data receiv-
ing rate, suggesting that traffic is being buffered. However, reacting
to this false detection of congestion results in under-utilization.

The above simple illustration of the multi-path forwarding and
in-network caching’s effect on the end consumer measurement
shows that NDN consumers cannot reliably detect congestion based
on their local RTT and data arrival rate measurements. Instead, we
need to use the information the forwarders can provide to infer
congestion. Inspired by the PCON [11] design for NDN congestion
control, we decided to use forwarders’ local queuing information
as the congestion signal downstream.

4 EFFECTIVE CONGESTION CONTROL IN

THE PRESENCE OF CACHING

With the idea of using queuing information provided by forwarders
as congestion feedback, we design a congestion control solution
for NDN forwarders, NDN-QSF, whose forwarding is illustrated in
fig. 5. The proposed forwarding process is based on the existing
NDN forwarding pipeline with the addition of per-name prefix
interest queuing, rate limiting, measurements, and congestion feed-
back modules. In the design, interest and data queue size at each
forwarder is sent to the downstream as congestion feedback. Each
forwarder keeps a per-upstream estimation of the available band-
width towards the producer. All interest packets in the same name
prefix received from downstream are put into an interest queue. A
rate limit for a name prefix towards an upstream is calculated from
the upstream’s estimated bandwidth and queue size of the specific
name prefix. When the upstream congestion feedback shows a large
queue, one should lower the rate limit to drain the upstream queue.
The forwarding strategy then forwards interests in the interest
queue towards the upstream while ensuring compliance with the
rate limit.

Interest Forwarding

Content
Store PIT

size

FIB Forwarding
Strategy

Aggregate

rate limit

Rate Limit
Calculation

Upstream measurements
(Bandwidth & Queue Size)

A: 80mb/s, 3 queued pkt

Interest
Queue

Nack

Data Forwarding
Data 

(with queue size feedback)
PIT

Discard
Data

Upstream
Measurement update

Content
Store

Queue-Size
Feedback Update

Local Queue Size

Data
Queue

Downstream Face 1 Upstream Face A

Data

Interest forward

Lookup Hit

Lookup Miss

update

forward

XX New Component

Figure 5: Forwarding Pipeline of Congestion Control Design

4.1 Queues and Queue Size Feedback

As motivated in §3, queue size feedback is passed downstream as
congestion signal. The feedback is transmitted by piggybacking

on every data packet. Queue size feedback is on a per name prefix
bases. Its value is based on both the interest queue and data queue
size of a specific name prefix. As mentioned above, each forwarder
has an interest input queue for each name prefix (FIB entry). The
interest queue buffers interest packets to comply with rate limits
for the upstream. Each forwarder also has a data packet queue for
each downstream link. The data queue buffers data packets to be
sent towards each downstream.

The value of the queue size feedback is determined by interest
queue and data queue sizes at the current forwarder, as well as
whether the interest packet corresponding to the data packet hit
the cache or was aggregated. When an interest did not hit the cache
or was aggregated, its corresponding data packet will have the
congestion feedback value as the larger size between the interest
queue and the data queue for the downstream the data packet is
forwarded. Suppose cached data was returned, or a data is multi-
casted to a downstream in response to an aggregated interest, the
queue size feedback marked on the data packet will be the data
queue size for the downstream that the data will be forwarded.

As the interest queue and data queue have different dequeuing
speeds, taking the larger value does not have a special meaning.
It provides a means to downstream forwarders for reacting to the
larger queue size at this hop.

As queue size feedback is piggybacked on every data packet,
the forwarder keeps a minimum interest sending rate to keep an
up-to-date view of the upstream queue size.

4.2 Estimating Upstream Bandwidth

Each forwarder estimates the bandwidth through each upstream
towards the producer. This bandwidth is estimated using each up-
stream’s data arrival rate and queue size feedback. The forwarder
measures upstream data arrival rate using a sliding window that
keeps the arrival time of recent data packets, as shown in fig. 6.
By dividing the number of inter-data arrival time gaps inside the
measurement window by the period of data arrival in the mea-
surement window, the data arrival rate from each upstream can be
estimated. Forwarders also keep a smoothed upstream queue size
by applying a windowed average to the queue size feedback from
each upstream.

1s 2.1s 3s 4s 5.1s 6s 6.9s 8s 9s

Data receiving time

 data receiving rate 
= (window_size-1)/window_time_span
 =(5-1)/(6.9-3) (pkt/s)

Earlest arrived data packet
in window

Sliding window

Figure 6: Data arrival rate measurement based on sliding

window

With the queue size and data arrival rate information of each
upstream, the bandwidth of an upstream is estimated as the data
arrival rate of the upstream when its queue has built up. Sending
interests to an upstream faster than the estimated bandwidth further
builds up the upstream queue. Based on this idea, the following two
rules are used for bandwidth estimation of the upstream:

14



Effective NDN Congestion Control Based onQueue Size Feedback ICN ’22, September 19–21, 2022, Osaka, Japan

(1) if queue size > QUEUE_THRESHOLD, set the estimated band-
width to the current data arrival rate.

(2) if data arrival rate > estimated bandwidth, set bandwidth to
the current data arrival rate.

In the first rule, the QUEUE_THRESHOLD parameter is used as
a threshold on the recorded upstream queue size to determine if the
upstream is congested. We find that a value of 4 works well in our
simulations. The second rule makes corrections when an upstream
with no congestion has an underestimated bandwidth.

4.3 Rate-Limit Calculation

A forwarder makes periodic adjustments to its rate limits towards
its upstream. The ROUND_LENGTH parameter is used to define the
period of adjustment. A small random jittering is added to the adjust-
ment period to avoid the synchronization of different forwarders.
In our experiments, we use network RTT as the ROUND_LENGTH.
The algorithm for rate limit adjustments is illustrated in alg. 1.

initialization;

for each adjustment round do

u ←findBestUpstreamFromFib(namePrefix);

/* congestion control */

if queueSize(u) > QUEUE_THRESHOLD × 2 then

rate_limit[u] ← bandwidth[u] ×MD_FACTOR;

else

rate_limit[u] ← bandwidth[u];

end

rate_limit[u]← max(rate_limit[u] , MIN_RATE);

/* rate probing */

if queueSize(u) < QUEUE_THRESHOLD then
rate_limit[u] ← rate_limit[u] ×1.05

end

sleep(ROUND_LENGTH+random());

end

Algorithm 1: Rate-Limit Adjustments

4.3.1 Congestion Control. Congestion is controlled hop-by-hop by
adjustment of the rate limits. Forwarders learn the queue size of
each upstream from congestion feedback and check if the queue
size is above a threshold. If so, the rate limit towards the upstream
will be set to a portion of its estimated bandwidth to drain out the
upstream queue.

The QUEUE_THRESHOLD parameter represents the expected
amount of steady-state queue size. Its selection trades off between
bandwidth utilization and queuing delay. A larger value enables
persistent queuing to improve throughput at the cost of increased
queuing delay. This value is shared in the entire network. We find
a value of 5 works well in most of our evaluations.

The MD_FACTOR parameter determines how much bandwidth
the forwarder gives up to drain the upstream queue. A Larger
value allows faster reaction at the cost of potential overreaction
that harms the throughput. As each round, the upstream queue is
drained by roughlybandwidth×round_lenдth×(1−MD_FACTOR),
the MD_FACTOR is set based on queue threshold and adjustment

round length. A larger value works better for long adjustment round
and low queuing environments.

When the congestion control is triggered, the rate limit of in-
terests towards the congested upstream is reduced. Thus interests
from downstream may start to queue up at this forwarder, causing
downstream to measure a large queue. The downstream will con-
sequently start to control congestion. This process can propagate
to consumers, eventually reducing the interest sending rate and
avoiding congestion.

4.3.2 Rate Probing. Rate probing is introduced to allow forwarders
to correct their underestimated upstream bandwidth by sending
to an upstream with a rate higher than its estimated bandwidth.
It is done by increasing the rate limit towards an upstream if the
queue size at the upstream is below a threshold. This requirement
rules out the case where the upstream already has a queue built up.
When upstream is already congested, the current data arrival rate
should be an up-to-date estimation of its bandwidth.

Once a forwarder starts rate probing by increasing the rate limit,
its input queue will be drained out quickly, and its downstream
is likely to measure a low upstream queuing and consequently
also starts probing and increases the rate limit. This upstream to
downstream propagation of rate probing continues towards the con-
sumer, in which consumer should conclude it can increase interest
sending speed. The increased sending speed at consumers results
in increased traffic along the path being probed, thus increasing
bandwidth estimations along the path.

4.4 Consumer Congestion Control

As the forwarders run hop-by-hop buffering and congestion control,
the consumer congestion control algorithm can control interest
transmission based on the queue size of the first-hop forwarder to
keep a persistent queue at the first hop forwarder. As this work
focuses on the design of forwarders, we use a naive consumer that
keeps a large queue at the first hop forwarder in our evaluation.

4.5 Providing Fairness with Fair-queueing

NDN breaks the IP’s concept of end to end flows and thus as dis-
cussed in PCON [11], the fairness in an NDN network is yet to be
well defined. We limited the scope of this work not to dive deep
into fairness in NDN traffic. However, we argue that fair queuing
can be a useful primitive to use together with NDN-QSF to provide
fairness. We validate this claim with the simulation in §6.6.

5 MULTI-PATH FORWARDING AT

FORWARDERS

Similar to the feature of in-network caching, dynamic multi-path
forwarding in NDN makes it infeasible for consumers to detect
congestion using local measurements accurately. We believe that
NDN-QSF that uses “upstream queue size feedback” is effective
under multi-path forwarding. In addition, we find that the band-
width estimated for the congestion control algorithm can be used
to guide traffic splitting among multiple paths. Thus, we extend
our congestion control algorithm to make multi-path forwarding
decisions to improve network resource utilization and consumer
throughput.

15



ICN ’22, September 19–21, 2022, Osaka, Japan Sichen Song and Lixia Zhang

The updated design follows the same forwarding pipeline illus-
trated in fig. 5 with modified rate-limit calculation and forwarding
strategy. With traffic forwarded to multiple paths, the bandwidth
of every upstream is estimated, and a rate-limit of every upstream
is calculated to split interest packets towards multiple paths while
controlling congestion.

5.1 Rate-Limit Calcuation

initialization;

for each adjustment round do

/* congestion control */

for each upstream u do

if queueSize(u) > QUEUE_THRESHOLD × 2 then

rate_limit[u] ← bandwidth[u] ×MD_FACTOR;

else

rate_limit[u] ← bandwidth[u];

end

rate_limit[u] ← max(rate_limit[u] , MIN_RATE);

end

/* rate probing */
if queueSize(upstream2probe) < QUEUE_THRESHOLD

then
rate_limit[u] ← rate_limit[u] ×1.05

end

if queueSize(upstream2probe) ≥ QUEUE_THRESHOLD

then
upstream2probe ← selectUpstream2Probe();

end

/* Avoiding Unnecessary Contentions */
if queueSize(upstream2probe) < QUEUE_THRESHOLD

&& input_queue_size ≤ QUEUE_THRESHOLD then
for each upstream u with

queueSize(u)>QUEUE_THRESHOLD do

rate_limit[u] ← rate_limit[u] − STEP ;
rate_limit[upstream2probe] ←
rate_limit[upstream2probe] + STEP

end

end

sleep(ROUND_LENGTH+random());

end

Algorithm 2: Rate-Limit Adjustments with Multi-Path For-
warding

The rate-limit calculation we designed previously for in-network
caching is modified slightly. Congestion control is now applied
on every upstream. On the other hand, rate probing is restricted
to be applied to one upstream in an adjustment round. That is
because we want to avoid adjusting the interest transmission rate
to multiple upstreams when adjusting the interest transmission
to one upstream can satisfy all downstream traffic. A forwarder
probes an upstream by increasing its rate limit while keeping the
rate limit to all other upstream. This rate limit increase is kept until
the probed upstream has a queue size above a threshold. When the
upstream being probed has a queue built up, another upstream that

does not have a large queue will be selected to be probed in the
following adjustment rounds.

5.1.1 Avoiding Unnecessary Contention. Maximizing consumer through-
put in an NDN network with a single consumer and multiple for-
warding paths is a maximum flow problem. A difficult case of this
problem is illustrated in fig. 7. In this network, bothNode 1 andNode
2 need to make multi-path forwarding decisions to maximize net-
work throughput. The maximum network throughput is 120mb/s,
and the only way to achieve it is to have Node 1 equally split traffic
to all its three upstreams while having Node 2 direct all its traffic
to Node 5. That’s because the Node 1 to Node 2 link can at most
forward data at 40mb/s. Thus Node 2 sending any traffic to Node 3

or Node 4 results in underutilizing the Node 2-Node 5 link.

Figure 7: Scenario where unnecessary contention reduces

bandwidth utilization

However, the multi-path forwarding algorithm described so far
does not have a mechanism to stop Node 2 from sending to Node

3 and Node 4. Instead, if Node 2 probes its link to Node 3 in the
beginning, it will keep sending to Node3 based on the bandwidth it
probed while not fully utilizing its path through Node 5 link.

To address this issue, a new rule, which is inspired by the back-
ward edges in the Ford Fulkerson algorithm [7], is added: when
the input queue is small, which indicates downstream traffic is
below the total upstream bandwidth, reduce the rate limit towards
congested upstream while increasing the limits to uncongested
ones.

Intuitively, this new rule is trying to avoid unnecessary con-
tention: when downstream interest sending rate is below the total
upstream bandwidth, traffic should be prioritized to uncongested
upstream instead of creating additional contention on the congested
ones.

Using the same example, if Node 2 is sending to Node 3, as Node
1 will also direct traffic to Node 3, the Node 3-Node 5 link will be
congested and consequently Node 3 will start build up input queue
and push back to Node 2. At this time, Node 2 knows its upstream
to Node 3 has large queue while the link to Node 5 does not. Thus,
Node 2 will reduce its traffic through Node 3 and increase its traffic
through Node 5. Consequently Node 1 can send at higher rate to
Node 3 and the network moves towards an increased throughput.

5.2 Forwarding Strategy

The forwarding strategy is in charge of splitting interests from
the input interest queue to different upstream forwarders while
complying with the rate-limit of each upstream. We implemented
the forwarding strategy by using the rate limit of each upstream as
the rate to dequeue and forward from the incoming interest queue.

16



Effective NDN Congestion Control Based onQueue Size Feedback ICN ’22, September 19–21, 2022, Osaka, Japan

6 EVALUATION

The ndnSim [1] simulator is used to evaluate NDN-QSF. A variety
of network environments are simulated to thoroughly evaluate
throughput, delay, and stability. Queuing delay in the simulations
are calculated by dividing interest queue size by sending rate of
interest packets. Data packets have a size of around 4500 bytes.
To better illustrate steady state behavior, y-axis in the figures are
clipped and some large queuing delay during the system start up is
not captured.

6.1 Congestion Control in the Presence of

Caching

NDN-QSF is first evaluated in the presence of in-network caching
with the simulation scenario illustrated in fig.8. The three con-
sumers start at different times and request the segments of a large
object in sequential order. A shared bottleneck is on the path be-
tween each consumer and the producer. When in-network caching
and data-multicast are effectively utilized, each consumer can re-
trieve data at the bottleneck bandwidth of 60mb/s. 1 The simulation
result is illustrated in fig.9.

Consumer 1 started first and gradually increased its throughput.
Its data is admitted to the in-network caches. Consumer 2 and
consumer 3 started later and achieved 70mb/s throughput initially
when being satisfied by cache. They can catch up with consumer
1 utilizing the cache and eventually make the same progress as
consumer 1. The system converges to a steady-state in 2 seconds. In
steady-state, every consumer achieves 60mb/s optimal throughput,
indicating that the data multicast and caching are effectively used.
In the steady-state, the queuing delay at each hop is controlled
to around 3ms, which is much lower than the round trip time
of a single hop. Overall, the simulation shows that congestion is
effectively controlled while caching and data-multicast are utilized
with our design.

70mb/s, 10msConsumer 1
(start at 1s)

Producer
70mb/s, 10msForwarder 1

(Cache)

70mb/s, 5ms
Consumer 2
(start at 1.4s)

60mb/s, 15msForwarder 2
(Cache)

70mb/s, 10msConsumer 3
(start at 1.8s)

Figure 8: Scenario 1: Shared caches

6.2 Congestion Control in the Presence of

Multi-Path Forwarding

We then evaluate the effectiveness of multi-path forwarding deci-
sions made by NDN-QSF. We use a scenario where a single con-
sumer fetches data through multiple forwarding paths. As shown in
fig. 10, two forwarders make multi-path forwarding decisions to re-
trieve the data from three replicas. Note that the path to replica 2 and

1In the case where one consumer has a local bottleneck not shared with others (for
example, in a modified fig. 8 where bandwidth between consumer 1 and forwarder
1 is 30mb/s), the consumer will fetch at a slower speed compared to others. During
the data retrieval, the progress differences between the slower consumer and others
increase over time. Eventually, the cache may not benefit the slower consumer due
to large progress differences. This challenge is out of the scope of this work but is
investigated in [5] and [9].

1 1.5 2 2.5 3 3.5 4 4.5 5
time(s)

0

10

20

30

qu
eu

in
g 

de
la

y 
(m

s)

Queuing Delay

F2 Interest
F2 Data

1 1.5 2 2.5 3 3.5 4 4.5 5
time(s)

0

2000

4000

se
gm

en
t#

interest expression time

Consumer 1
Consumer 2
Consumer 3

1 1.5 2 2.5 3 3.5 4 4.5 5
time(s)

0

20

40

60

th
ro

ug
hp

ut
 (m

b/
s)

consumer throughput

Consumer 1
Consumer 2
Consumer 3

Figure 9: Scenario 1 simulation results

replica 3 have very different RTTs and bottleneck bandwidth. We
intend to use the differences to represent a heterogeneous network
environment. The simulation result is shown in fig. 11. The result
shows that the algorithm converges in around 12 seconds. After the
algorithm converges, the traffic is split at each forwarder according
to upstream bandwidth. The 150mb/s multi-path bandwidth is fully
utilized in steady-state, and a small queue is persistently kept at
each hop.

200mb/s, 5ms
Consumer Replica 1

30mb/s, 10ms

70mb/s, 3ms

Forwarder 2

50mb/s, 5ms

200mb/s, 2ms

Forwarder 1

Replica 2

Replica 3

Figure 10: Scenario 2: Simple multi-path topology

5 10 15 20
time(s)

0

2

4

6

8

10

qu
eu

ei
ng

 d
el

ay
 (m

s)

Forwarder 2 upstream queuing delay
Producer 2 link
Producer 3 link

5 10 15 20
time(s)

0

20

40

60

80

ra
te

(m
b/

s)

Forwarder 2 upstream throughput
Producer 2 link
Producer 3 link

5 10 15 20
time(s)

0

2

4

6

8

10

12

qu
eu

ei
ng

 d
el

ay
 (m

s)

Forwarder 1 upstream queuing delay
Producer 1 link
Forwarder 2 link

5 10 15 20
time(s)

0

20

40

60

80

100

ra
te

(m
b/

s)

Forwarder 1 upstream throughput

Producer 1 link
Forwarder 2 link

Figure 11: Scenario 2 simulation results

17



ICN ’22, September 19–21, 2022, Osaka, Japan Sichen Song and Lixia Zhang

6.3 Multiple Forwarding Paths Sharing the

Same Bottleneck Link

Multiple forwarding paths may end up merging into the same bot-
tleneck link. We evaluate our design in this setting as illustrated
in fig.12. While there are three different forwarding paths for for-
warder 1 to choose from, all of them share the same bottleneck link
of 150mb/s.

The simulation result is shown in fig. 13. The system converged
to full bottleneck bandwidth utilization in 8 seconds, and queuing
delay was effectively controlled. After start-up, forwarder 1 probed
its link to forwarder 2 and consequently directed almost all traffic
through that link. However, the traffic splitting between the three
alternative paths changes slowly afterward. At 60 seconds, around
half of the traffic is directed to forwarder 4. The changing traffic
splitting is due to forwarder 1 not knowing that all the three paths
are merged to the same bottleneck link. The probing of an alterna-
tive path when the bottleneck is fully utilized caused the change
of traffic splitting. We believe slow “drifting” of the traffic splitting
when multiple forwarding paths merge to the same bottleneck link
is inherent in our design since forwarders do not know about the
shared nodes in the end-to-end forwarding path used. Fortunately,
while the multi-path forwarding decision is not perfectly stable, link
capacity is still effectively utilized, and queuing delay is controlled.

Unix socketConsumer

150mb/s, 2ms

Forwarder 2

150mb/s, 2msForwarder 3

150mb/s, 2ms

Forwarder 4

150mb/s, 10ms

150mb/s, 1ms

150mb/s, 5msForwarder 1 150mb/s,2msForwarder 5 Producer

Figure 12: Scenario 3: Multiple paths merging to use the

same bottleneck

5 10 15 20 25 30 35 40 45 50 55 60
time(s)

0

2

4

qu
eu

ei
ng

 d
el

ay
 (m

s)

Bottleneck Queuing Delay

5 10 15 20 25 30 35 40 45 50 55 60
time(s)

0

50

100

150

ra
te

(m
b/

s)

Forwarder 2 upstream throughput
Forwarder2 link
Forwarder 3 link
Forwarder 4 link

5 10 15 20 25 30 35 40 45 50 55 60
time(s)

0

50

100

150

ra
te

(m
b/

s)

consumer throughput

Figure 13: Scenario 3 simulation results

6.4 Throughput Maximization of Multi-Path

Forwarding

The fourth scenario used for evaluation is the topologywe discussed
in §5.1.1 as illustrated in fig. 7. In this topology, the consumer has a
high-bandwidth low-delay link to its local forwarder. The only way
to achieve maximum throughput is to have forwarder 1 equally
split the traffic to the three available paths while forwarder 3 must
send all its traffic through to the producer. In this optimal setting,
the network throughput can be at most 120mb/s.

The simulation result is shown in fig. 14. In the throughput fig-
ure, it can be seen that at 7 seconds, forwarder 3 is still sending to
forwarder 2 and forwarder 4. This multi-path forwarding decision
does not maximize network throughput. Then, the rate-limit calcu-
lation module tries to move traffic to the middle path using the rule
of “avoiding unnecessary contention”. Consequently, forwarder 3
gradually gives up sending towards forwarder 2 and forwarder 4,
increasing the link’s throughput towards the producer. As a result,
forwarder 1 can direct more traffic toward the path in the top and
bottom. Eventually, the network throughput is close to optimal.

The per-hop delay measured at forwarder 1 and forwarder 3
shows that the queuing is effectively controlled in steady-state. The
average queuing delay at each hop is around 5ms, which is much
less than the round trip time of each hop.

5 10 15 20
time(s)

0

50

100

ra
te

(m
b/

s)

consumer throughput

5 10 15 20
time(s)

0

10

20

30

40

ra
te

(m
b/

s)

forwarder 1 measured upstream throughput

forwarder2 link
forwarder3 link
forwarder4 link

5 10 15 20
time(s)

0

10

20

30

40

ra
te

(m
b/

s)

forwarder 3 measured upstream throughput

forwarder2 link
producer link
forwarder4 link

5 10 15 20
time(s)

0

10

20

30
qu

eu
in

g 
de

la
y(

m
s)

queuing

forwarder2
forwarder3
forwarder4
producer

Figure 14: Throughput maximization evaluation results

6.5 Congestion Control under both Caching

and Multi-Path Forwarding

A simple topology with two consumers requesting the same object,
as illustrated in fig. 15 is used to evaluate our design under both in-
network caching and multi-path forwarding. Both consumers are
requesting the same segmented object in order. Consumer 1 started
first, and consumer 2 started 1.5 seconds later. As forwarder 1 has a
large cache, it is expected that consumer 2 will start to be satisfied
by the cache in forwarder 1. The high bandwidth between consumer
2 and the cache allows it to catch up with consumer 1. Ideally, both
consumers will eventually make the same progress requesting the
object, and data multicast is used to improve consumer throughput.

The simulation result is shown in fig. 16. The multi-path for-
warding converged to fully utilize upstream bandwidth in one sec-
ond. The queuing delay is stable and low in the steady-state. From

18



Effective NDN Congestion Control Based onQueue Size Feedback ICN ’22, September 19–21, 2022, Osaka, Japan

70mb/s, 5msConsumer 1
(started first) Replica 130mb/s, 10ms

30mb/s, 10ms

Forwarder 1
(Cache)

70mb/s, 5ms
Consumer 2
(started late)

Replica 2

Figure 15: Scenario 5: Simple topology with caching

2 4 6 8 10 12
time(s)

0

5

10

15

20

qu
eu

ei
ng

 d
el

ay
 (m

s)

Forwarder 1 upstream queuing delay
Producer 1 link
Producer 2 link

2 4 6 8 10 12
time(s)

0

10

20

30

40

50

ra
te

(m
b/

s)

Forwarder 1 upstream throughput

Producer 1 link
Producer 2 link

2 4 6 8 10 12
time(s)

0

5000

10000

15000

20000

se
gm

en
t#

consumer progress (interest expression time)
c2 (started later)
c1 (started first)

2 4 6 8 10 12
time(s)

0

20

40

60

80

th
ro

ug
hp

ut
 (m

b/
s)

consumer throughput

c2 (started later)
c1 (started first)

Figure 16: Scenario 5 simulation results

the consumers’ perspective, it can be seen that the later started
consumer 2 can catch up with consumer 1 by utilizing its high
bandwidth to cache. When satisfied by a cache, the forwarder’s
queue size feedback to consumer 2 does not include the input queue
size. Consequently, consumer 2 can send faster than consumer 1,
whose queue size feedback is affected by the input queue of the
forwarder. After consumer 2 catches up, both consumers retrieve
data at 60mb/s, which is the total multi-path bandwidth towards
the data object. During this time, data multicast is effectively used.

6.6 Multiple Consumers with Fair Queuing

We use a scenario where multiple consumers fetch different objects
to validate that fair-queueing can be used with NDN-QSF to pro-
vide fairness. As illustrated in fig. 17, in the scenario there are three
consumers fetching different objects. The consumers start and end
at different times to emulate new flows joining and leaving the
network. Their traffic shares a single bottleneck between the for-
warders. The bottleneck is congested when forwarder 2 is queuing
up large data packets towards the consumers. Thus we added a fair
queuing mechanism in forwarder 2’s data forwarding pipeline. Data
from each name prefix are put in separate queues with the same
fair-queueing weight. This fair queuing setup provides a per-name
prefix fairness.

The simulation result is shown in fig. 18. The result shows that
the system is resilient to flows’ joining and leaving. After new flows
join at 5 seconds and 15 seconds, the system can quickly converge
to a steady state with low queuing delay, near full bandwidth utiliza-
tion, and per-name prefix fairness with respect to both throughput
and queuing delay.

Consumer 1
(/prefix1)
1s to 40s

Forwarder 2Forwarder 1
Consumer 2

(/prefix2)
5s to 25s

Consumer 3
(/prefix3)

15s to 35s

Producer 1
(/prefix1)

Producer 2
(/prefix2)

Producer 3
(/prefix3)

100mb/s, 5ms

Figure 17: Scenario 6: Dumbbell topology with three con-

sumers fetching different objects

This result validates the idea that fair queuing can be used to-
gether with NDN-QSF design to form a more complete congestion
control and multi-path forwarding solution in NDN.

0 5 10 15 20 25 30 35
time(s)

0

20

40

60

80

100

th
ro

ug
hp

ut
 (m

b/
s)

Consumer Throughput

Consumer 1
Consumer 2
Consumer 3

0 5 10 15 20 25 30 35
time(s)

0

10

20

30

40

de
la

y 
(m

s)

Queueing Delay

Consumer 1
Consumer 2
Consumer 3

Figure 18: Scenario 6 simulation results

7 DISCUSSION

NDN Congestion Control Requires Network Feedback. NDN’s in-
network caching and multi-path forwarding help scale data deliv-
ery and maximize overall network throughput. An earlier work
attempted to make end consumers’ measurement “resilient to RTT
variations” [12]. However, investigations show that both mech-
anisms affect consumers’ RTT measurements, making the RTT
variations no longer a reliable indication of network congestion
status. Consequently, the well-established point-to-point and end-
to-end congestion control solutions can no longer be adopted in
NDN networks. It motivates us to use forwarders’ measurements as
feedback for congestion detection. As we discussed in §2, although
different solutions use different congestion feedback, they share
the use of forwarders’ local measurements of network load, such
as queue size and PIT table size.

Focus on Fetching Data, no point-to-point Flow. We designed our
congestion control solution without establishing the equivalent of
an end-to-end single-path flow as in IP networks that other designs

19



ICN ’22, September 19–21, 2022, Osaka, Japan Sichen Song and Lixia Zhang

did [4, 10]. NDN-QSF does not mark forwarding paths on data
packets or let consumers explicitly establish end-to-end flows that
are forwarded along a single path by marking “flow ids” in interest
packets. Evaluation of our design shows that congestion control
and multi-path forwarding can be effective without differentiating
end-to-end single path flows.

Understanding the Cost. Because a router fetches data in different
name prefixes and from different producers, NDN-QSF lets each
router keep an Interest queue for each name prefix, measure the data
arrival rate to estimate upstream capacity and inform downstream
routers of the observed max queue size. Performing the above tasks
add additional per name prefix state to an NDN router. Thus the
amount of memory required for our solution is proportional to
the number of name prefixes, which may result in the scalability
limitation of our design when a network has a large number of
name prefixes. This issue deserves further investigation.

Fairness and Congestion Control. Our design of NDN-QSF is yet
to consider the fairness issue. As pointed out in [11], different from
congestion control in an IP network, fairness in NDN needs a new
definition, per-name prefix fairness versus per consumer fairness.
Once this definition is settled, we believe our approach can be ex-
tended to support fairness. Fair queuing can be used to provide
fairness across different consumers and objects. Per-name prefix
fairness, if it is desired, can be achieved by fair queuing on the
interest queues of different name prefixes. Per-consumer fairness
would be more complicated to achieve, as it requires downstream
routes to inform upstream about the number of consumers whose
request is forwarded to the upstream. The upstream can then sep-
arately queue incoming interests from different downstream and
fair-queue them using the reported number of consumers from
each downstream as weight. One proximation to simplify the im-
plementation could be letting each router perform per-downstream
face fairness.

Open Questions and Future work. This work leaves several ques-
tions open and worth to be worked on in the future. Firstly, we have
only performed a limited evaluation of NDN-QSF. The experiments
we used are based on relatively simple network topologies and
lack noise or varying background traffic. We also did not perform
a comparison with other NDN congestion control or multi-path
forwarding algorithms to show the advantages and disadvantages
of our proposed solution. Second, we have not made detailed inves-
tigation into the effects and selection methods of some parameters
(e.g., queue threshold). We hope to clearly identify trade-offs as-
sociated with these parameters and provide suggestions for their
selection in the future. Finally, as mentioned earlier, NDN-QSF does
not provide fairness between different consumers or different name
prefixes. We only validates that fair queuing can be used with NDN-
QSF in §6.6. We hope to introduce fairness-related primitives into
NDN-QSF in the future and experiment with them to build a more
complete solution.

8 CONCLUSION

In this work, we investigate the effect of multi-path forwarding and
in-network caching on congestion control and show that it’s diffi-
cult for consumers to detect network congestion based on their local

measurements in NDN. In response to this issue we propose to use
forwarder’s local queue size as congestion feedback to downstream.
We designed a congestion control solution for NDN, NDN-QSF,
that works in the presence of in-network caching. The congestion
control design is hop-by-hop with forwarders’ local queue size as
congestion feedback to downstream. The forwarders measure the
available bandwidth through its upstream link and limits interest
transmission rate based on estimated bandwidth and congestion
feedback of the upstream. NDN-QSF is then applied to multi-path
forwarding environment and extended to make multi-path for-
warding decisions. Through extensive simulation, we show that
the proposed design effectively controls congestion while utilizing
the bandwidth of multiple forwarding paths.

Our initial design of NDN-QSF identified multiple remaining
issues to be addressed in future study. The first is to experiment with
NDN-QSF in much larger setting with bigger topologies and many
more consumers and data producers. The second one is to address
potential scalability challenge because NDN-QSF builds Interest
queues on a per producer basis. Yet another one is to define, and
achieve, fairness in situations where multiple consumers fetching
multiple objects.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their valuable
comments which helped us improve the paper’s quality. This work
is partially supported by the National Science Foundation under
award 2019012.
This material is partially based upon work supported by the AFRL
under contract No. FA9453-21-C-0554. The views expressed are
those of the authors and do not reflect the official guidance or posi-
tion of the United States Government, the Department of Defense
or of the United States Air Force.

REFERENCES
[1] Alexander Afanasyev, Ilya Moiseenko, Lixia Zhang, et al. 2012. ndnSIM: NDN

simulator for NS-3. (2012).
[2] Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical Delay-Based Conges-

tion Control for the Internet. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18). 329–342.

[3] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and Van
Jacobson. 2016. Bbr: Congestion-based congestion control: Measuring bottleneck
bandwidth and round-trip propagation time. Queue 14, 5 (2016), 20–53.

[4] Giovanna Carofiglio, Massimo Gallo, and Luca Muscariello. 2016. Optimal multi-
path congestion control and request forwarding in information-centric networks:
Protocol design and experimentation. Computer Networks 110 (2016), 104–117.

[5] Jiachen Chen, Mayutan Arumaithurai, Xiaoming Fu, and KK Ramakrishnan. 2016.
SAID: A control protocol for scalable and adaptive information dissemination in
ICN. In Proceedings of the 3rd ACM Conference on Information-Centric Networking.
11–20.

[6] Dah-Ming Chiu and Raj Jain. 1989. Analysis of the increase and decrease algo-
rithms for congestion avoidance in computer networks. Computer Networks and
ISDN systems 17, 1 (1989), 1–14.

[7] Lester Randolph Ford and Delbert Ray Fulkerson. 2015. Flows in networks. In
Flows in Networks. Princeton university press.

[8] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-friendly
high-speed TCP variant. ACM SIGOPS operating systems review 42, 5 (2008),
64–74.

[9] Stratis Ioannidis and Edmund Yeh. 2018. Jointly optimal routing and caching for
arbitrary network topologies. IEEE Journal on Selected Areas in Communications
36, 6 (2018), 1258–1275.

[10] Milad Mahdian, Somaya Arianfar, Jim Gibson, and Dave Oran. 2016. MIRCC:
Multipath-aware ICN rate-based congestion control. In Proceedings of the 3rd
ACM Conference on Information-Centric Networking. 1–10.

[11] Klaus Schneider, Cheng Yi, Beichuan Zhang, and Lixia Zhang. 2016. A practical
congestion control scheme for named data networking. In Proceedings of the 3rd

20



Effective NDN Congestion Control Based onQueue Size Feedback ICN ’22, September 19–21, 2022, Osaka, Japan

ACM Conference on Information-Centric Networking. 21–30.
[12] Sichen Song and Lixia Zhang. 2021. Exploring Rate-Based Congestion Control in

NDN. In Proceedings of the 8th ACMConference on Information-Centric Networking

(ICN ’21). Association for Computing Machinery, New York, NY, USA, 141âĂŞ143.
https://doi.org/10.1145/3460417.3483379

[13] Edmund Yeh, Tracey Ho, Ying Cui, Michael Burd, Ran Liu, and Derek Leong.
2014. VIP: A framework for joint dynamic forwarding and caching in named

data networks. In Proceedings of the 1st ACM Conference on Information-Centric
Networking. 117–126.

[14] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, KCClaffy, Patrick
Crowley, Christos Papadopoulos, Lan Wang, and Beichuan Zhang. 2014. Named
data networking. ACM SIGCOMM Computer Communication Review 44, 3 (2014),
66–73.

21


