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ABSTRACT
In Named-Data Networking (NDN), all packets are encoded in the
Type-Length-Value (TLV) format. TLV encoding and decoding are
implemented in every NDN library, and used by all applications
and forwarders. Therefore, formal analysis of TLV encoding can
assist NDN software development in the simplification of the code
base, analysis of the performance, and improvement of robustness.

In this paper, we want to bring attention to the subtleties of
TLV encoding. As an initial result, we develop a type-theoretical
model of TLV encodable types, and give an algorithm to automati-
cally derive encoding and decoding functions. We formally prove
that the derived encoding and decoding functions are inverse to
each other. To evaluate the practicality of automatically derived
algorithms, we implement the proposed algorithms in C++ tem-
plates and evaluate them in three aspects: performance, memory
usage, and code complexity. Our results show that our C++ library
is competitive in these three aspects. Though our implementation
is not fully automated, we show that it is possible to have a fully
automated library in future that correctly produce the encoding
and decoding functions. We also discussed the limitations of our
model and problems worth attention. We hope our work can offer a
starting point of further research on TLV, especially formal analysis
and automated implementation.

CCS CONCEPTS
• Software and its engineering→Domain specific languages;
• Networks → Presentation protocols; Network performance
analysis.
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1 INTRODUCTION
The Type-Length-Value (TLV) encoding allows fields to have vari-
able sizes, and has been widely used in network protocols. As a
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new network architecture, Named Data Networking (NDN) also
defines its network protocol in the TLV format. The implemen-
tation of TLV encoding and decoding becomes essential to every
piece of NDN software. NDN is still under active development,
some of the research activities focus on the performance of the
forwarding pipeline [7, 20, 28], and the implementation of NDN
forwarders [3, 14, 18]. Since the packet format of NDN has a po-
tential to change over time, there would be a need to evolve the
encoding implementations. Different from fixed-length encoding,
the encoding and decoding procedure is more complex. Therefore,
it is important to pay attention to the subtleties of TLV encoding,
such as the formal model and the implementation of TLV.

There are mainly three reasons why a model is useful: a) To save
human effort. NDN is a new network protocol whose encoding for-
mat is actively evolving over time. A formal model can be used to au-
tomatically derive encoding and decoding functions, which makes
the evolution of implementation easier when the protocol changes.
Depending on specific programming languages, derived functions
can be in different forms such as generic functions that handle all
encodable types, templates or macros expanded at compile-time,
and functions generated by some scripts. b) To improve software
robustness. Bugs in the encoding/decoding code may lead to soft-
ware vulnerabilities, as code that handles untrusted inputs is often
exploited by attackers. A formal model enables formal verification
and further helps in writing bug-free code. For example, OpenSSL
has 205 vulnerabilities since 1999 [6], most of which are remotely
exploitable. There are bugs (such as CVE-2016-2108) caused by the
careless implementation of encoding code. Similar things probably
happen to TLV encoding in NDN world. If we can prove the decod-
ing code only parses legally encoded objects and does not crash on
illegal inputs, the software will be more robust to attacks. c) To give
a basis for performance improvement in encoding. Generally speak-
ing, encoding is unlikely a performance bottleneck concern for a
specific application. However, since it happens at every running
application instance, the cumulated usage of computing resources
can be significant [12]. A formal model can be used to analyze
performance and improve implementation.

In this paper, we make a first step toward an NDN-TLV encoding
model via the following contributions:

• We develop a basic type-theoretic model of encoding and de-
coding, which can be used to automatically derive encoding
and decoding functions.

• We formally define the correctness via inverse relation, and
use computer proof assistant F* [22] to prove the relation
holds for our model. This improves robustness in the sense
that programs obtained from the model will properly handle
illegal inputs.
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• We show that it is practical to automatically derive encoders
and decoders from a type-theoretical model, and discuss the
future work to be done towards it.

• We discuss some subtle issues that are worth attention when
designing and developing NDN libraries.

This paper is structured as follows. § 2 gives background in NDN
TLV encoding and monadic parsing. § 3 presents a type-theoretic
model of TLV encoding, and defines and proves the inverse relation
of encoding and decoding functions. § 4 discusses the limitations
of the current model and other issues related to NDN-TLV. § 5
evaluates the practicality of having automatically derived encoders
and decoders. § 6 introduces related works. § 7 concludes the paper
with future work.

2 BACKGROUND
2.1 NDN Packets
Named Data Networking (NDN) [11] based on the lessons learned
from using and upgrading current networking stacks, put forward
an objective for future evolvability of the protocol [25]. In particular,
this objective is realized through (1) the use of variable-length
encoding of protocol messages: Interest and Data packets, and
(2) the requirement to gracefully process of unrecognized “non-
critical” elements and invalidate packetswith unrecognized “critical”
ones. In other words, these packets have no fixed-length fields,
requiring basic structural parsing to access fields. Examples of
Interest and Data packets and the elements that can appear in
these packets are shown in Figure 1. In this example, the Interest
requests a file named “/file/a”, requesting forwarders to return
Data exactly matching the specified name (CanBePrefix element)
and keep Interest state while waiting for Data for specified lifetime
(InterestLifeTime element). The corresponding Data packet carries
“/file/a”, meta information, actual content, as well as signature
information and signature itself. 1

INTEREST

Name
/file/a

Options

InterestLifetime = 4s

CanBePrefix = False

DATA

Name
/file/a

MetaInfo

ContentType = BLOB(0)

FreshnessPeriod = 10000ms

FinalBlockId = 4

Content
0a 0b 0c 0d

SignatureInfo

SignatureType = 3

SignatureValue

16 04 6b 2e ...

Figure 1: Example Interest and Data packets

2.2 TLV Encoding and NDN-TLV
The Type-Length-Value (TLV) encoding is a type of variable-length
encoding. As indicated by the name, TLV puts a type number and
1The example is designed for demonstration purpose. A real NDN Data packet should
be signed by a key and has a KeyLocator field carrying information about the key.

the length before the value of an encoded object. The type number
defines the type of this object, and the length indicates the length
of its encoded value in bytes. Due to its flexibility, TLV encoding
adopted by a wide range of network protocols, such as TLS ex-
tensions [17], BGP parameters [16], QUIC frames [10], and ASN.1
DER [9]. These protocols or formats typically have a fixed-length
type number and length part, such as one byte or two bytes.

NDN also adopts a similar TLV encoding. However, To provide
additional support for flexibility and protocol evolvability, NDN
specification [24] chose to apply the following variable-length en-
coding to type numbers and lengths, which makes it more compli-
cated that most existing TLV formats. If the value (of type number
of length) is less than 252, the value is encoded in a single byte;
otherwise, encoding consists of octet with values 253, 254, or 255
followed by 2-, 4-, or 8-byte encoded value, respectively.

For example, the Data packet in Figure 1 is encoded to Figure 2.
In the figure, type names are underscored, and lengths are italic.

Type number 06 Type: Data

Length 49 Length: 73B

Name 07 0c

field 08 04 66 69 6c 65 "/file"
08 01 61 "/a"

MetaInfo 14 0c

field 18 01 00 ContentType: 0
19 02 27 10 FreshnessPeriod: 10s
1a 03 08 01 34 FinalBlockId: "/4"

Content 15 04

field 0a 0b 0c 0d

SignatureInfo 16 03

field 1b 01 03 SignatureType: 0

SignatureValue 17 20

field 16 04 6b 2e b5 ...

Figure 2: Encoded Data packet

2.3 F* and EverParse
Everest is a project focuses on security communication. The Everest
team developed a general-purpose proof assistant F* [22], and pre-
sented EverParse [15], which is a framework that generates parsers
and encoders for TLS messages from descriptions. The authors
defined the correctness, safety, and non-malleability of parsers.
They used F* to formally verify the generated parsers and encoders
satisfy these properties. The authors proposed a domain-specific
language (DSL) to describe TLS messages, implemented a compiler
to convert DSL-defined structures into F* code. The output F* code
is verified and derived into C code.

However, the TLV format used in TLS differs from NDN-TLS
in two places: TLS-TLV has a fixed Type and Length field, but
NDN-TLV has a variable-size encoding for them. TLS only uses
TLV in some parts of the packet, but NDN-TLV uses it for every
field. These differences make the DSL defined in EverParse not
suitable for NDN-TLV. Our work takes a similar method in terms
of using F* to verify the correctness of TLV encoding, but we focus
on NDN-TLV and have not proposed a DSL yet.

There are other libraries designed for TLV encoding, discussed
in § 6.
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3 MODELING OF TLV
This section develops a basic type-theoretic model of TLV encoding,
where encoders and decoders can be derived from the construction
of encodable types. One benefit of a formally defined model is the
ability to express the data structures in a declarative way so that the
corresponding encoder and decoder can be automatically derived.
Then, all a programmer has to do is to construct the encodable
type, without the need to implement any algorithms manually. This
reduces humanworkload and improves modularity. Another benefit
is the formal verification of TLV encoding, which guarantees the
correctness of algorithms and improves reliability.

This section is organized as follows. First, we make some def-
initions and assumptions used in the modeling. Then, we define
encodable types — the input of encoding and output of decoding. Af-
ter that, we briefly introduce the derived algorithms and prove the
inverse relation (i.e. correctness) between encoding and decoding.
At last, we make some discussions on this model.

3.1 Definitions
To be clear and precise, we define the terms and symbols used in
the paper. Most of them have been widely used in programming
language field (see [21]). We use v : t to denote the value v is of
type t. Let f : t1 → t2 denote the type of function f which takes
an argument of t1 and returns t2. All functions are supposed to be
currying (i.e. a function taking two arguments of types t1 and t2
and returning r is written as f : t1 → t2 → r). We also assume
that the following types and functors2 are pre-defined:

• Uint64 represents an unsigned 64-bit integer.
• Optional t represents an option value of type t, similar
to OCaml’s ’t optional or Haskell’s Maybe t. It has two
legal constructors: None for the absence of a value, and Some
v for the present of value v , with v of type t.

• [t] represents a list of type t, which also has two construc-
tors: empty list [], and concatenation v::l, with v of type
t and l of type [t].

• Unit type (), which only has one value (). This is used as a
placeholder type when values are not required, as well as to
construct boolean TLV fields.

• Product type t1*t2, whose legal values are pairs (v1,v2),
with v1 of type t1 and v2 of type t2.

• ByteString represents a list of octets. We assume the type
ByteString has the functions to obtain an empty byte
string, get the length, take an arbitrary substring3, and con-
catenate:

empty :ByteString

len :ByteString → Uint64

sub :ByteString → Uint64 → Uint64 → Optional ByteString

+ :ByteString → ByteString → ByteString

In this paper, an object is something that can be encoded, such as a
Data packet, an NDN name, the content part of some Data, and even

2A functor is briefly a function of types, which consumes one type and produces
another type, like C-array.
3We assume the substring function takes substring starting index and the length as
input. It returns None when the input is out of range, and Some[] when the length is
0.

a type number. The type of an object is called an EncodableType,
which defines the legal values, the semantics, and the encoding
format of a specific kind of object. We will formally define the
universe of encodable types later. A wire is the result of encoding,
which has the type ByteString. Roughly, we have the diagram

Object : EncodableType
encode
⇄

decode
Wire : ByteString

However, decoding may fail when the input is illegal, and may
consume part of the input wire. Therefore, in our work, we con-
sider the two functions have the following type: assuming t is an
encodable type,

encode : t → ByteString

decode : ByteString → Optional(t ∗ ByteString)

If decode fails, it returns None; otherwise, it returns some tuple
of the parsed value (of type t) and the remaining wire (of type
ByteString). Note that decode is a total function, which means it
must be proved not to crash or fall into infinite loops on any input,
not matter succeeds or fails.

Then, the inverse relationship between encoding and decoding
can be expressed as follows:

∀v : t, decode (encodev)
= Some (v, empty) (1)

∀v : t,∀x,y : ByteString, decodex = Some (v,y)

⇒ x = encodev + y (2)

A TLV block is the structure consisting of a type number, a length,
and its value. A field is a TLV block as a part of an encodable type.

3.2 Encodable Types
We define encodable types via recursive construction as follows.
Details are explained in the following subsections.

(1) (Primitive types) TL number (type for TLV-TYPE and TLV-
LENGTH), natural number (type of unsigned 64-bit integer),
binary string, unit, and name are encodable types.

(2) For each encodable type t and any natural number type ,
a TLV block with specific type number Tlv⟨type⟩ t is an
encodable type. is an encodable type.

(3) For each type t obtained by (2), i.e. TLV blocks, the list type
[t] is an encodable type.

(4) For each type t obtained by (2), the optional type Optionalt
is an encodable type.

(5) For each type t1,t2 obtained by (2), (3), (4), or (5), their
product t1*t2 is an encodable type.

3.2.1 Primitive types. We define 5 primitive types: TL number,
natural number, binary string, unit, and name. We use TlNumber,
Uint64, ByteString, (), and Name to denote them, respectively.

TL number is a type defined for TLV-TYPE and TLV-LENGTH
fields, which is an unsigned 64-bit integer. Their encoding formats
follow the variable size encoding defined in the specification [24]:
if it is less than 253, use one byte containing its value; otherwise,
use the first byte as a flag to indicate the length of this variable and
the following 2, 4, or 8 bytes to encode its value. For example, if
the value is 254, then the wire will be 253, 0, 254, as it cannot be
contained in one byte.
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A natural number represents a 64-bit unsigned integer. As stated
in the specification, it is contained in 1, 2, 4, or 8 bytes, using the
least number which can contain it.

A binary string represents an arbitrary octet string. It is encoded
as given.

The unit type is used to compose boolean. Since it has only one
possible value () with no semantics, it is encoded with the empty
string.

A name represents an NDN Name, which consists zero or more
name components. A name component is a TLV block whose type is
user-defined and unknown at compile time. A legal value of a name
is a list of pairs [(n,v)], wheren : TlNumber andv : ByteString.

3.2.2 Functors. In our definition of encodable types, rules (2)(3)(4)(5)
give four types of functors: TLV block of given type, arbitrary TLV
block, list, and optional.

A TLV block encapsulates an encodable type t with a specific
type number and a length. We use Tlv⟨type⟩ t to denote it. For
example, generic Name component type can be written as

GenericNameComponent = Tlv⟨8⟩ ByteString

The legal values of Tlv⟨type⟩ t are the legal values of t .
A list is a sequence of zero or more values of type t , where t

must be a TLV block. Let [t] denote the list type of t .
Optional indicates an optional field of type t , where t is a TLV

block, denoted by Optional t . A legal value for Optional t can be
either Some followed by a legal value of t or None. For example, the
optional Content field in Data (a binary string with type number
21) can be written as

ContentField = Optional Tlv⟨21⟩ ByteString

whose legal values include Some(“abcd”) and None. A boolean field
can be represented by an optional TLV block of unit. For example,
the CanBePrefix field in an Interest is

CanBePrefixField = Optional Tlv⟨33⟩ ()

whose legal values include

True = Some () False = None

3.2.3 Product. A product is a fixed-length tuple containing a value
for each of its field multiplicand types. In our work, multiplicands
can be any of TLV blocks, lists, and Optionals (with mutually differ-
ent type numbers), but not primitive types. For example, MetaInfo
is a product of the corresponding field type of ContentType, Fresh-
nessPeriod, and FinalBlockId. We use ∗ to denote a product.

MetaInfo = ContentType ∗ FreshnessPeriod ∗ FinalBlockId

To simplify discussion, we consider products are left associative, and
then every product can be reduced to a product of two encodable
types.

3.2.4 Algorithms. Since the encoded format of all types are doc-
umented in NDN packet format specification, the derivation of
encoding and decoding algorithms is trivial. We put the pseudo-
code in the appendix A.

3.3 Proof Sketch of Inverse Relation
Using F*, we have formally proven the inverse relation between the
encoder and decoder holds. In this subsection, we give a sketch of
the proof. To show the equation (1) and (2) holds for every encodable
type, we induct on the structure.

3.3.1 Primitive types. It is clear that (1) holds as the code branches
of decode are one-to-one corresponding to the encode. For natural
number, ByteString and unit, since the decode only succeeds when
there is nothing left, (2) also holds. For TL number, if decode
succeeds with decodex = Some(v,y), then we have x = z + y with
z being a ByteString of length 1, 3, 5 or 9. It is trivial to show that
z = encodev case by case.

Note that TL number’s encoding indicates its length, so it has
the following length awareness property4:

∀x : ByteString,∀v : t, t.decode(t.encode v + x) = Some(v, x)
(3)

Since a name is a list of TLV blocks, the correctness is proven in
the following subsections.

3.3.2 Tlv Block. Consider type Tlv⟨n⟩ t. Let v be a value of this
type. By (1) and (3) of TL number, we have decode encodev =
Some(v ′, empty) if t. decode t. encodev = Some(v ′, empty) for some
v ′. This holds by (1) of t. Thus, (1) holds for TLV Block.

Suppose decodex = Some(v,y). Then, by the decode algorithm,
we have z s.t. x = z +y and decode z = Some(v, empty). By (2) of t,
encodev = z. Then, since (2) holds for TL numbers, we can deduct
that (2) holds for Tlv⟨n⟩ t.

TLV block also encodes its length into the wire, so the length
awareness property (3) holds as well. (decode line 6-7,10-11)

3.3.3 List. Induct on the length of the list. Clearly (1) and (2)
hold for empty list. Suppose v = v0 :: vl . Then [t]. encodev =
t. encodev0 + [t]. encodevl . Since t is some TLV block, by the
length awareness (3),

t. decode([t]. encodev) = Some(v0, [t]. encodevl)

By the definition of [t].decode,

[t]. decode([t]. encodev) = Some(v0 +vl ′, empty)

with vl ′ given by

[t]. decode([t]. encodev) = Some(vl ′, empty)

By inductive assumption, vl ′ = vl , so (1) holds.
Suppose

[t]. decodex = Some(v0 :: vl,y)

By (3) of t , x = t. encodev0 + z for some z with

[t]. decode z = Some(vl,y)

By the inductive hypothesis, [t]. encodevl+y = z. Thus, [t]. encodev+
y = x , which proves (2).

3.3.4 Optional. Optional is similar to a list of length at most 1.
Thus, (1) and (2) hold similarly.

4Called “strong prefix property” in EverParse [15]
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3.3.5 Product. List and optional of TLV blocks satisfy a weak ver-
sion of length awareness: suppose t, t ′ are two types from TLV
block, list or optional that have different type numbers:

∀v : t,∀v ′ : t’,t. decode(t. encodev + t’. encodev ′)

= Some(v, t’. encodev ′)

Therefore, by induction on the length, we can prove that the inverse
relation holds for products.

Suppose (v0,vl) : t0*tl, with tl being the rest of product and
they do not overlap in type numbers. By the weak length awareness,

t0. decode(t0*tl. encode(v0,vl)) = Some(v0, tl. encodevl)

Thus, by induction hypothesis, (1) holds. (2) holds directly from the
definition of decode.

4 DISCUSSION
This section discusses the limitations of the model and possible
future improvements. We believe these are also problems worth
attention when developing NDN libraries.

4.1 Unrecognized Fields
In consideration of evolvability, NDN defines the least significant
bit of TLV type number as the critical flag. When the parser meets
an unrecognized field with a non-critical TLV type, the specification
allows the parser to ignore the field and continue parsing. However,
in our model, the product type fails in every unrecognized field
regardless of its type number.

To correctly describe the subtype relationship among structures,
we have to use a more accurate type to replace the coarse model
built upon products. The fact that an object with unrecognized
fields is encoded from an extended structure definition should be
correctly shown. For example, an unrecognized field in a MetaInfo
may come from a newer version of the protocol that extends the
MetaInfo type with new fields. However, the equation (2) could fail
if we omit the unrecognized fields.

4.2 Encoding of Signature
During encoding, a known signature is nothing more than a byte
string. However, the signature value is computed based on the
encoded wire of previous fields. That is, if we consider the whole
packet as an encodable type, signing happens in the middle of
encoding. In our model, we assume that the product type is left-
associative, so we could encode the part before the SignatureValue
field and then sign it. For example, in our model, the type of Data
packet becomes

Data = PreviousFields ∗ SignatureValue

Thus, it is possible to encode PreviousFields, compute signature,
and finally encode the whole packet with signature. However, this is
less efficient in practice. Also, separating signature and the previous
fields is counter-intuitive. Future work is needed to find a solution
to include signing as part of the encoding.

The ParametersSha256DigestComponent in the Name of an In-
terest is computed after signing, and our model is unable to handle
it.

4.3 Applications versus Forwarders
Our model is a basic step towards formal modeling and does not
distinguish the use cases of NDN client applications and forwarders.
However, in practice, the differences between a forwarder and a
client application are remarkable, and they may deserve different
models to handle. A forwarder needs to constantly decode packets,
but seldom does encoding. It also has high requirements on through-
put, so the developer may need to avoid unnecessary copying at
all costs. After decoding, the original wire is usually discarded by
a client application, but a forwarder needs to keep it as packets
generally need to be sent out as is. Moreover, a forwarder some-
times needs to modify some field of a packet, e.g. adjusting the
HopLimit value, so indexing to the memory of sub-elements in
the wire is a useful feature to a forwarder, but probably less so to
an application. Whether these differences can lead to the need for
different theoretic models needs further research.

4.4 Languages Describing TLV Format
If automatically derived encoders are adopted, the language used
to the format of a TLV encodable type is important, since it will
not only be read by human-beings but also by programs that derive
the encoders. Roughly, the languages can be categorized into four
families: metasyntax language such as ABNF [4], domain-specific
language (DSL) like Protobuf, programming language features such
as Go struct tags, and meta-TLV.

The NDN specification [24] uses ABNF to describe all types.
ABNF is good for human to read, and there are some general-
purpose parser generators such as Yacc, GNU Bison and Lark [19].
However, ABNF as a metasyntax language is too general, which
makes it difficult to associate anABNF non-terminal with a class/struc-
ture in programming language. As a result, these general-purpose
parser generators either requires the programmer’s input to handle
grammar rules, or simply returns an abstract syntax tree. Thus, for
every encodable type, extra work5 is needed to implement a practi-
cal parser. Moreover, existing general-purpose parser generators
offer little help in encoding implementation.

DSLs can be a good fit for both human and machine use. Es-
pecially, Protobuf has a very similar format as NDN-TLV does.
PyNDN2 [27] uses Protobuf to describe TLV types used in Sync
protocols, and the author wrote a customized encoder that encodes
Protobuf message objects into TLV wires, and a decoder doing
the inverse. Though the Protobuf library does not provide a formal
proof on the correctness of the encoders and decoders, the language
itself does not prevent us from constructing formally-verified en-
coders. The only issue remained is how to indicate the fields covered
by the signature. In our opinion, a DSL with Protobuf-like syntax
plus some feature that allows annotations of fields would be an
ideal solution.

Some programming languages provide features that allow de-
signing a limited DSL. For example, Python’s descriptors [8] and
Go’s struct field tags [1] support annotations to fields, and these
annotations can be accessed at run time. These language features

5It is hard to estimate the amount of work since currently there is no such implemen-
tation. But the amount of work would be proportion to the number of types we need,
which makes it not a fully automated method.

95



ICN ’22, September 19–21, 2022, Osaka, Japan Xinyu Ma, Alexander Afanasyev, and Lixia Zhang

work seamlessly with structures or classes definition in the lan-
guage, but it is difficult to translate among different programming
languages.

If we only consider machine usage without human-readability,
a TLV-based metasyntax language could also be designed, which
describes object types and fields in the form of TLV elements. In
short, using TLV to describe TLV types. Compared with human-
readable languages, TLV metasyntax is easier to be transmitted via
networks and more friendly to software parsers.

5 PRACTICALITY OF AUTOMATIC
DERIVATION

Ideally, the implementation should be automatically derived from
the proof of inverse relation by a automated theorem prover, such as
Coq or F*. However, our model is not mature enough. Also, our cur-
rent proof in F* relies on dependent types, a feature not supported
in most programming languages and preventing the conversion. To
evaluate the practicality of automatic derivation, we implemented
a proof-of-concept library in C++ templates. We structured our
program the same way as the model in § 3, used C++ template to
implement the six ways of constructing an encodable type, and
tested the encoding and decoding of Interest and Data packets to
verify its correctness. Though the template code is written by hand,
the encoding and decoding functions of specific objects are gener-
alized from templates, so it can be considered as a semi-automated
derivation. The implementation details are put in § B.

Theorem provers do not support all languages. However, since
both Coq and F* support conversion to C and most programming
languages have foreign function interfaces (FFI) that can use C
libraries, automatically derived code could be used in a wide range
of languages. An alternative approach is to take a semi-automated
derivation method as we did in C++. For example, one may use
features such as macros in Rust and Lisp, reflection and emitting in
some .Net language like C#. One may also write a script to generate
programming code for encoding and decoding functions in the
designated language. Therefore, we think automated verification
does not significantly narrow down the choices of programming
languages.

We also evaluated our C++ library by comparing it with other im-
plementations, including ndn-cxx[23], python-ndn[26], and YaNFD[14].
Since our model is not mature yet to serve the need of a client li-
brary, and also the library code is not fully automated as expected, it
is unfair to compare it with production-ready NDN libraries. Thus,
we think the numbers should be taken as a qualitative result of
the practicality of our method, and put the detailed numbers in
Appendix § C. We compared the implementations in three aspects:
performance, implementation complexity, and memory overhead.
Our results showed that the semi-automatically derived code is com-
parative in these aspects, which shows the derivation is a practical
direction to implement NDN client libraries.

6 RELATEDWORK
Nail [2] defines a protocol grammar to define both the wire format
and the internal object model of data. Nail defines stream trans-
forms to capture protocol features such as variable-sized fields and
check-sums. These features provide great flexibility and reduce

programmers’ effort for safely parsing and encoding data. How-
ever, Nail streams are weakly typed, which may increase the risk
of runtime errors.

The Network Protocol Tool (NPT) [13] uses a typed represen-
tation system that describes the protocol format. NPT compiles
the description into a Rust parser. In addition, the authors also
developed the Augmented Packet Header Diagram language that is
machine-readable and can be used in IETF RFC documents.

There are works on verified encoding and decoding for differ-
ent formats. Narcissus [5] designed a type-safe combinator-based
system that can automatically derive decoders and encoders from
a formal specification. The authors used the interactive proof to
verify the derived encoder and decoders are inverses of each other.
They evaluated their work by implementing the headers of five
protocols used in the TCP/IP stack. However, Narcissus does not
have first-class support for TLV.

There are domain specific languages, such as Protobuf, that
can be used to describe TLV object types and generate encoding
and decoding code with a code generator. However, the Protobuf
library’s encoding format is different from NDN-TLV, and it does
not give a formal proof of correctness.

7 CONCLUSION AND FUTUREWORK
We designed a formal model of NDN TLV encoding and decoding
by formally defined encodable types in a recursive way. This model
promises correctness by formally proving the inverse relation of
encoding and decoding functions. To assess the potential of auto-
matically deriving encoding functions from a formal model, we
implemented a C++ library that is structured in the same way as
the model, and evaluated its performance, memory overhead, and
implementation complexity.

In the future, we plan to refine our model to naturally include sig-
natures and unrecognized fields, and write a better computer-based
proof that can be effectively used to derive the desired automatic
derivation. We also consider proposing a DSL to describe NDN-TLV
objects after a more mature model is obtained, if necessary.
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A ALGORITHM PSEUDO-CODES
This appendix gives the pseudo code of encoding and decoding. The
pseudo-code is written in a language close to OCaml and Haskell.
We also uses well-known functions such as map, foldl and do
notations, when they make sense canonically.

A.0.1 Encoding. Encoding of primitive types is trivial:
1 (* Natural number *)
2 encode: Uint64 -> ByteString
3 encode v =
4 (* Suppose UintX.encode gives the little endian

encoding of an integer *)
5 if v <= 0xff then Uint8.encode v
6 else if v <= 0xffff then Uint16.encode v
7 else if v <= 0xffffffff then Uint32.encode v
8 else Uint64.encode v
9
10 (* TL number *)
11 encode: TlNumber -> ByteString
12 encode v =
13 if v <= 252 then Uint8.encode v
14 else if v <= 0xffff then
15 Uint8.encode 253 + Uint16.encode v
16 else if v <= 0xffffffff then
17 Uint8.encode 254 + Uint32.encode v
18 else
19 Uint8.encode 255 + Uint64.encode v
20
21 (* ByteString *)
22 encode: ByteString -> ByteString
23 encode v = v
24
25 (* Unit *)
26 encode: () -> ByteString
27 encode () = empty

To encode a TLV block, we put its type number, length and
encoded value in order

1 (* TLV block *)
2 encode: Tlv<n> t -> ByteString
3 encode v = let w = t.encode v in
4 TlNumber.encode n + TlNumber.encode (len w) + w

Encoding of list is simply concatenating the encoding of its
elements.

1 (* List *)
2 encode: [t] -> ByteString
3 encode l = foldl (+) empty (map t.encode l)

Encoding of an optional is the same as a single element list.
1 (* Optional *)
2 encode: Optional t -> ByteString
3 encode v = match v with
4 | Some v0 -> t.encode v0
5 | None -> empty

To derive the encoding of products, we consider products (∗)
and tuples ((-,-)) are left-associative. Then, every product is re-
duced to a product of two, and we encode them in order We simply
concatenate

1 (* Product *)
2 encode: t1 * t2 -> ByteString
3 encode (v1, v2) = t1.encode v1 + t2.encode v2

A.0.2 Decoding. Decoding of primitive types is also trivial. For the
sake of proof, only TL number consumes partial input. Decoders of
natural number, ByteString and unit always try to greedily consume
the whole input. This works because they are encapsulated in TLV
blocks when used to compose another encodable type.

1 (* Natural number *)
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2 decode: ByteString -> Optional(Uint64 * ByteString)
3 decode w =
4 let l = len w in
5 if l = 1 then Some(Uint8.parse w, empty) else
6 if l = 2 then Some(Uint16.parse w, empty) else
7 if l = 4 then Some(Uint32.parse w, empty) else
8 if l = 8 then Some(Uint64.parse w, empty) else
9 None
10
11 (* TL number *)
12 decode: ByteString -> Optional(TlNumber*ByteString)
13 decode w = do
14 (* <- means let w0 be the result if sub succeeds,
15 and return None otherwise *)
16 w0 <- sub w 0 1
17 let v0 = Uint8.decode w0 in
18 if v0 <= 252 then Some(v0, sub w 1 (len w - 1))
19 else
20 let l1 = 2**(v0-252) in
21 w1 <- sub w 1 l1
22 w2 <- sub w (1+l1) (len l - 1 - l1)
23 (* Here we use the Uint64 decoding *)
24 (v, _) <- Uint64.decode w1
25 Some (v, w2)
26
27 (* ByteString *)
28 decode: ByteString->Optional(ByteString*ByteString)
29 decode w = Some (w, empty)
30
31 (* Unit *)
32 decode: ByteString -> Optional(() * ByteString)
33 decode w =
34 if w = empty then Some((), empty) else None

The parser TLV block calls the parser of the type number, the
length, and the value type in order.

1 (* TLV block *)
2 decode: ByteString->Optional(Tlv<n> t*ByteString)
3 decode w = do
4 (n1, w1) <- TlNumber.decode w
5 if n1 != n then None else
6 (l, w2) <- TlNumber.decode w1
7 wv <- sub w2 0 l
8 (v, w3) <- t.decode wv
9 if w3 != empty then None else
10 w4 <- sub w2 l (len w2 - l)
11 Some (v, w4)

The parser of the list [t] repeats calling t ’s parser until it fails,
and collect all results into a list:

1 (* List *)
2 decode: ByteString -> Optional([t] * ByteString)
3 decode w = match t.decode w with
4 | Some (v, w1) ->
5 let Some(vl, wl) = [t].decode w in Some(v::vl, wl)
6 | None -> Some([], w)

Similarly, the decoder of opt(T ) calls the parser of T , and encap-
sulates it with another Some.

1 (* Optional *)
2 decode: ByteString->Optional(Optional t*ByteString)
3 decode w = match t.decode w with
4 | Some (v, w1) -> Some(Some v, w1)
5 | None -> Some(None, w)

The decoder of a product calls the parser of its multiplicands in
order.

1 (* Product *)
2 decode: ByteString->Optional((t1*t2)*ByteString)
3 decode w = do
4 (v1, w1) <- t1.decode w
5 (v2, w2) <- t2.decode w1
6 Some ((v1, v2), w2)

B IMPLEMENTATION
This appendix discuss the implementation details of our proof-
of-concept C++ template library. In B.1, we introduce how the
users are supposed to use our library. In B.2, we summarize the
implementation details that is not covered by the type theoretic
model.

B.1 Overview
Our library allows users to use C++ structs/classes directly. The
only thing users need to do is specify the format of the class as an
encodable type. For example, the class of MetaInfo can be defined
as Listing 1.

Listing 1: MetaInfo definition
1 struct MetaInfo {
2 std::optional<uint64_t> contentType;
3 std::optional<uint64_t> freshnessPeriod;
4 std::optional<NameComponent> finalBlockId;
5
6 using Encodable = Struct<MetaInfo,
7 NaturalFieldOpt<0x18, MetaInfo, &MetaInfo::contentType

>,
8 NaturalFieldOpt<0x19, MetaInfo, &MetaInfo::

freshnessPeriod>,
9 NameComponentFieldOpt<0x1a, MetaInfo, &MetaInfo::

finalBlockId>>;
10 };

The inner class, Encodable, contains the derived encoding and
decoding function. It also has some data fields used in the encod-
ing or decoding procedure. Listing 2 gives an example using this
encoder class.

Listing 2: Using MetaInfo encoder
1 MetaInfo metainfo{
2 .contentType = 0,
3 .freshnessPeriod = 4000,
4 .finalBlockId = GenericNameComponent(std::string("

10000"))
5 };
6 // Encoding metainfo into buf
7 MetaInfo::Encodable encoder(metainfo);
8 Buffer buf(encoder.EncodeSize());
9 encoder.EncodeInto(buf.data(), buf.capacity());
10 // Decoding buf
11 const auto& [metainfo2, decoded_size] =
12 MetaInfo::Encodable::Parse(buf);

B.2 Key Points in Design
B.2.1 Interfaces. The algorithm in § 3 relies on concatenation of
byte string. However, this is an O(n) operation, which is too slow
to be used in practice. Therefore, in our implementation we pre-
allocate a buffer before encoding, and let the encoder fill into the
buffer. To allocate the encoding buffer, we need to obtain the size
of the encoded wire before actual encoding. Therefore, the encoder
interface is designed with three functions: EncodeSize calculates
the size of wire; EncodeInto which encodes the object into an
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allocated buffer; Parse parses the input wire returning the decoded
object and size of wire consumed. See Listing 3.

Listing 3: Encoder interface
1 template<typename T, typename E>
2 concept Encodes = requires(T v, E e, uint8_t* buf,
3 size_t len, const Buffer& wire) {
4 E(v);
5 {e.EncodeSize()}->std::convertible_to<size_t>;
6 {e.EncodeInto(buf,len)}
7 ->std::convertible_to<size_t>;
8 {E::Parse(wire)}->std::convertible_to<std::tuple<
9 std::optional<T>, size_t>>;
10 };

B.2.2 Product. Following the model in Section 3, primitive types
are simply classes. C++ templates can be used to implement functors
easily. The remaining problem is how to implement products, since
we need to encode from a C++ class. C++ does not support reflection
at the language level. Therefore, we need users’ input to specify the
fields of the class, which is possible via variadic templates (Listing 4).
For each field, the encoder store its TLV type number and the offset
in the class. Then, the value of this field can be obtained or set via
the pointer to the object of this class.

Listing 4: Encoder of products
1 template<typename Model, typename ...Fields>
2 struct Struct {
3 std::tuple<Fields...> fields;
4 template<std::size_t I = 0>
5 inline typename std::enable_if<I ==
6 sizeof...(Fields), size_t>::type
7 EncodeSize() const {
8 return 0;
9 }
10 template<std::size_t I = 0>
11 inline typename std::enable_if<I <
12 sizeof...(Fields), size_t>::type
13 EncodeSize() const {
14 return std::get<I>(fields).EncodeSize() +
15 EncodeSize<I+1>();
16 }
17 // Other functions omitted ...
18 };

B.2.3 Name component. Name components are not covered by
the model, since they are TLV blocks but can have arbitrary type
numbers, instead of a specific one known at compile time. The way
we handle it is to define the name component class to be ByteString
that contains the whole TLV block, and write specific encoding and
decoding functions for it.

B.2.4 Signature. In § B.2.1, we calculate the encoded size before
allocation. Here, a problem with signatures arises. As stated in 4.2,
signature values cannot be computed before encoding, and some-
times even their lengths are unknown in advance. Since the size of
the signature value affects the TLV-length of the packet, which also
uses a variable size encoding, the cascading effect in sizes makes
it tricky. Then, one has to choose between efficiency in time and
memory: if we allocate a large enough buffer to handle the maximal

possible size, there will be a memory waste; if we encode other
parts first, compute the signature, and then reassemble them in
the destination wire, we pay the cost of copying. However, the
signature is always located at the end of a packet, which inspires a
three-pass method using less memory:

• First pass is size estimation and buffer allocation. We assume
the signature takes maximal possible space.

• Second pass is encoding. We encode the whole packet, com-
pute the signature, and put them into the pre-allocated buffer.

• Third pass is fixing TLV lengths. We have two length num-
bers to fix: the length of the signature value and the whole
packet. If the actual TLV-length needs a smaller than the
maximal possible space, we simply move the type number
of the packet down and truncate the head of the buffer.

The signing and verification of packets are out of the scope of this
paper. Depending on specific implementations, there are multiple
methods. For example, the decoder returns the indexing of wire
regions covered by the signature for verification usage.

C EVALUATION
In this section, we evaluate the C++ template library by comparing
it with other five implementations: three existing NDN libraries –
ndn-cxx (in C++), python-ndn, YaNFD (in Go), and two referential
implementations written by the authors — using Go reflection
and code generation.6 Among them, the encoding part of ndn-
cxx and YaNFD is implemented by hand for all encodable types.
Python-ndn and the two referential Go implementations also use
automatic derivation, but do not follow the encoding model in
this paper. We compare the six implementations in three aspects:
performance, implementation complexity, and memory overhead.
Performance is measured by the time consumed in encoding and
decoding. To evaluate the complexity, we use lines of code (LOC),
which is considered as one factor of user-friendliness and difficulty
of maintenance. We show that our C++ template library based on
automatic derivation has a comparative performance in all three
aspects.

The future goal of our research is to have automatically derived
code instead of taking the C++ template library, the numbers should
be considered as a proof of practicality, instead of final performance
results.

C.1 Experiment design
C.1.1 Methodology. We run each program against six test cases,
and measure its execution time. The test cases consist of three
encoding and three decoding. We use Data packets in all test cases;
we offer a justification in §C.1.3. Two factors are related to the
runtime: the size of the payload, and the length of the name. The
former impacts the number of bytes flow through the program, and
the latter the number of sub-elements. To identify these, we design
the test cases as follows:

• The first is the control group, which has 100B of payload
and a name of 3 components.

6These two implementations are written for the sake of evaluation. They are irrelevant
with the model introduced in the paper, so the implementation details are omitted.
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• The second has a larger payload (4kB) than, but the same
name as the first one.

• The third has a longer name (33 components) than, but the
same total number of bytes as the first one. To keep the total
number of bytes flowing through the program the same, we
decrease the payload.

• In encoding tests, the SHA256 hash is used for the signa-
ture field, because a Data packet is always signed and most
signature types require computing a hash.

Each test case generates 106 packets. We run five times and take
the average time. The standard error of the mean is less than 2%
for all numbers.

C.1.2 Environment. We run all candidates on a Ubuntu 18.04 server,
which has a Intel Core i7-5820K CPU (with 6 cores, but the programs
we run are single-threaded) running at 3.3GHz, and 64GiBmemory.
We use gcc 10.3.0, go 1.6, and pypy 3.7 7 to compile or execute.

C.1.3 Reasons for choosing data packets. A Data packet is simpler
to parse than Interest, but contains everything that may count to
performance: a name, a payload, and a nested data structure. Given
that our model has limitations handling signatures (§ 4.2), we did
not sign the Data packet. The goal of this evaluation is qualita-
tively showing the practicality of automatic derivation instead of
investigating the performance of a specific implementation, so we
believe unsigned Data packets are representative enough for this
first evaluation.

C.2 Performance
The runtime data are shown in Table 1. Here, python-ndn is an
outlier because Python is not optimized for performance.

To get more insights, we calculate the time increase rate over
payload and the number of name components, shown in Table 2 by
the columns named “/Payload” and “/Name”, respectively. “Baseline”
shows the estimated base of increase, i.e., the part of execution
time that is irrelevant to payload size or name. Execution time on
different machines can be very different, so the specific numbers
do not make much sense. We mark outliers bold and only explain
them column by column.

First, look at the two baseline time columns. Reflection solutions
have higher numbers due to the cost of querying RTTI, about
3µs . There is extra time consumed in python-ndn (20µs), probably
because python-ndn uses a hash map to store temporary variables
during encoding. That hash map uses strings as keys, which is
time-consuming. About ndn-cxx and YaNFD, we did not observe a
single bottleneck function or hot path. However, we found some
parts that may contribute to it. For ndn-cxx, we noticed that during
signing, the Data class parses the encoded wire back to make all
pointers inside pointing to the new wire instead of their original
value. This procedure takes about 20–25% of the total time, and
should make up part of the baseline time. For YaNFD, we think it
may come from the copying of sub-elements during encoding. In
YaNFD’s implementation of encoding, a TLV block first calls the
encoding function of every sub-element, and then copies their wire
into the allocated buffer. For example, Data contains Name as a

7We did not use CPython because it is known to be very slow. The time for each test
case is 10 times longer than others.

sub-element, and Name contains NameComponent. Then, when
Name’s encoder is called, it first calls the encoding function of every
NameComponent, and then copies the wire of NameComponent
into the buffer of Name. In Data’s encoding function, Name’s wire
is also copied. Thus, every NameComponent is copied twice. The
deeper an element exists, the more times it needs to be copied.

Then, consider the two payload columns. Python-ndn is more
sensitive to payload size when encoding. This may due to the use
of the SHA256 algorithm. The Go and C++ implementations are
directly compiled to machine code, but the Python version has a
wrapper class in Python, which makes it slower. No one is sensitive
to payload size on decoding, because the content is not copied.

Last comes the overhead accompanied with name components.
In decoding, except for python-ndn 8, ndn-cxx and YaNFD give
higher numbers. We think YaNFD’s overhead is also due to its
copying of sub-elements, as stated in the explanation of baseline
time. As for ndn-cxx, we noticed that constructing a Name object
from a string takes more than half of the execution time in test case
3. In the constructor of the Name class, making a shared pointer
to a Buffer object costs 30% (i.e. 15% of the total time) Therefore,
we guess it is the memory management that contributes to this
overhead. In decoding, YaNFD is slightly worse than others. Our
speculation is that, since every name component is treated as an
object in garbage collector (GC), this leads to an increased workload
of GC.

In summary, our C++ template library is competitive with other
solutions in terms of execution time.

C.3 Implementation Complexity
Though LOC cannot fully represent implementation complexity,
under equal readability conditions, fewer lines of code are generally
less complicated and easier to maintain.

We consider the code of a TLV library as two parts: one contains
basic data structures and helper functions that are used by every
TLV object; the other is code written for a specific TLV object, such
as Data. The second part is more critical, since this is the code a
user needs to write when defining a new data structure.

Table 3 shows LOC data of all implementations. The “Library”
column is the shared part. We inspected two TLV data structures,
MetaInfo and Data (nested objects excluded). For each object, we
further classify the code into three parts: the definition of data
structure, the algorithms of encoding and decoding, and other code.
MetaInfo is simple and straightforward. Data is complicated due to
signature. These numbers are not precise, because the coding style
may affect the LOC.

In the Library column, we can see that the three fully functional
libraries — YaNFD, ndn-cxx, and python-ndn — has more lines of
code than sample programs written by us. This is because semi-
production code has more functionalities than test code, such as
error handling and interfaces with other modules, so it is the ex-
pected result. In the algorithm column, ndn-cxx and YaNFD have
more lines, as the user needs to manually call the encoding function
of each field.

8The algorithm that parses a string into a Name is implemented in Python, which is
slower as expected.
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Test Case Encoding Decoding
1 2 3 1 2 3

Number of Packets 1000000
Total Encoded Size 157MB 4061MB 157MB 189MB 4093MB 189MB

Name Length 3 3 33 3 3 33

Golang
YaNFD 4.1s 8.4s 15.8s 2.5s 2.6s 8.4s
Reflection 2.9s 3.9s 4.4s 3.3s 3.2s 5.0s
Code Generator 0.4s 1.1s 1.8s 0.5s 0.6s 1.9s

C++ ndn-cxx 4.0s 4.5s 22.1s 1.1s 1.1s 2.7s
C++ Template 0.6s 0.8s 3.5s 0.4s 0.5s 1.3s

Python 3 python-ndn 12.9s 15.0s 32.3s 4.0s 4.0s 4.6s
Table 1: Total runtime

Encoding Decoding
Baseline (µs) /Payload (µs/kB) /Name (µs/1) Baseline (µs) /Payload (µs/kB) /Name (µs/1)

YaNFD 2.76 1.10 0.39 1.86 0.04 0.20
Reflection 2.70 0.25 0.05 3.07 0.00 0.06
Code Generator 0.23 0.18 0.05 0.33 0.02 0.05
ndn-cxx 2.16 0.13 0.60 0.96 0.00 0.05
C++ Template 0.30 0.05 0.10 0.29 0.02 0.03
python-ndn 10.87 0.54 0.65 3.89 0.02 0.02

Note: time numbers in this table are per packet values, so 1s in Table 1 becomes 1µs .
Table 2: The baseline and increase rates of runtime for each Data packet

Library MetaInfo (def) MetaInfo (alg) MetaInfo (etc) Data (def) Data (alg) Data (etc)
YaNFD 1052 6 76 67 10 129 98
Reflection 422 5 6 0 7 41 0
Code Generator 666 8 12 0 12 30 0
ndn-cxx 1890 7 59 125 9 128 427
C++ Template 653 9 6 0 13 32 0
python-ndn 909 4 0 12 16 53 11

Table 3: Numbers of lines of code breakdown

Test Case 1 2 3
Data Wire Data Wire Data Wire

Encoded Wire Size 189 4093 189
Name Length 3 3 33

Golang
YaNFD [Before encoding] 575 - 4475 - 2255 -
YaNFD [After encoding] 1719 213 13425 4117 4569 213
Reflection & Code Generator 341 213 4241 4117 1061 213

C++ ndn-cxx [Before Encoding] 1655 - 5557 - 5735 -
ndn-cxx [After Encoding] 12092 10372 12092 10372 14732 10372
C++ Template 581 229 4481 4133 2501 229

Table 4: Memory overhead (bytes)

In future work, the shared library part should be automatically
generated from our model, so the developers do not need to under-
stand or maintain it. Taking that into consideration, the automati-
cally derivation method can reduce developers’ effort in the term
of lines of code.
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C.4 Memory Overhead
The runtime data are shown in Table 4 9. The “Data” column shows
the total memory occupied by the data structure representing a
Data packet, and the “Wire” column shows the memory used by
the encoded wire. There is a canonical type []byte to represent a
binary string in Go, which is used in all three implementations to
represent wire. Also, reflection and code generator have the same
definition of data structures. Therefore, all Go implementations
share the same numbers for “Wire” overhead, and reflection and
code generator have also the same numbers for “Data”. YaNFD and
ndn-cxx combine original TLV blocks with encoded wires, so the
sizes of “Data” are different before and after encoding.

Two C++ implementations have more overhead over Go due to
memory management. In Go, a mark-and-sweep garbage collec-
tion is used, so every pointer to an object only contains a mem-
ory address (8B on a 64-bit platform). However, in C++, we use

shared_ptr which maintains reference counting (24B on 64-bit).
In ndn-cxx, there are many pointers maintaining the indices to
sub-elements in the wire. As a result, every empty TLV block class
uses 80B of memory. The example Data in Figure 1 and Figure 2
has 14 TLV blocks, so there is 1.1KB memory used by these TLV
blocks, besides the data contained in this packet. Also, in ndn-cxx,
every Data packet allocates a buffer of maximum size (8800B) for
encoding due to implementation issues, so the memory usage after
encoding is large. The user can copy the encoded wire into a buffer
of exact length to reduce it.

This comparison shows that the memory overhead is basically
orthogonal to the algorithm used in encoding or decoding. Instead,
languages and memory management systems are main factors.
9Python object system is very complicated and known to have a very high memory
overhead. It is also not easy to compute the total occupied memory of an object in
Python. Therefore, we drop python-ndn in the table.
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