
Scaling State Vector Sync
Varun Patil, Sichen Song, Guorui Xiao, Lixia Zhang

{varunpatil,songsichen,grxiao,lixia}@cs.ucla.edu
UCLA

Los Angeles, USA

ABSTRACT
State Vector Sync (SVS) is a Distributed Dataset Synchronization
(Sync) protocol designed to support distributed applications run-
ning over NDN. SVS encodes raw dataset state in its messages to
achieve resilient synchronization with low latency. As a result, the
SVS message size grows linearly with the number of data producers
in the same communication group, raising concerns about its scala-
bility. This poster proposes a solution to improve SVS’s scalability
through the use of partial state vectors (p-SVS), and presents the re-
sults from our preliminary evaluation. Our results show that p-SVS
has similar performance to vanilla SVS with improved scalability.

CCS CONCEPTS
• Networks→ Network protocol design; Transport protocols;
Network performance evaluation.

KEYWORDS
Named Data Networking, Distributed Dataset Synchronization,
NDN Transport, State Vector Sync, Scaling

ACM Reference Format:
Varun Patil, Sichen Song, Guorui Xiao, Lixia Zhang. 2022. Scaling State
Vector Sync. In ACM ICN 2022 Demos and Posters (ICN ’22), September 19–21,
2022, Osaka, Japan. ACM, New York, NY, USA, 3 pages. https://doi.org/10.
1145/3517212.3559485

1 OVERVIEW
Distributed Dataset Synchronization protocols provide the trans-
port service in the Named Data Networking (NDN) [5] architecture.
State Vector Sync (SVS) [2] is one of the newer Sync designs, which
uses raw state information directly for encoding. In this poster we
address the scalability of SVS as the number of producers increases.

SVS provides data namespace synchronization1 among all par-
ticipants in a Sync group. Each data producer in the group uses
sequential naming to identify all data pieces it produces; it increases
this local sequence number every time it generates a new piece
of data. SVS propagates the changes in sequence numbers at all
producers to all participants in the group. Thus, the group’s dataset
state can be represented by a list of [producer, seq#] tuples. To
achieve synchronization, participants encode this State Vector in

1Synchronization of data can be achieved using higher level APIs [4]

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICN ’22, September 19–21, 2022, Osaka, Japan
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9257-0/22/09.
https://doi.org/10.1145/3517212.3559485

the name of a single Sync Interest and multicast this Interest to all
participants in the Sync group.

One unique aspect in the SVS design is letting Sync Interests
carry the state vector directly, instead of a highly compressed form
as some other NDN Sync protocols do, that require additional state
to decode [3]. Therefore, a single Sync Interest 𝐼𝑆 informs its re-
ceiver 𝑅 the latest dataset state of its sender 𝑆 , independent from
how many previous Sync Interests, either from 𝑆 or anyone else,
that 𝑅 may have missed. Upon reception of 𝐼𝑆 , 𝑅 compares its local
state vector with that carried in 𝐼𝑆 : if the latter has new informa-
tion, 𝑅 updates its local state vector; or if 𝑅 notices 𝑆 falling behind,
it will multicast another Sync Interest containing its state vector.
To prevent multiple receivers of 𝐼𝑆 from reacting simultaneously,
𝑅 sets a random wait timer before sending its Sync Interest, and
cancels its transmission if it receives another Sync Interest with
more or the same information compared to its own before the timer
expires. This is referred to as Sync Interest suppression in the SVS
design.

SVS achieves resilient synchronization with low delay by carry-
ing the raw state vector in Sync Interests. Unfortunately, doing so
results in the size of a Sync Interest growing linearly with the num-
ber of producers in the group, therefore the number of producers
would be upper-bounded by the size of network MTU. However,
we note that each tuple [producer, seq#] has no dependency on any
others in the state vector, therefore one may put any partial set of
the vector in a Sync Interest. In this work, we investigate the use
of partial state vector to improve the scalability of SVS.

2 PARTIAL STATE VECTOR
By encoding a subset of the state vector in the Sync Interest, SVS
can synchronize a Sync group of any size. However, this scalability
brings a potential cost of increased Sync latency, because a receiver
needs to collect multiple Sync Interests to learn the latest dataset
state of the group. Such a design converts the problem of SVS
scalability to the question of how to choose an ideal subset of state
vector to send in next Sync Interest. On careful inspection, we
recognize two conflicting goals in the creation of a Sync Interest
carrying a partial state vector.
(1) We note that in real distributed applications, not all producers

may actively produce data at all times. Therefore, one may only
include in the Sync Interest the tuples of producers that have
produced data most recently, which would increase efficiency
since the Sync Interests carry less redundant information. We
refer to this approach as the Recent strategy.

(2) At the same time, we must take into account the possibility of
packet losses and network partitions, which may cause some
participants to miss some Sync Interests. As a result, if Sync
Interests only carry information for the most recently changed
producers, the state of some producers will not be propagated

168

https://doi.org/10.1145/3517212.3559485
https://doi.org/10.1145/3517212.3559485
https://doi.org/10.1145/3517212.3559485


ICN ’22, September 19–21, 2022, Osaka, Japan Varun Patil, Sichen Song, Guorui Xiao, Lixia Zhang

50 100 150 200 250 300 350 400
Total publications per second

150

200

250

300

La
te

nc
y 

(m
s)

Base
SegBase
Random

Recent
RandRec

Figure 1: Latency Comparison

to all participants until their next update. In other words, the
Recent strategy does not provide any time-bound on eventual
consistency. One solution to this problem is to include the states
of a random subset of producers in every Sync Interest, thus
providing a statistical guarantee that each producer’s state will
be periodically included in a Sync Interest. We refer to this as
the Random strategy.

As a middle ground, we also devise a third strategy, by including
the states of both a subset of recently updated and a subset of
randomly selected producers in the Sync Interests, which we call
the Random-Recent (RandRec) strategy.

It must be noted here that the aforementioned list of competing
factors for creating a partial state vector is by no means exhaustive,
and serves only as a starting point for developing more strategies.
We also note that when using partial state vectors, to let a newly
joined participant quickly catch up the latest group dataset state,
we need to design a bootstrapping mechanism that allows a new
participant to fetch the complete dataset state as Data packets.

3 EVALUATION
We conducted preliminary comparison of the three aforementioned
partial state vector strategies, together with vanilla SVS (a Sync
Interest carrying the complete state vector) and segmented SVS
(segmenting the complete state vector into multiple Sync Interests).
Using ndnSIM [1], we set up a grid topology of 8 × 8 nodes, with
all the 64 nodes participating in a single SVS Sync group. Each
node produces new pieces of data every 1sec, while a few nodes
are randomly selected to produce new data every 100ms. We vary
the aggregate group publication rate by varying the number of the
fast producers from 0 to 38. Each network link has 10ms propaga-
tion latency and a 50% packet loss rate2. All the nodes start data
production at the start of each simulation which ran for 10sec.

We use the 95%tile latency of synchronization and the total
network traffic as the metrics for the comparison; 95%tile latency is
defined as the delay for 95% of participants to learn the latest data
production. We generate partial state vectors whose size is 30% of
the entire state vector (simulating an artificially small MTU). As a
baseline, we also evaluate (1) Vanilla SVS (Base), and (2) Vanilla SVS
with segmented Sync Interests, where the complete state vector is
segmented into 4 Sync Interests (SegBase).

2Because our grid topology creates rich connectivity and multicast Sync Interests are
sent along all links, we use this artificially high loss rate to tear apart each strategy’s
performance.

50 100 150 200 250 300 350 400
Total publications per second

1

2

3

Ov
er

he
ad

 (b
yt

es
)

1e6
Base
SegBase
Random

Recent
RandRec

Figure 2: Overhead Comparison

Fig. 1 shows a comparison of the dataset state synchronization
latencies among different strategies. Note that, overall, the latency
goes down as data production rate goes up, because a node sends
a Sync Interest as soon as it produces a new piece of data, thus
higher data rate leads to more frequent Sync Interests.3 We also
note that segmented Sync Interests perform marginally worse than
base SVS, since it has lower probability of informing latest data
production than base SVS. Performance of the random strategy
worsens with increasing frequency of publication, because the ran-
domly selected product tuples are more likely to miss some of the
latest data production. The latency of Random-Recent strategy, on
the other hand, follows closely to that of base SVS, and is even lower
at low publication rate. The Recent strategy has shortest latency at
all publication rates; however this strategy may not do well in the
presence of network partitions, which we did not simulate.

Fig. 2 compares the total number of bytes transmitted across all
links in the network. The Sync Interest sizes of the three partial
state vector strategies are approximately 30% of the base SVS Sync
Interests, thus they all have a lower overhead than the base SVS by
a similar factor. The low overhead also indicates that Sync Interest
suppression continues to perform well when using partial state
vectors, since we used the same suppressionmechanism as base SVS
for all strategies. Together, these results demonstrate the potential of
using partial state vectors to achieve similar latency with improved
scalability and lower overhead, as compared to vanilla SVS.

4 SUMMARY AND FUTUREWORK
Although our preliminary results suggest that partial state vector
represents a a promising direction to address SVS scalability prob-
lem, our simulation setting is overly simplified. Further evaluation
efforts need to use more realistic network topology and workload
conditions, and further reduced partial state vector size, e.g. 10%
or lower, to see where the three proposed strategies in shortening
state vector can offer similar results as reported in this poster. More
innovative approaches may also exist that can achieve both high
scalability and low latency.

REFERENCES
[1] Spyridon Mastorakis, Alexander Afanasyev, and Lixia Zhang. 2017. On the Evo-

lution of ndnSIM: an Open-Source Simulator for NDN Experimentation. ACM
Computer Communication Review (July 2017).

[2] Philipp Moll, Varun Patil, Nishant Sabharwal, and Lixia Zhang. 2021. A Brief
Introduction to State Vector Sync. Technical Report NDN-0073, Revision 2. Named
Data Networking. 1–4 pages.

3This same reason lets Recent have lowest latency.

169



Scaling State Vector Sync ICN ’22, September 19–21, 2022, Osaka, Japan

[3] Philipp Moll, Varun Patil, Lan Wang, and Lixia Zhang. 2022. SoK: The Evolution of
Distributed Dataset Synchronization Solutions in NDN. https://doi.org/10.1145/
3517212.3558092 To appear in ACM Information Centric Networking Conference,
2022.

[4] Varun Patil, Philipp Moll, and Lixia Zhang. 2021. Supporting Pub/Sub over NDN
Sync. In Proceedings of the 8th ACM Conference on Information-Centric Networking

(Paris, France) (ICN ’21). Association for Computing Machinery, New York, NY,
USA, 133–135. https://doi.org/10.1145/3460417.3483376

[5] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, kc claffy, Patrick
Crowley, Christos Papadopoulos, Lan Wang, and Beichuan Zhang. 2014. Named
Data Networking. ACM SIGCOMM Computer Communication Review (CCR) 44, 3
(July 2014), 66–73.

170

https://doi.org/10.1145/3517212.3558092
https://doi.org/10.1145/3517212.3558092
https://doi.org/10.1145/3460417.3483376

	Abstract
	1 Overview
	2 Partial State Vector
	3 Evaluation
	4 Summary and Future Work
	References

