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ABSTRACT

The decade-long experiences from developing applications over
Named Data Networking (NDN) have taught us the importance of
well-designed libraries that offer support to application developers
to support data security. NDN trust schema provides a critical com-
ponent in the NDN security support, however its implementation
and support only started receiving significant attention in recent
years. This paper first provides a summary of the existing API sup-
port for trust schema, then takes a step forward by developing a
new trust schema API, named Envelope. Envelope addresses the
application requirements by offering comprehensive trust schema
functionalities, an easy-to-write schema language, and an extensi-
ble design. To demonstrate the usefulness of Envelope, we develop
a blog application which uses Envelope to secure its data. Our re-
sults show that Envelope provides effective trust schema support
for applications with acceptable overhead.
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1 INTRODUCTION

Among the multiple architectural advantages provided by Named
Data Networking (NDN), the most important one is its ability to
build security support intrinsically into the architecture. However,
effective and usable security library support are required to enable
application development to take this architectural advantage. NDN
security libraries need to support three basic functions: (i) installing
security parameters including trust anchors, certificates, and trust
schemas during each new entity’s bootstrapping phase; (ii) storing
and managing these security components continuously throughout
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the entity’s life time; and (iii) executing trust schemas during appli-
cation runtime. In this paper, we focus on providing easy-to-use
trust schema support.

The basic concept of trust schema was first introduced in 2015
by Yu et. al. [24]. It proposed to use a structured schema language
to define security policies based on the semantic names of data to
be communicated, and to sign and validate each NDN data packet
following the defined policies. However, the first implementation
of trust schema in ndn-cxx [14] offered limited functionality; it
can interpret trust schemas written in a language akin to regular
expressions, and provides data validation support only. More recent
work by Nichols [9, 10] prompted greater attentions to library sup-
port for trust schema. Nichols defined a special language, Versatile
Security (VerSec), to be used for authoring trust schema, which
is implemented in Data-Centric Toolkit (DCT) for home IoT de-
vices [10]. Subsequently, NDNits library [8] offered partial support
for using VerSec language in its trust schema implementation.

In this paper, we first summarize the previous efforts in trust
schema support. Drawing the lessons from the past, we then de-
sign a new trust schema API called Envelope. Envelopemakes three
contributions to trust schema support. First, it introduces an easy-
to-write trust schema language LightVerSec. Second, it provides an
abstraction layer that can fetch certificates needed by trust schema
execution from multiple sources. Third, it enables applications to
customize trust schema execution by defining their own packet
validation pipelines.

The remainder of this paper is organized as follows. §2 provides
an NDN overview and its trust domain model. §3 states the design
goals from a forward looking perspective. §4 introduces our trust
schema language LightVerSec. §5 discusses the design of Envelope
and how well it can satisfy applications’ needs. §6 describes the
Envelope implementation and qualitative evaluation which focuses
on API effectiveness. We discuss our lessons learned in §7, and
conclude the paper in §9.

2 BACKGROUND

In this section, we first clarify several security-related terminologies,
and then give a brief introduction to Named-Data Networking
(NDN), discuss the model of trust domain and the role of trust
schemas in NDN security solutions.

2.1 Security, Trust, Validity: Terminology
Clarification

The words “valid”, “secure”, and “trust” have all been used in de-
scribing security solutions under different contexts. They express
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different degrees of trustworthiness and supported by different
libraries and systems. For example, TLS uses the word “secure” to
mean authentication between the two ends and the content confi-
dentiality of a TCP connection [13]. On the other hand, Bitcoin uses
the word “secure” to mean that every transaction is valid within
the specific semantic definition of Bitcoin [7].

To avoid terminology ambiguities as shown above, we provide
the definitions for the following two security-related terms that will
be used in the rest of this paper. We use an illustrative example to
help clarify these definitions. We pick the blog application from [24]
as shown in Figure 1, and give it a name TechDaily. TechDaily
is a website hosting technical blogs written by multiple authors.
The website has one or a few administrators to certify the blog
authors, who then publish blog postings following TechDaily’s

naming convention.
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Figure 1: Entities of a simple blog website TechDaily

Authentication: verify whether a piece of data is produced by the
claimed producer and not manipulated by an impersonator. NDN
mandates that every Data packet carry a signature, so authentica-
tion reduces to (i) obtaining the signing key associated with the
Data producer and (ii) cryptographically verifying the signature.
(i) in turn requires retrieving the signing certificates.

Authorization: a named record (a piece of data) is produced by
an intended producer, and accessed by an intended consumer.
That is, the application’s access control rules specified by users or
administrators allows the producer to produce the Data packet.
For example, an author’s certificate is issued by an admin, and a
blog post is written by a valid author.!

The design of Envelope specifically focuses on authentication and
authorization for data production and access. Investigating data
content is considered out of the scope of our system. For example,
Envelope will not examine whether the blog content is correct or
not.

2.2 NDN & Its Basic Security Building Block

In NDN networks [1, 5], applications use semantic names, instead
of host addresses, to communicate. All data packets and producers
are assigned with semantic names. Data consumers send Interest
packets containing the desired data names, and the network brings
back the matching Data packets. Each Data packet is signed by its
producer and carries a KeyLocator field, which contains the name
of the signing key or its corresponding certificate associated with
its producer.

The data bits carried in an NDN Data packet can be a segment
from a file, a signing key itself (with the resulting signed data being
a certificate), or a package of defined security policies. Following

! Access control policies restricting the read privilege of consumers are out of the scope
of Envelope. In TechDaily’s example, every user is allowed to read every post of the
author, and access control does not apply here. NAC [28] can be used in applications
that require this level of access control.
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the least privilege principle, NDN enforces strict security policies
on which key can be used to sign which piece of data. As we
explain below, NDN uses trust schema to define and enforce these
policies. Given keys and security policies are also named bags of
bits, they can all be fetched using their semantic names, in the
same way as fetching any other types of data. Therefore, NDN’s
semantically named and secured data packets offer a basic building
block for building secure networked systems. Once the scope of
trusted parties is defined, and the security policies governing these
parties’ interactions are defined, NDN enables simple, secure, and
unified communication support for security management. Next we
discuss the scope of trust (§2.3) and how to define security poplicies
using trust schema (§2.4).

2.3 Trust Domain

There is no global trust in the human society; instead, the society
is made of autonomous organizations of various types and sizes,
with trust relations of different degrees established between organi-
zations. If cyberspace is a (perhaps extended) reflection of human
society, then its trust scope could/should follow similar structures.

The work by Nichols [10] coined the term trust domain?, defined
as a collection of named entities under the same administrative
control. Each trust domain has a trust domain controller, which is the
authority to manage security policies for all the entities within its
domain. The controller owns a trust anchor, which is a self-signed
certificate whose name prefix reflects the name of the trust domain.
This trust anchor is installed into all the entities within the trust
domain during their security bootstrapping process [21].

The controller for a trust domain D 4, Ctrla, controls the authen-
tication and authorization rules within its domain. These rules are
written in the form of trust schema [24, 29] which we explain next.
The trust schema makes use NDN’s semantically meaningful names
assigned to all network entities to define the security rules. For
instance, the trust schema rule for a name N under D 4’s namespace
defines which named entity (or entities) is allowed to produce data
with N as the name/name prefix. The trust schema of D4 can also
define rules to instruct entities in D4 on how to verify the received
data produced by the entities from another trust domain Dp.

When a new entity, Epeq, Wants to participate in a trust domain
D g, it goes through the security bootstrapping process first. During
this process, the controller of domain Dy, Ctrly: (i) authenticates
Epew by its identity obtained through some external existing sys-
tems (e.g. an email address, or a device’s barcode), then authorizes
its participation in the domain Dy; (ii) installs the trust anchor
T4 and trust schema into Epe.y; (iii) assigns a name to Epeqy; (iv)
issues a certificate to Epeqy. Security bootstrapping ensures that the
domain controller Ctrly is the sole administrator of domain Dy.
Every networked entity belongs to a single trust domain which is
administered by a single trust domain controller.

2.4 Trust Schema

All data packets produced within the trust domain must be signed
strictly following the trust schema defined for the data name, and
all received data must also be verified based on the trust schema

Z“Trust zone” was initially used, later changed to trust domain to avoid the confusion
with the use of trust zone in hardware area.



defined for the name of received data. A trust schema is made of a
set of rules that defines the security policies within a trust domain,
guiding data producers to select the correct signing key (carried in
Data packet’s KeyLocator) and consumers to use correct keys to
authenticate received packets. As an example, a trust schema deter-
mines the legitimate key to sign a given packet by specifying the
relationship between the signer’s semantic name and the packet’s
semantic name.

Given that Trust schema is confined to express the relationship
between semantic names, to use trust schema to enforce security
policies requires that all the information needed for decision mak-
ing must be encoded into data names and/or key names. As an
example, if an app wishes to limit the sensing data access to specific
time periods, it must encode into the sensing data names the data
production time. This restriction makes it easy to design languages
to systematically express trust schema rules, and libraries to auto-
mate the execution of them. We review the existing trust schema
languages and libraries next.

Given trust schema’s critical role in enforcing security policies,
it must be solely controlled by the domain controller, and be applied
to authorize every action in the trust domain. Specific applications
or entities in a trust domain may define more locally scoped trust
rules for finer control over trust relations, in complement with the
trust schema.

2.5 Previous Efforts in Trust Schema Support

ndn-cxx [14] is the first library to provide API support for trust
schema. The validator provided in ndn-cxx allows developers to
verify the authenticity and integrity of received data packets. To
perform its task, the validator checks with the trust schema and
fetches the needed certificates from the network to verify the signer
is an acceptable entity for signing the received data. ndn-cxx did
not implement the data signing support based on trust schema.

VerSec [10], together with its initial implementation in DCT [6],
significantly by introducing a domain-specific language to write
trust schema. The VerSec language enables application developers
to use declarative expressions to define security rules for IoT mes-
sages using the Publish/Subscribe (Pub/Sub) communication model,
and to specify the corresponding signing chains for these messages.
In contrast to ndn-cxx, DCT assumes that all the needed certificates
are synchronized among all the home IoT devices, eliminating the
need to fetch signer certificates from the network.

Subsequently, the TypeScript library NDNts [8] provided partial
support for the VerSec language in its trust schema impementation
- it removed the Pub/Sub semantics. NDNts’ signing interpreter as-
sumes that the Public Information Base (PIB) [15] stores the already
fetched certificates for each application. NDNts’s authentication
interpreter can then fetch certificates from either the PIB or the
network, providing flexibility in certificate retrieval.

The evolution of the aforementioned trust schema implemen-
tations demonstrates a continuing progress in API support that is
moving closer to meeting the needs of applications. This evolution
follows a path that includes:

(1) providing a comprehensive implementation;
(2) introducing a schema language that is expressive and easy to
use in writing trust schema;
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(3) proposing a general API design for trust schema library.

Envelope takes the next step along the same path to design a new
API that addresses the above three application needs in a coherent
manner.

3 ENVELOPE: THE DESIGN GOALS

An important observation we made is that, applications have dif-
ferent preferences on certificates storage. In a smart home applica-
tion [10, 27] where devices usually have limited storage resources,
it is a natural choice to store identity certificate and trust anchor
in-memory. Applications [3, 4, 12] that are capable to access local
file systems prefer storing certificates on local file system (i.e. PIB).
Besides entity’s own certificate, applications also have different
choices on retrieving other entities’ certificates. Although the most
common approach of retrieving producer certificate is to express
Interest for it during the data validation time, application [10] in a
closed network is more willing to let individuals pre-synchronizing
on the certificate set of all entities. A general trust schema API
designed for these applications (including the blog application in
§2.1) should have a flexible certificate storage design that allows dif-
ferent implementations. Later in §7 we further discuss the security
trade-off by enabling this flexibility.

Based on the lessons learned from the past effort in supporting
trust schema and our observation on previous application develop-
ment, we aim the design of our new trust schema API Envelope at
satisfying the following goals.

e Supporting an easy-to-use language for application developers
to write trust schema.

o Having a flexible certificate storage design that can leverage the
existing NDN data storage solutions, both local and remote [16,
23] to offer high certificate availability for the interpreters.

We use TechDaily, as introduced earlier, as an illustrative exam-
ple to show the utility of Envelope. TechDaily developers write a
trust schema to define this trust relationship, and Envelope executes
the trust schema during TechDaily’s operations. Figure 2 is a block
diagram of TechDaily’s software architecture, which shows how
it configures Envelope, produces and consumes blog data authen-
ticated and authorized by the site’s trust schema with Envelope
APL

Security Assumptions: In this design, we assume that the oper-
ating system is trustworthy and capable of protecting file integrity
within the local file system. We also assume the presence of a
Trusted Platform Module (TPM) that securely stores private keys
and enables applications to sign data with specific keys.

Next, we describe a easy-to-use trust schema language that we
developed for Envelopethat can be to specify the security policies
based on the trust relationship shown in Figure 2.

4 LIGHTVERSEC

We developed LightVerSec, a modified VerSec [10], to be used as
the trust schema language in Envelope. In the following, we in-
troduce LightVerSec from three perspectives: LightVerSec syntax,
modifications from VerSec, and name schema tree.

LightVerSec Syntax: LightVerSec employs pattern matching on
NDN names to validate packets. To validate a packet, a LightVerSec
implementation first searches for a rule in the defined trust schema
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Figure 2: TechDaily’s software architecture. The application
consumes and produces blog data and realizes schematized
trust using the three functions that Envelope provides. We
also consider the certificate storage as a universal resource
accessible to any NDN application running on the same host.

whose name pattern matches the packet name, and then checks
whether the KeyLocator complies with the pattern specified by the
rule.

In LightVerSec, a name pattern consists of a sequence of name
components and pattern variables, separated by slashes. Name
components are enclosed in quotes, while patterns are represented
as C-style identifiers. For example:

"TechDaily"/"admin"/adminID/"KEY"/_

is a name pattern consisting of three name components and two
pattern variables (adminID and _). A name pattern can only match a
name when they have the same length and name components given
in the name pattern equals to the components in the name at the cor-
responding positions. Then, the pattern variables are assigned with
corresponding components in the given name. Variables starting
with an underscore are considered as temporary variables and not
assigned. Name patterns can be named with an identifier starting
with a hash. When this identifier occurs in another name pattern,
it is replaced by its definition.
A rule is defined in the form of

#PacketNamePattern <= #KeylLocatorNamePattern

Which means any packet matching “#PacketNamePattern” should
have a key locator matching “#KeyLocatorNamePattern®, and the
pattern variables with same names assigned during the matching
must agree. Extra restrictions can be expressed in the form of {var:
func()}, where “var” is a pattern variable and “func” is a user
defined function passed to the LightVerSec implementation at run
time.

Figure 3 gives an example of TechDaily’s trust schema. In this
trust schema, six name patterns and three rules are defined; the
three rules are the administrator rule #admin<=#root, the author
rule #author<=#admin, and the article rule #article<=#author.
In the #article<=#author rule, the “authorID” in the article’s
name is required to be the same as is in the name of the author’s
key. A user-defined function named isVersion() is used to restrict
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#KEY: "KEY"/_/_/_version & {_version: isVersion()}

#site: "TechDaily"

#root: #site/#KEY

#admin: #site/"admin"/adminID/#KEY <= #root

#author: #site/"author"/authorID/#KEY <= #admin

#article: #site/"article"/topic/articleID/authorID/_version & {

_version: isVersion()} <= #author

Figure 3: The policy of the TechDaily website

the last name component of every packet, which simply checks if
the component is a valid version number. We provide the formal
Backus—-Naur Form (BNF) notation of LightVerSec in Appendix A.

isVersion()

\
\
\‘TechDaily” “admin” adminID, “KEY” isVersion()}
@ @ o 3 o _
A N4
author’ signedsy 1
i
authon' “KEY” I isVersion()!
i !
SignedBy
article’ L/

i ’
@ @ e e -

Figure 4: An example name schema tree compiled from the
trust schema text

Modifications from VerSec: LightVerSec differs from the orig-
inal VerSec in the following two aspects:

(1) Decoupling from Pub/Sub. VerSec has specific syntax and seman-
tics defined for Pub/Sub, such as publication naming rules [11].
Though the core VerSec language does not require Pub/Sub im-
plementation, it is hard to implement a VerSec compiler without
Pub/Sub features. To target more general NDN applications and
simplify compiler implementation, LightVerSec removes such
Pub/Sub specific support. Internal functions in VerSec are also
replaced by more flexible user-defined functions in LightVerSec,
which are written by the application developers and passed to
the implementation at runtime.

Focusing on Authenticating Received Packets. When compiling a
trust schema, the VerSec compiler can optionally embed internal
information for building publications, such as signers, while
LightVerSec does not optimize for Data producers, simplifying
compiler implementation.

@

~

These modifications do not restrict the usage of the language. That
is, all applications supported by VerSec are still supported by Light-
VerSec. The differences only affect the way to write the schema and
use corresponding libraries.

Name Schema Tree: To optimize the execution of the trust
schema, LightVerSec compiles the trust schema text into a trie-like
data structure called a name schema tree. In this data structure, each
edge represents a name component or pattern variable, and each
leaf node corresponds to a name pattern of a packet. This name
schema tree efficiently represents the structure of the trust schema.



When a trust schema is compiled into a name schema tree, rules
are attached to the leaf nodes. These rules are represented by point-
ers that point to the KeyLocator’s name patterns. This allows for
quick and accurate matching of packet names against the defined
trust schema. For example, Figure 4 illustrates the compiled name
schema tree for TechDaily’s trust schema. It demonstrates how
the trust schema is transformed into a hierarchical structure for
efficient validation and verification of packet names.

5 THE DESIGN OF ENVELOPE

In this section, we present the software design of Envelope. § 5.1
describes the certificate storage abstraction Box that Envelope relies
on. Then § 5.2 discusses the high-level functions Envelope provides.
Afterwards, § 5.3 explains how set function configures Envelope
with trust anchor and trust schema. Finally, we demonstrate how
Envelope signs and validates a packet in § 5.4 and § 5.5.

5.1 Certificate Storage Abstraction: Box

The Envelope design goals described in § 3 desire a flexible cer-
tificate storage design. Specifically, this certificate storage should
have a straightforward yet extensible API, ensuring that: (i) The
storage itself does not impose any specific storage model, such as
a Relational Database or Key-Value Store. (ii) The design should
be compatible with the existing certificate storage solutions, such
as KeyChain and the NDN data repository, allowing TechDaily to
use the existing software that has been developed by the NDN
community. (iii) TechDaily developers can customize its certificate
storage solution without modifying Envelope APIs.

To meet these design requirements, Envelope provides an ab-
straction layer for certificate storage, referred to as the Box. The
Box abstraction includes the following two APIs:

o get(prefix,lambda) — cert: When the Box receives a query
from TechDaily in the form of a name prefix, its role is to
return a matching certificate, if one exists. Optionally, Tech-
Daily can specify a callback function, denoted as lambda, to
enable certificate filtering. One common use case for filter-
ing is to ensure that the returned certificate has a version
number higher than a certain value.

o put(cert): TechDaily has the capability to store a certificate
in the storage by providing the complete certificate packet.
The Box ensures that it is securely stored for future retrieval
and usage.

5.2 Envelope Functions

The core of Envelope API has the following three high-level func-
tions.

e set(anchor, schema): This function is invoked by TechDaily
entity immediately after the security bootstrapping process
to configure Envelope with the acquired trust anchor and
trust schema.

o sign(box, tpm,usPkt) — sPkt: TechDaily utilizes the sign
function to sign an NDN packet. This function requires a
Box, a TPM (Trusted Platform Module) module, and an un-
signed NDN packet as input. It then returns the signed NDN
packet to TechDaily. During the signing process, Envelope
queries the provided Box to retrieve an appropriate signing
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certificate. Afterwards, Envelope can access TPM, sign the
packet and provide the signed packet back to TechDaily.

e validate(box, sPkt) — bool: TechDaily utilizes this function
to validate a signed packet. The function returns a boolean
validation result based on the trust schema. During the vali-
dation process, Envelope queries the provided Box to fetch
the signing certificate pointed to by the packet’s KeyLocator.

Note that Envelope allows the sign and validate functions to use
different Boxes. In a real-world deployment scenario, TechDaily
may choose to store owned certificates locally on disk while relying
on a remote data repository to provide other certificates along the
signing chain. In this case, TechDaily would provide two different
Boxes when invoking the two functions, allowing for flexibility and
customization.

5.3 Envelope Configuration

When the TechDaily instance initializes, it invokes the set method
to configure Envelope. In response to this call, Envelope compiles
trust schema and stores the trust anchor and the compiled name
schema tree on the local file system. These files are saved with
a predefined and unique name that is associated with the trust
domain name.

By consistently storing the trust anchor and name schema tree
in the same location for each domain, Envelope ensures easy access
and retrieval of the trust-related information whenever required
by the application.

5.4 Data Signing

In this section, we demonstrate the signing workflow where a
TechDaily author, Alice, wants to publish a blog with the name
“/TechDaily/article/icn/envelope/alice/v=1". TechDaily utilizes
the sign function to secure Alice’s blog with trust schema.

In this scenario, Envelope first internally prepares a filter func-
tion (as the lambda defined in §5.1) that semantically check a certifi-
cate’s signing legitimacy according to trust schema. Then, Envelope
retrieves a suitable certificate using this filter.

Once the appropriate certificate is obtained, Envelope utilizes
the corresponding private key stored in the TPM to generate the
digital signature. Finally, the sign function returns the signed blog
to TechDaily.

Certificate Indexing To optimize the signing process and avoid
enumerating every certificate in the storage, Envelope utilizes the
mappings between the nodes in the name schema tree and the
corresponding certificate names.

To achieve this optimization, Envelope provides an auxiliary API
called index. The index method takes a certificate name as input
and returns the corresponding node ID in the name schema tree.

This mapping is stored as a context tuple, which includes the
node ID, the pattern associated with the node, and the certificate
name. For example, when Alice obtains an author certificate with
the name “/TechDaily/author/alice/KEY/789/bob/v=1" from the
administrator Bob, TechDaily can request Envelope to index her
certificate.

During this indexing process, Envelope matches the certificate
name against the name schema tree and identifies Node 17 along
with the corresponding name pattern {authorID:"alice"}. The
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Figure 5: The workflow of retrieving Alice certificate with the help of certificate indexing,.

resulting context tuple, containing the node ID, pattern, and cer-
tificate name, is then stored in a table for efficient retrieval and
reference.

Later when TechDaily needs to sign the packet “/TechDaily
/article/icn/envelope/alice/v=1", Envelope matches the article
name to Node 22 in the name schema tree. According to the name
schema tree, Node 22 requires a certificate associated with Node
17, following the name pattern {authorID:"alice"}.

By querying the context tuple table, Envelope identifies the
certificate “/TechDaily/author/alice/KEY/789/bob/v=1", which
matches the name pattern {authorID:"alice"}. Once the context
matching is successful, Envelope invokes the Box’s get method to
retrieve Alice’s certificate bytes. It then locates the corresponding
key in the Trusted Platform Module (TPM) for signing the packet.

Leveraging the structure of the name schema tree and the pre-
built mappings stored in the context tuple table, this approach
significantly improves the efficiency of certificate lookup during
the signing process.

5.5 Data Validation

TechDaily needs to validate data before consuming Alice blog. In
this process, Envelope validate the signing relationships between
the author (i.e. Alice) and the blog, the administrator (i.e. Bob) and
the author, and the owner (i.e. the website trust anchor owner) and
the administrator.

To enable customized data authentication, Envelope abstracts
the validation process of each signing relationship as a Pipeline.
Each Pipeline consists of a list of Checkers, which are defined as
follows:

Checker(sPktName, signature) — bool: A Checker accesses the
signed packet’s name and signature fields and performs specific
checks on them. It then returns a boolean checking result.

The Checkers in the Pipeline allow for modular and customiz-
able data validation. Developers can define their own Checkers to
perform various checks on the signed packet’s name and signa-
ture fields, ensuring the data legitimacy. This abstraction provides
flexibility in implementing different validation rules based on the
defined trust schema.
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Figure 6: Envelope needs three Pipelines to fully validate
Alice blog, and each Pipeline has the same list N Checkers.

Figure 6 illustrates TechDaily’s N-Checker Pipeline, which in-
cludes a SemanticChecker responsible for examining the semantic
binding between KeyLocator and the packet name. This is followed
by a ValidityChecker that rejects expired certificates, along with
other necessary Checkers to ensure the legitimacy of the data.

In the design of Envelope, the CryptoChecker serves as the final
Checker in the Pipeline. As a unique Checker, it attempts to retrieve
Alice’s certificate from the Box. If the Box cannot provide Alice’s
certificate, the CryptoChecker tries to fetch the certificate from the
network by expressing Interest with the name carried in the blog
KeyLocator. Once Alice’s certificate is obtained, the CryptoChecker
accesses the full packet and employs Alice’s public key to verify
the signature. If the CryptoChecker succeeds, Envelopecompletes
the blog Pipeline and proceeds to the Pipeline for validating Alice’s
certificate.

TechDaily developers have the flexibility to determine the com-
position of the Pipeline during software development. With Enve-
lope’s provided APIs, developers can design a Pipeline using pre-
defined Checkers such as the SemanticChecker, ValidityChecker,
and CryptoChecker, as well as implement their own customized
Checkers.

Once the Pipeline is defined in the code, Envelope will execute
the same set of Checkers for all subsequent calls to the validate
function. The same Pipeline logic is repeatedly executed until the
trust anchor is reached. If any Checker fails during the validation



process, Envelope immediately terminates all subsequent Checkers
and returns false. Once all Pipelines are completed, Envelope stores
all certificates along the signing chain into the Box using the put
operation. Finally, Envelope returns true to TechDaily, indicating
that the validation process was successful.

Indeed, the Checker and Pipeline abstractions provided by En-
velope offer application developers the ability to design their own
packet validation logic and also create extensibility for systemat-
ically supporting additional security protocols in data validation.
For example, certificate revocation checking [22] and long-lived
data verification solutions [25] can be implemented as independent
Checkers that can be integrated into the TechDaily Pipeline.

6 EVALUATION

This section describes the Envelope implementation and the evalu-
ations that demonstrate the effectiveness of Envelope design.

6.1 Implementation

We have implemented the LightVerSec language as part of the
python-ndn library [17] and developed Envelope as an application
library based on python-ndn.

To verify the effectiveness of Envelope, we have also created
the TechDaily application demoware, which utilizes Envelope to
provide trust schema support. The TechDaily trust domain uses the
same trust schema discussed in § 4, and it is configured with a vali-
dation Pipeline that includes the SemanticChecker, ValidityChecker,
and CryptoChecker.

In the TechDaily domain, the domain controller obtains the
public keys of administrators and authors through an out-of-band
process and manually signs certificates. Before the application logic
starts, TechDaily entities are security bootstrapped manually.

TechDaily employs two Boxes to facilitate data signing and val-
idation in Envelope. The DBBox provides abstract interfaces to
access a local database, while the RepoBox serves as the interface
for interacting with networked data repositories. After the security
bootstrapping process for each entity, the entity indexes all owned
certificates and stores them in the DBBox. Whenever a new certifi-
cate is issued, the TechDaily domain controller and administrators
use the put operation to store the new certificates in the RepoBox.
Consequently, when a TechDaily entity needs to sign data, Enve-
lope can efficiently retrieve the appropriate signing certificate from
the DBBox. During packet validation, the entity utilizes the get
operation to retrieve certificates from the RepoBox and executes
the Pipeline for each signing relationship until the trust anchor is
reached.

6.2 Qualitative API Comparison

Table 1 provides a comparison between Envelope and previous
works, highlighting the unique features and capabilities of Envelope
in contrast to other existing solutions.

Earlier libraries such as ndn-cxx [14], jndn [18], PyNDN [19]
and the high-level API [20] based them primarily focused on data
validation logic but does not include support for a trust schema or
flexible certificate storage design. DCT [10], designed for home IoT
applications, uses the VerSec language for writing trust schema.
However, it does not allow applications to decide on the storage
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and retrieval of certificates during data signing and validation. ND-
Nts [8] allows configuring the certificate retrieval location during
data validation, but the options are limited to KeyChain and the
network. It also lacks support for customizing data validation.

Trust Schema Domain- Flexible Customized
API Completeness Specific Certificate Data
Language Storage Validation

ndn-cxx [14] X X X X
PyNDN [19] X X X X

jndn [18] X X X X

DCT [10] X X
python-ndn [14] * * X X
NDNs [8] X X
Envelope

*.

: LightVerSec Implementation.
Table 1: Comparison of Previous Work.

In contrast, Envelope provides a comprehensive solution that
includes a domain-specific language (LightVerSec) for writing trust
schema, flexible certificate storage through the Box abstraction,
and the ability to customize data validation using the Pipeline
and Checker abstractions. Overall, Envelope offers a more flexible
solution compared to previous works, addressing the limitations
and gaps identified in the existing implementations.

7 LESSONS LEARNED

During our trial-and-error efforts in developing Envelope, the first
lesson we learnt is the need for a clearly defined goal of the trust
schema support. Through multiple rounds of discussions, we con-
cluded that a trust schema should focus on authentication and
authorization only. To keep its implementation simple, the support-
ing language and libraries are preferably not to cover specific usage
patterns.

Another important lesson we learned is the necessity of hav-
ing a good abstraction for certificate storage. We started with us-
ing the DBBox design mentioned in § 6.1. However, we soon real-
ized that this design was not suitable for applications that prefer
to store certificates in networked repositories [16] or distributed
ledgers [23, 26]. Additionally, running databases may be infeasi-
ble in resource-constrained application scenarios [10, 27], due to
insufficient memory or the lack of a file system. To address these
identified issues, we developed the solution of abstracting certifi-
cate storage as an external module that applications can provide
based on their available resources or specific constraints. Envelope
provides two simple read and write interfaces: put and get. This
abstraction allows applications to make use of their local resources,
while avoiding the need for Envelope implementations to reinvent
storage solutions.

8 DISCUSSION

Flexibility versus Vulnerabilities: It is arguable that more flexi-
bility might lead to more attack vectors. For example, the certificate
storage implemented by a third party could be vulnerable. How-
ever, depending on specific application scenarios, a trade-off for
felxibility could be preferred to build a practical network. Suppose
an enterprise internal network with the following properties [2]:



(1) Security policies are centrally managed by specific adminis-
trators.

(2) A handful of local services developed by different parties
(e.g., mail services, printers, instant messaging, file sharing,
source repositories, relational databases).

In such a scenario, the development of services and the specifica-
tion of security policies are completely decoupled: administrators
typically have no access to source code, and the developers can
not predict what policies will be specified. Since services are de-
veloped by separated parties, the developers can choose different
libraries and security storages to use. A unified, flexible framework
to specify security policies is more affordable.

9 CONCLUSION

The trust anchor, certificates, and the trust schema are three funda-
mental components in the NDN’s security solutions. Among the
three, the trust schema is uniquely enabled by NDN’s use of se-
mantically meaningful names for all types of data. Semantically
meaningful names enable one to reason about security in a sys-
tem’s operation, and well defined naming conventions can further
simplify the reasoning. As a result, trust schema allows applications
to systematically execute security checking operations.

This paper provides an overview of the existing efforts in trust
schema support and contributes a new trust schema API, Enve-
lope. The Envelope API addresses the need for comprehensive trust
schema functionalities, an easy-to-use schema language (LightVer-
Sec), and an extensible and flexible design. Envelope introduces
the abstractions of Pipelines and Checkers to enable customized
data validation, and an abstract certificate storage API Box, which
allows developers to use their preferred solutions for certificate
storage. We implemented Envelope and use a blog application to
demonstrate its effectiveness and usability. Our results show that
Envelope successfully executes trust schema for applications with
acceptable performance overhead.

As next step, We plan to further evaluate and test the Envelope
API design with more complex application scenarios, making Enve-
lope a useful tool to support the community’s efforts in applying
NDN to solve most challenging problems facing today’s Internet.

A LIGHTVERC FORMAL GRAMMAR

TAG_IDENT = CNAME;
RULE_IDENT = "#", CNAME;
FN_IDENT = "$", CNAME;
CNAME = ? C/C++ identifiers ?;
STR = ? C/C++ quoted string ?;
name = ["/"], component, {"/", component};
component = STR
| TAG_IDENT
| RULE_IDENT;
definition = RULE_IDENT, ":", def_expr;
def_expr = name, ["&", comp_constraints], ["<=",

sign_constraints];

sign_constraints = RULE_IDENT, {"|", RULE_IDENT};
comp_constraints = cons_set, {"|", cons_set};
cons_set = "{", cons_term, {",", cons_term}, "}";
cons_term = TAG_IDENT, ":", cons_expr;

cons_expr = cons_option, {"|", cons_option};
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cons_option = STR
| TAG_IDENT
| FN_IDENT, "(", fn_args, ")";
fn_args = (STR | TAG_IDENT), {",", (STR | TAG_IDENT)};

file_input = {definition};

Listing 1: LightVerSec Grammar
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