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ABSTRACT
The lack of application support is probably the biggest obstacle to
ICN/NDN deployment. One approach to tackle this problem is to
NDNize existing applications by translating between application-
level protocols and NDN, which can benefit from NDN’s architec-
tural advantages while minimizing development efforts needed. In
this paper, we validate the effectiveness of this approach by apply-
ing it to Internet livestreaming, and develop PCLive, a livestreaming
system with NDN embedded as its distribution network. PCLive
makes minimal changes to an Internet livestreaming architecture,
achieving the maximum compatibility with existing components
including video players, OBS, and video transcoders. By solving
a number of design issues such as HLS/NDN protocol translation,
data translation, naming and security, PCLive is able to run over
an NDN network and enjoy its architectural benefits. Since Decem-
ber 2021, PCLive has been running on an NDN testbed consisting
of cloud servers from seven cities. It can serve almost four times
as many clients as an existing livestreaming system can over IP
under the same network conditions; at the same time, the average
throughput of the bottleneck link in the NDN testbed is 34.8% lower
than that in IP. We also evaluate congestion control and adaptive
forwarding with PCLive.
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1 INTRODUCTION
The lack of application support is probably the biggest obstacle to
Information-centric Networking (ICN) or Named Data Network-
ing (NDN) [3, 43]. One approach to tackle this problem is to ND-
Nize existing applications by translating between application-level
protocols and NDN, which can benefit from NDN’s architectural
advantages while minimizing development efforts needed [20].

In this paper, following the NDNizing-application approach, we
investigate NDNizing Internet livestreaming. The motivation of
this choice is based on three observations. First, NDN is dedicatedly
designed to support real-time data distribution with its built-in
multicast and in-network caching mechanisms, hence it is supposed
to provide significant benefits to livestreaming. However, today’s
widespread Internet livestreaming is not using NDN, hence the
benefits are not fully verified. Second, NDN research is largely
limited by lacking of real-world usage; the efforts to enable widely
used livestreaming systems running over NDN can provide a large
amount of real traffic in the real-time manner for NDN research.
Last, though various NDN-based livestreaming projects have been
proposed, there is no open-sourced, stable, and usable application.

Specifically, we develop PCLive, an Internet livestreaming sys-
tem with NDN embedded as the distribution network. The first
design decision to pick the target translating protocols. We decide
to NDNize only the distribution part of an Internet livestreaming,
because this achieves the benefits of NDN’s distribution capabil-
ity, while reusing the publishing part of the system. Moreover, we
choose a widely used livestreaming retrieval protocol, i.e., HTTP
Live Streaming (HLS) [28], for the translation. Similar to other
NDNizing-application work, PCLive solves common design issues
including protocol translation, data translation, naming, and secu-
rity.

Interestingly, we find this translation practice is simpler than pre-
vious efforts, such as IMAP/NDN and XMPP/NDN translations [20].
We believe the simplicity comes from the data-centric nature of
the translating application protocol, the well-designed softwares,
and the choice of clear system boundaries. Specifically, modern
application protocols, such as HLS and DASH, use the receiver-
driven communication model, which is the same as NDN, hence
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making the translation more straightforward. Moreover, thanks to
the well-designed software architectures, PCLive offers a different
translation design pattern, i.e., instead of using a proxy to serve as
the server of the translating protocol to conduct the translation,
PCLive directly translates the data retrieval protocol within the com-
munication process of a video player, and translates livestreaming
data together with a video transcoder, making NDN communica-
tion modules pluggable. As a result, PCLive achieves the maximum
compatibility with existing system components including video
players, OBS, and video transcoders.

To evaluate the system design, we implement PCLivewithwidely-
used open-source softwares. From users’ perspective, they first
download awebsite containing a video player (i.e., Shaka Player [10])
with NDN plugged in as the communication module; to watch a
livestreaming, the player sends HLS requests, which are translated
and sent to an NDN network; the retrieved data are assembled
and translated back as HLS responses. From a video publisher’s
perspective, she uses existing OBS softwares to upload a livestream
to a video server, using Real-Time Messaging Protocol (RTMP) [31];
on the server, we run Simple Realtime Server (SRS) [1] to transcode
RTMP streams into HLS files with different resolutions; we imple-
ment a real-timeHLS/NDNdata translationmodule, which prepares,
stores, and serves NDN Data packets to an NDN network.

Moreover, following the idea of application-driven research, we
build a small NDN testbed over the Internet learning from NDN
Testbed [13], run PCLive on our testbed, and conduct comprehen-
sive evaluation. The testbed consists of cloud servers in seven dif-
ferent cities; they are running NFD 1 [4] to process NDN packets,
and are connected by UDP tunnels. Regarding routing protocols,
NLSR [37] is used. Moreover, we build two systems of measure-
ment, one is to collect data from each NFD, to analyze NDN stateful
forwarding behaviors; the other one collects data from consumers
to evaluate QoS.

The evaluation results show that PCLive can serve 3.95 times
clients over the NDN testbed as many as an existing livestreaming
system can serve over IP on the Internet under the same network
conditions; at the same time, the average throughput of the bottle-
neck link in the NDN testbed is 34.8% lower than that in IP. Last,
we also evaluate other mechanisms, such as congestion control and
adaptive forwarding with PCLive.

To summarize, the contributions of this work are as follows.

• Following the NDNizing-application approach, we inves-
tigate bringing NDN into real-world livestreaming archi-
tecture, and proposes PCLive, which replaces the stream
distribution network with NDN by translating HLS/NDN.
With system deployment over the Internet, long-time test-
ing, and comprehensive evaluation, we demonstrate that this
approach works well with minimized developing, deploying,
and configuring efforts. Moreover, this practice offers a dif-
ferent translation pattern with simpler efforts, making NDN
as pluggable modules.
• Following the idea of application-driven research, we con-
duct comprehensive evaluation on PCLive and related NDN

1An NDN software forwarder widely used in NDN research communities. It is also
used on NDN Testbed.

designs on awide-area NDN testbed over the Internet, includ-
ing the QoS of PCLive, in-network caching, congestion con-
trol, stateful forwarding, off-the-grid communication. Our
preliminary analysis help with future research directions.

2 MOTIVATION
2.1 NDNizing Livestreaming Systems
Different from building native NDN applications from scratch, ND-
Nizing an existing application means to translate its application-
layer protocol and NDN, enabling it to run over NDN. This approach
achieves a good trade-off between developing efforts and gaining
NDN’s architectural benefits [20].

To exam this argument, we categories related work in its manner.
An NDN-based video streaming application, such as NDNVideo
(2012) [16] and NDNlive/NDNtube (2015) [38]. In addition, ACT
(2011) [44] is an audio conferencing tool for NDN, and NDNRTC
(2015) [12] is a real-time conferencing application over NDN. Un-
fortunately, they are not being actively maintained anymore, hence
cannot be used in real world.

Regarding the NDNizing-application approach, VoCCN (2009)
was the earliest effort, which translates VoIP/CCN [15]. IMAP/NDN
and XMPP/NDN translation was designed and implemented (i.e.,
mailSync [21]) in 2018 [20]. iVisa (2020) translates DASH/NDN to
implement on-demand video streaming [9]. This work takes a step
forward and translates HLS/NDN in an adaptive Internet livestream-
ing system. Because PCLive makes NDN pluggable modules be-
tween Shaka Player and Simple Real-time Server (SRS), NDN’s
distribution capability is fully utilized while the modified part is
much easier to be maintained. Therefore, PCLive is more likely to
have a longer lifetime as the rest of the system components are
actively used and maintained by third parties.

Regarding work of dynamic adaptive video streaming in ICN, a
systematic comparison is conducted between NDN and TCP/IP [30].
In addition, DASHoverHTTP andCCN is studied and compared [17].
Moreover, several work studied video rate adaptation over ICN in
different scenarios, such as in WLAN [40], in cooperation with in-
network caching [14], and in a multi-client scenario [34]. This paper
focuses on the approach to enabling an existing system with NDN’s
capability, instead of studying dynamic adaptive video streaming
in ICN. Although we compare PCLive with HLS over IP in the Eval-
uation section, our purpose is to demonstrate the effectiveness of
the NDNization approach with real-world usage.

2.2 Application-driven Research
Lacking of real-world usage is limiting the validation and evalua-
tion of NDN protocols and prototypes. Because PCLive translates
a popular protocol (i.e., HLS), and it plugs NDN into an existing
Internet livestreaming system, it achieves good usability as no con-
figuration or installation is required from users. Therefore, PCLive
is a good example of real-world usage, and can bring a large amount
of real-world traffic to NDN, hence can help related NDN research.

In this work, in addition to evaluate the functionality and per-
formance of PCLive, we also conduct preliminary study on the
performance of NDN’s in-network caching, built-in multicast, and
adaptive forwarding over the Internet with PCLive. Specifically, we
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build an NDN testbed with servers located in seven different cities
connected through the Internet, and run PCLive over it.

3 SYSTEM DESIGN
3.1 Design Overview

Realtime data 
translation

(HLS -> NDN)

An IP network

Livestreaming consumer 
(existing players)

An NDN 
network

NDN

Livestreaming publisher
(existing OBS softwares)

RTMP

Video Player

HLS/NDN 
translator

Livestreaming Server

Transcoder
(RTMP -> HLS)

①

②

③

④

⑤

NDN Producer

Pre-cache

Database

Callback API

⑥

NDN Consumer

Figure 1: System overview of PCLive

The first step of the NDNization progress is to decide its bound-
aries in an existing system. A good decision maximizes the benefits
with the minimized developing efforts and the least requirements
on users. One common Internet livestreaming architecture contains
two major parts, livestream publishing and livestream distribution
(Fig. 1). PCLive replaces the distribution part with NDN, while
reusing the publishing part.

Specifically, in the publishing part, an existing OBS software
captures a livestream and pushes it to a server through RTMP (step
1), and the server transcodes the RTMP stream into HLS files with
different resolution qualities to achieve adaptive bitrate purpose
(step 2). PCLive adds a new process, which translates HLS files into
NDN Data formats, stores them into a database, and serves them to
an NDN network on the fly (step 3).

The distribution part in NDN consists of three steps. A consumer
uses a web browser to download a web page, which contains a video
player with NDN plugged in as its communication module (step 4).
The video player is able to translates HLS/NDN, and send/receive
NDN Interest/Data packets to an NDN node in an NDN network
(step 5).

3.2 Naming
The namespace design of PCLive contains two parts (Fig. 2). The
first part is to identify a livestream in an NDN network, and the
second part follows how the livestream is organized and accessed.

Specifically, the first part contains four name components. The
first several name components are formed as a globally routable
prefix, i.e., /pcl/video, for the livestreaming server. The third
name component is /live, which is used to identify the target
application on the server. The fourth name component is <uuid>,
which is to uniquely identify a livestreaming.

Because PCLive translates HLS, the second part of its namespace
design follows how HLS organize and access data. Specifically, a
livestream contains a master playlist (in m3u8 format), separate
media playlists (in m3u8 format) for each resolution, and sequential
video chunks (in ts format).

Here is the lesson learned by this case study. In the NDNization
progress, the namespace design can be summarized as two steps.
The first step to design a globally reachable name prefix in an NDN
network to identify a group of data or services; the second step is
to design name suffixes, referring to the access and organization of
data in application logics, which come along with protocol trans-
lation and data translation. Moreover, it once more demonstrates
that naming design in this approach is significantly simpler than
building a native NDN application from scratch, because it avoids
designing new application protocols, which requires massive usage
to reach as the same maturity as existing widely-used application
protocols.

/pcl /video /live /<uuid>

/m3u8

/<version>

/<#seg>

glabally 
routable prefix

video id

/<version>

/<#seq>.ts

app id

/master.m3u8

/<version>

/<resolution>

part 1

part 2

Figure 2: PCLive namespace design

3.3 Protocol translation
Protocol translation is the key step of the NDNization process.
Given that application-level protocols contain well-defined log-
ics, translating them into NDN saves the efforts of creating new
application protocols. In addition, these protocols explicitly ex-
pose application semantics, making their naming more data-centric
than lower level protocols with host-centric headers, hence such
translation gains more NDN’s architectural benefits. However, the
challenge is to translate existing message exchange into NDN’s
data-centric exchange. We take HLS/NDN translation to illustrate
two common translation design patterns.

HLS adaptively retrieves livestreaming through three steps (Fig. 3).
HLS first fetches a master playlist, then periodically fetches a media
playlist based on the estimated bandwidth, which guides fetching
new video chunks. Given that HLS is a receiver-driven protocol,
and all the retrieval operations are implemented though HTTP GET,
translating them into NDN’s Interest-Data exchange is straightfor-
ward, and can achieve the same real-time data retrieval effect. The
translation considers two issues.
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finalBlockId
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HLS logics

HLS/NDN translation

N

Y

Figure 3: Protocol translation

• Version discovery:when fetching themaster playlist, PCLive
first discovers its latest version, then uses the version number
to construct the name to retrieve the playlist. Note that we
only use version discovery at this step, and keeps using it for
subsequent media playlist and video segments retrieval. Us-
ing new version number for newly generated video chunks
creates non-trivial overhead of version discovery and data
management, without gaining clear benefits for livestream-
ing.
• Data retrieval: in HLS, when requesting a video chunk,
the response will be pushed back as an entire file. In being
translated into NDN, the video file is too big to fit in to a Data
packet, hence has to be segmented into multiple packets, e.g.,
a 4-s video chunk with 1080P resolution can be segmented
into more than a thousand NDN Data packets with a size of
4K bytes. Therefore, PCLive fetches the first segment, which
contains the total number of segments, and then fetches all
of them with congestion control mechanisms.

3.4 Data translation
We summarize data translation into two parts, data generation
and data serving. Regarding data generation, it has two types, on-
demand data generation for version discovery and the conversion
of video files. Fig. 1 shows the process of converting video files from
HLS formats into NDN Data formats. Specifically, when video files
are generated on the fly, a callback function is invoked to convert
video files into NDN Data formats with naming and signing, which
are then stored into a database.

Regarding data serving, a producer program connects to an NDN
network, and registers the name prefix /pcl/video/live to it. It
is responsible to handle both version discovery and livestreaming
requests. Regarding version discovery, the producer generates on-
demand data that contains the latest version for a version discovery

Interest (using Real-time Data Retrieval (RDR) protocol [24]). Dur-
ing our testing, we made an observation that frequent database
write and read operations (for every NDN Data packet) causes the
bottleneck of PCLive, and optimizes it by merge separate reads of
video chunk segments into one read at the first segment read, which
preloads an entire video chunk into the cache to serve subsequent
segment requests.

3.5 Security
The trust rule in PCLive is simple, i.e., consumers trust the PCLive
producer. The PCLive producer has an identity with name /pcl/
video/live, a public keywith name /pcl/video/live/KEY/<id>,
and a self-signed certificate with name /pcl/video/live/KEY/
<id>/self/<version>. The producer signs all NDN Data packets
using the private key, and the keylocator contains the certificate’s
name.

In our current implementation, when PCLive consumers down-
load the webpage, they download the certificate and the trust rule
together. The trust scheme [42] in PCLive stricts consumers only
to trust data packets signed by the identify of /pcl/video/live.
Because HTTPS is used for website downloading, both the cer-
tificates and trust rule are secured. Note that we leave content
confidentiality to future work.

4 DEPLOYMENT
4.1 A wide-area NDN testbed
Next, we introduce the NDN testbed we built among cloud servers
at different locations over the Internet.

• Topology: Our testbed topology is shown in Fig. 4. The
testbed contains 7 nodes from different cities.expanding
techniques. We host servers in two cities, Shenzhen and
Jinghua, and rent cloud servers from Alibaba Cloud in 5
cities, Hongkong, Guangzhou, Shanghai, Chengdu, and Bei-
jing.
• Networking: On each node, we run NFD, an NDN forward-
ing daemon. The link between two nodes is a UDP tunnel.
Specifically, NFD has a type of UDP Face, meaning NFD uses
UDP encapsulation to transport NDN packets. Moreover,
the MTU of UDP encapsulation is intentionally set to be
1420, and NDNLP is used between NDN and UDP for packet
fragmentation (more details below).
• Routing: We run NLSR routing protocol over the testbed,
following its specification which runs over the NDN Testbed.
• Hardware resources:All NDNnodes have 2 cores of CPU, 4
GBmemory, and are running Linux Ubuntu 20.04. In addition,
each node has a limit of 50 Mbps uploading bandwidth.

4.1.1 Packet fragmentation: NDNLP vs. IP. During our early test-
ing of PCLive, we made one observation that an extremely small
number of NDN packets are unable to be retrieved through our
NDN testbed, hence the corresponding video segment is unable
to be assembled at consumers. This problem is eliminated after
forcing packet fragmentation between the NDN layer and the un-
derlaying tunnel, i.e., UDP in our testbed, instead of triggering on
IP fragmentation.
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Beijing

Shanghai

Jinhua

Chengdu

Guangzhou

Shenzhen
Hongkong

Figure 4: The geo topology of an NDN testbed (including 7
cities) over the Internet

Our NDN testbed uses UDP tunnels for interconnections. Be-
cause an NDN Data packet has a size limit of 8800 bytes, therefore
when it is encapsulated in a UDP packet, and transmitted over
a link with a smaller MTU (e.g., ethernet MTU is 1500 bytes), IP
fragmentation is triggered. We hypothesize a few fragmented IP
packets are blocked for security considerations, thus contributing
to the observation we made.

To tackle this issue, we intentionally set the MTU of an UDP
tunnel to be a smaller number (i.e., 1420 in our deployment), hence
triggering packet fragmentation defined in NDNLP protocol [33].
As a result, each NDN Data packet is fragmented and encapsulated
into a UDP packet with a size of 1420, which is expectedly not to
trigger IP fragmentation during Internet transmission.

4.2 PCLive deployment
The PCLive livestreaming service is deployed on a server, which
connects to the Shenzhen node of the testbed. The server has 20
cores of GPU, 32 GB memory, and is running Linux Ubuntu 20.04.

• Livestreaming service: PCLive uses SRS to handle livestream
publishing and RTMP-HLS transcoding; once HLS files are
generated, a live scanner web service will be invoked to
convert them into NDN Data packets, which are stored into
MongoDB [27]. In addition, a livestream producer is run-
ning to handle NDN livestreaming requests, serving prefix
registration.
• On-demand video streaming service: PCLive can also
provide on-demand video streaming service with MinIO [26]
used as the database, and a video-on-demand producer to
handle its service.
• Web service: we use Nginx [29] and Flask [11] to host the
entry website. PCLive clients use secure websocket [25] to

connect the nearest node from the NDN testbed using NDN-
FCH protocol [2]. Note that we host a FCH server on our
own, instead of using the one for NDN Testbed.

Moreover, two systems of measurement are deployed to collect
data for profiling and analysis. All these services are running in
dockers with docker-compose for management.

4.3 Systems of Measurement
We collect data from both clients and routers to measure both
users’ QoE and NDN stateful data plane behaviors. Specifically, QoE
metrics are collected from Shaka Player, including startup delay,
estimated bandwidth, video resolution, playing status, and round-
trip time. Regarding NDN data plane behaviors, NFD contains a
monitoring system to collecting metrics, including the number of
incoming and outgoing Interest and Data packets on each Face,
their size, and the CS hit counter.

To collect QoE metrics, the ELK Stack [5] is used; clients period-
ically collect videos statistic, then send the data back to the server
with search and visualization functionalities. Regarding NFD status,
NFD’s measurement system provides a daemon that enables the
retrieval of NFD status via HTTP protocol [35], and we use a web
crawler to periodically collect those status from each NDN testbed
node.

5 EVALUATION
5.1 Target
The main goal is to evaluate the effectiveness of how PCLive ND-
Nizes an existing Internet livestreaming. Therefore, our intention
is to implement and run it in real world as system evaluation. We
built a wide-area NDN testbed as an overlay network among several
cloud data centers, and deploy PCLive to the server in Shenzhen.

Because we can collect data from both nodes in network and
clients, we second goal is to evaluate some well-known features
fromNDN, such as in-network caching.We compare it with livestream-
ing from a single server in IP, just demonstrate the in-network
benefits from NDN. Note that livestreaming in IP is highly opti-
mized, e.g., CDN or SRS Edge Server mode can be applied to scale
streaming distribution, which is not our goal of comparison.

5.2 Setup
The evaluation of PCLive is conducted with its deployment on the
NDN testbed over the Internet since Dec. 2021. Two systems of
measurement (Section 4.3) are used to collect both consumers’ QoS
metrics and in-network states, to analyze the performance of both
PCLive and the testbed. First, we compare the real-time data dis-
tribution capability between an NDN and IP network (Section 5.3).
Next, we compare the choice of packet fragmentation at different
layers over the Internet (Section 4.1.1). In addition, we evaluate the
impact of Data content size (Section 5.4) to livestreaming. Moreover,
we use the data to analyze existing congestion control mechanisms
and stateful forwarding behaviors. (Section 5.5 and 5.6). Last, we
demonstrate the off-the-grid communication capability of NDN in
Section 5.6.

5
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Network Clients Avg. throughput (Mbps) Peak throughput (Mbps) Bottleneck
IP 21 51.5 82.9 end server

NDN 83 33.6 83.4 edge node
Table 1: A case of livestreaming distribution capability comparison built over IP and NDN

5.3 Distribution capability: NDN vs. IP
One goal of the evaluation is to compare the real-time data distribu-
tion capability between NDN and IP. Because PCLive NDNizes an
existing livestreaming system, this is a relatively fair comparison
as it minimizes external factors, meaning both testing use the same
video player, OBS software, and transcoding software. In addition,
real-world livestreaming over Internet.

Specifically, regarding NDN testing scenario, we run consumers
connecting to different NDN nodes, i.e., virtual machines running
on Alibaba cloud data centers in different cities, including Beijing,
Shanghai, Chengdu, Guangzhou, Shenzhen, and Hongkong. We
increase the number of consumers by opening more websites that
connect to an NDN node with the NDN-capable video player run-
ning. Regarding the IP testing scenario, we run clients connecting to
the centralized singer server running in Shenzhen. In order to create
the same network paths for data retrieval, traffic are routed though
the aforementioned nodes in the topology, creating the same net-
work conditions. We develop an automation tool to manage thirty
machines from a private cloud, which have enough resources to
run clients at the same time. In both scenarios, QoS metrics are col-
lected to profile the quality of the livestreaming. To find throughput
bottleneck, iftop tool is used to measure the throughput at video
server for IP testing scenario, while NFD status is used to find that
in NDN testing scenario.

We conduct 10 times 3-minute testing for each scenario. The
results are summarized in Table 1. In the IP scenario, clients are
connected to the centralized server that runs SRS in Shenzhen,
hence the bottleneck happens at the end server. As we increase
the clients by opening more websites that run the video player, the
maximum number of clients is 21 during our testing. If one more
website is open after 21 clients are connected, all the video players
will stop working. The average throughput of is 51.5 Mbps, and the
peak throughput is 82.9 Mbps. These two numbers are collected on
the server node.

In the NDN scenario, clients are connected different NDN nodes,
which are shown in the wide-area overlay topology 4. We equally
increase the number of consumers connect to each NDN node.
Thanks to NDN’s in-network caching and Interest aggregation, the
effect of multicast happens at every NDNnode, hence the bottleneck
may happen at any node if more clients are connect to it. Fig. 5
shows one testing result for the NDN testing scenario, with data
collected from each NFD from the NDN testbed. Circles in Fig. 5
are outliers. The average throughput for all NDN nodes, including
Beijing, Chengdu, Guangzhou, Hongkong, Shanghai, and Shenzhen,
is 33.6 Mbps, and the peak throughput is collected from Shenzhen
node, which is 83.4.

According to the collected data during testing, PCLive can serve
3.95 times as many clients (83) as an existing livestreaming system
can over IP (21) under the same network conditions; at the same
time, the average throughput of the bottleneck link in the NDN

testbed is 34.8% lower than that in IP (Table 1). Note that we expect
each NDN node to play the role of the server in IP, hence the NDN
testbed is supposed to serve N times as many clients as the IP
network can, where N equals to the number of NDN nodes that
equip with in-network caching. However, our observation is that
the performance of the NDN forwarder (i.e., NFD) cannot reach the
performance of the SRS server.

Beijing Chengdu Guangzhou Hongkong Shanghai Shenzhen
Location
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Figure 5: The throughput on different NDN nodes

5.4 Data Translation Overhead
When converting HLS files into NDN formats, one parameter is the
content size of a Data packet. Given that a Data packet is limited
to 8800 bytes, we evaluate this parameter by choosing its value
between 1000 and 8000 with a step of 1000. The result is shown
in Fig. 6. The overhead of packet headers, including name and
signature, can be as high as more than 25%, when the content size
is 1000, while it can be as low as less than 5% when the value is
more than 6000. It also has an impact on the performance of the
current congestion control mechanism (introduced in next section).
Therefore, we recommend choosing a larger content size based on
the results.

In addition to extra header overhead, we also evaluated the trans-
lation time overhead 7. We conducted tests on HLS file sizes ranging
from 1000 bytes to 8000 bytes, packaging HLS data packets into the
NDN format, with each file size executed 100 times. The packaging
overhead is not significantly impacted by file size. The packaging
overhead for each data packet is approximately 2.5 milliseconds.
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Figure 6: Translating one ts file into NDN Data packets:
header and signature overhead
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Figure 7: Translating one ts file into NDNData packets: time
overhead

5.5 Congestion Control
Next, we evaluate the current congestion control mechanisms
in PCLive. PCLive uses the congestion control mechanism imple-
mented in NDNts library, which uses CUBIC algorithm to adjust
the Interest sending window size. The signal to trigger window de-
creasing only relies the timeouts of data retrieval with an estimated
round trip timer.

In one testing scenario, we only run five clients, and observe
their livestreaming quality as we change the content size of the
translated Data packets. Although the client can always retrieve the
livestreaming with 1080P resolution, because its estimated band-
width is higher than the required value (i.e., 5Mbps). However, the
estimated value can be significantly lower than the actual value. As

shown in Fig. 8, when the content size is 1000, their estimate band-
width to be slightly higher than 5 Mbps, while this value increases
when the content size increases.

0 5 10 15 20 25
Estimated Bandwidth by Shaka Player (Mbps)

0%

20%

40%

60%

80%

100%

CD
F

1000B
2000B
3000B
4000B
5000B
6000B
7000B
8000B

Figure 8: Estimated Bandwith

However, when the content size is 7000 , the estimate bandwidth
is higher than that when it is 8000. This is because during the testing
the translated video files have different size, and when the content
size is 7000, the HLS video file happens to be significantly smaller
than that when the content size is 8000 (Fig. 9). Therefore, the actual
number of Data packets is smaller even the content size is smaller
during test. This further proves that the estimated bandwidth is
proportional to the number of Data packets to retrieve; for the same
size of video files, the less number of Data packets to be retrieved,
the higher estimated bandwidth. This observation suggests that the
current congestion control mechanism performs worse when the
number of Data packets to be larger.
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Figure 9: The number of NDNData packets for different con-
tent size during testing

Interest retransmission rate is an important metric to evaluate
congestion control mechanisms. During our testing, we observe that
Interest retransmission rates are fairly low. Fig. 10 shows Interest
retransmission for consumers grouped by their connected cities.
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In this testing, each node has 14 consumers connected. During a
3-minute livestreaming testing, the 14 consumers connecting to
Beijing node have a summed of about 1.2% Interest retransmission
rates.
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Figure 10: Retransmission rates

5.6 Stateful Forwarding
Next, we are interested in how Interests are handled on the NDN
testbed with PCLive, hence we analyze data collected from each
NDN testbed node. First, we summarize how an Interest is handled
by NDN’s stateful forwarding plane.
• Satisfied by Content Store (CS): the Interest is satisfied di-
rectly by a data caching. NFD records the counter named as
CS hit referring to the number of Interests satisfied by local
caching.
• Aggregated (suppressed): the Interest is neither satisfied
by local cache nor being forwarded, because an Interest
requesting for the same data has been forward. This value is
not recorded by NFD, and we calculate this value with the
following equation

SuppressedInterests = IncominдInterests−outдoinдInterests−CShits

.
• Forwarded: the Interest is forwarded to a next hop. The
testbed is running adaptive forwarding strategy (i.e., ASF
strategy [18, 41]).

We increase the clients connecting to each of six nodes from
the NDN testbed respectfully between 2 to 10, and depict Interest
handling on the NDN testbed in Fig. 11. To conclude, CS hit is the
major behavior in our testing, whose value increases as the number
of consumers increase, which can reaches to 70% when the number
of consumers is 10. It is the major factor to NDN’s real-time data
distribution capability as expected.

Next, the number of suppressed Interests is fairly low compared
to CS hit. The explanation is that only a small portion of real-time
requests from different consumers are arriving at the same time
(with very variations) during our testing, which are suppressed.

Moreover, Interest suppression is less aggressive in the current
adaptive forwarding design, as it is more aggressive at utilizing
alternative paths. When an Interest is received, if there is no match-
ing local caching, the priority of forwarding it to alternative untried
next hop is higher than suppressing it. Interest suppression decision
is made based per Face wise. This design also reflects to Interest
forwarding. Given that each node has multiple next hops to retrieve
data, all these next hops are used instead of only one next hop; the
ratio of Interest forwarding on different paths stay almost the same
in the five testing.

5.7 Off-the-grid Communication
One unique benefit of NDN is the native support for off-the-grid
communication [20], meaning that NDN support applications to
achieve infrastructure-free communication without ad hoc mecha-
nisms supported. Although PCLive relies on existing web services
to deliver entry website for consumer to use NDN, we have tested
its off-the-grid communication capability in a local network. Specif-
ically, we run the OBS and the producer side of PCLive on one
machine, which generates livestreaming to a local NDN network;
then we run the consumer part of PCLive on directly on another
machine in the same local NDN network. In addition, self-learning
mechanism [19, 32] is used to build a path in the local network. The
consumer can retrieve and play the same livestreaming in the local
network as it is over the Internet.

6 DISCUSSION
6.1 NDNizing low-latency livestreaming
In addition to HLS/NDN translation, we also investigated in ND-
Nizing Low-latency HLS (LL-HLS) [22]. To reduce latency, LL-HLS
allows smaller video chunks to be generated and retrieved, thanks
to different video encoding and decoding techniques. Smaller video
chunks do not affect how data is translated in NDN. Regarding pro-
tocol translation, LL-HLS allows conditional requests from clients
and holding requests until responses are generated at servers. In
NDN, we use Interests with application parameters added as tags to
achieve conditional requests; and we implement wait-for-data logic
at producers to achieve immediate data transferring. One concern
is that this design remains in-network states for a longer time. The
architecture impact requires deeper analysis and study, which is
not within this work.

Two lessons are learned from translating LL-HLS/NDN. It once
more proves the effectiveness of the NDNizing approach. Moreover,
this approach can inherit good designs from existing application
protocols, which are beyond non-networking components and have
been tested in real world. For example, it is unnecessary to design
low-latency livestreaming in NDN from scratch, and optimization
can be made on top of LL-HLS/NDN translation.

6.2 NDNizing HTTP
NDN/HTTP translation is not a new idea [39]. Given that many
modern applications are built on top of HTTP, this translation
can significantly support massive application over NDN. However,
a full-fledged HTTP is complicated to be translated into NDN.
Though we have not dig into this direction, we foresee that a
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Figure 11: Stateful forwarding behaviors on six nodes during a three-minute testing

HTTP/NDN translation proxy can be used to exchange between
HTTP and NDN traffic.

Though HLS uses HTTP to retrieve data, our approach is not
NDNizing HTTP. We are NDNizing how applications retrieve data.
As long as an application is retrieving data using pull-based com-
munication manner, it suppose to be easily NDNized, since NDN
is designed to assist applications to retrieve data. Therefore, the
NDNized communication part can be easily plugged into the appli-
cation as long as the software is reasonably designed. If we take a
step forward, as long as an application is using REST architecture,
it may use NDN to retrieve data easily.

6.3 Comparison with CDN
Although we built a wide area testbed, and compare livestreaming
over IP and NDN, we are aware that real-time content distribution
is highly optimized in today’s Internet. For example, CDN or SRS
Edge Server mode can be applied to scale streaming distribution.
In fact, there are several comparison and related work [6–8, 23, 36],
and it is not our intention to make a comparison between NDN
and any optimized approach in IP. Our focus is try to clarify and
demonstrate the simplicity, generality, and effectiveness of our
NDNizing approach.

7 CONCLUSION
This work focuses on NDNizing Internet livestreaming. Instead
of building a proxy between an existing application and an NDN
network to translate an application protocol and NDN, this work
replaces the HLS communication module of a livestreaming player
with NDN. The semantics and logic of HLS, i.e,. how to adaptively
retrieve real-time video streaming, are inherited and unchanged.
Surprisingly, this NDNization approach is simple and effective, as

we build an NDN-capable system named as PCLive and run it in real
world. We believe this a good example to demonstrate that modern
applications are designed to retrieve data in a way that is naturally
supported by NDN. In addition, we conducted some preliminary
evaluation with PCLive deployed on a wide-area NDN overlay
testbed. Comparing PCLive with livestreaming running over a sin-
gle HTTPS&IP server under the same network conditions, PCLive
serves 3.95 times as many clients as HTTPS&IP solution with 34.8%
lower traffic. Moreover, PCLive also supports off-the-grid commu-
nication. Regarding development efforts, PCLive remains compat-
ible with existing components including video players, OBS, and
video transcoders, plugging in NDN communications between the
transcoders and the players, which avoids reinventing the wheel.
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