
Timers in State Vector Sync
Varun Patil

varunpatil@cs.ucla.edu
UCLA

Los Angeles, USA

Seiji Otsu
seijiotsu@ucla.edu

UCLA
Los Angeles, USA

Lixia Zhang
lixia@cs.ucla.edu

UCLA
Los Angeles, USA

ABSTRACT
State Vector Sync (SVS) is a Distributed Dataset Synchronization
(Sync) protocol designed to support distributed applications run-
ning over NDN. The design of SVS has two unique features that
set it apart from all the previous Sync protocol designs. First, SVS
encodes the raw information of data namespace to be synchronized
in its Sync Interest packets. Second, and related, it uses Sync In-
terests as notifications which do not solicit data replies. To reveal
insights of how its unique design features enable SVS to outperform
its counterparts, in this poster we describe the operation of two
types of timers used in SVS and their effectiveness in minimizing
protocol overhead while keeping synchronization delay low.

CCS CONCEPTS
• Networks→ Network protocol design; Transport protocols;
Network performance evaluation.

KEYWORDS
Named Data Networking, Distributed Dataset Synchronization,
NDN Transport, State Vector Sync, Timers

ACM Reference Format:
Varun Patil, Seiji Otsu, and Lixia Zhang. 2023. Timers in State Vector Sync.
In ACM ICN 2023 Posters and Demos (ICN ’23), October 9–10, 2023, Reykjavik,
Iceland. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3623565.
3623754

1 OVERVIEW
Distributed Dataset Synchronization (Sync) [3] provides the trans-
port layer functionality in the Named Data Networking (NDN) [1]
architecture. The State Vector Sync (SVS) [5] protocol is one of the
newer Sync designs, providing improved Sync performance com-
pared to previous protocols [6]. Quick re-synchronization within a
Sync group and effective suppression of redundant Sync Interests
are two essential factors that lead to this improved performance;
both rely on the setting of Sync Interest timers. In this poster, we
briefly explain the working of SVS timers, and demonstrate the
effects of network conditions through simulations. We hope these
insights would facilitate improvements to Sync, and better equip
application developers to choose default values.

This work is licensed under a Creative Commons Attribution International 4.0 
License.
ICN ’23, October 9–10, 2023, Reykjavik, Iceland
© 2023 Association for Computing Machinery.
ACM ISBN 979-8-4007-0403-1/23/10.
https://doi.org/10.1145/3623565.3623754

2 LOSS RECOVERY AND TIMERS
SVS provides namespace synchronization among the participants of
a Sync group. Each producer in the group uses a sequence number
to advertise the number of data objects produced, which can then be
used by consumers to fetch the data if they desire. SVS synchronizes
the list of sequence numbers at all producers using a single type
of message: a Sync Interest carrying the entire raw state1 that is
multicast to the entire group. On receiving the Sync Interest, group
members can compare the received state to the locally known state
and thus learn about new data production.

To provide reliable synchronization with loss recovery, SVS re-
transmits Sync Interests by a combination of event-driven notifica-
tions and soft-state timers.
(1) Triggered by new data production Each data producer

sends a SVS Sync Interest upon data production.
(2) Triggered by obsolete Sync Interest If a member 𝑀 of

the Sync group receives a Sync Interest 𝐼𝑅 and notices that 𝐼𝑅 ’s
state vector contains a lower sequence number for one or more
producers,𝑀 will plan to send a Sync Interest 𝐼𝑀 with its own
state, thus updating 𝐼𝑅 ’s sender.

(3) Triggered by soft-state refresh If no Sync Interest is re-
ceived by a group member 𝑀 for a defined time period, 𝑀
will send a Sync Interest carrying its own state, ensuring the
eventual consistency of the Sync group.

However, care must be taken to avoid simultaneous retransmission
of Sync Interests by multiple group members, since one outdated
Sync Interest may trigger a flood of responses to correct it, and the
number of periodic updates would increase linearly with the group
size. SVS mitigates this potential overhead by applying a suppres-
sion mechanism to all outgoing Sync Interests. Before sending any
outgoing Sync Interest, a node𝑀 sets a timer to a randomly chosen
value between zero and a configured upper bound.
(1) While the suppression timer is active, 𝑀 merges all incoming

Sync Interests during this time by picking the highest sequence
number for each producer from all the received state vectors
to create a state vector 𝑉𝑆 . If 𝑉𝑆 contains updated information
than the local state vector 𝑉𝑀 , then 𝑉𝑀 is updated.

(2) When the suppression timer expires,𝑀 compares 𝑉𝑆 with its
local state vector 𝑉𝑀 . If the two state vectors are identical, the
outgoing Sync Interests is discarded (suppressed). Otherwise if
the two vectors differ and𝑉𝑀 contains more advanced state (i.e.
the sequence number for one or multiple producers is higher),
𝑀 sends a Sync Interest carrying 𝑉𝑀 .

The SVS implementation uses a single timer for both the suppres-
sion and soft-state refresh timers, because only one of the two is
active at any given moment. This suppression mechanism of SVS
ensures that an outdated Sync Interest triggers a single or a small
1The state of the group is encoded as a list of tuples of [producer, seq#].

115

https://doi.org/10.1145/3623565.3623754
https://doi.org/10.1145/3623565.3623754
https://doi.org/10.1145/3623565.3623754
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3623565.3623754&domain=pdf&date_stamp=2023-10-08


ICN ’23, October 9–10, 2023, Reykjavik, Iceland Varun Patil, Seiji Otsu, and Lixia Zhang

number of responses, and ensures that only one periodic Sync In-
terest is sent every refresh period. This enables the lower overhead
of SVS while maintaining resiliency to losses.

3 EVALUATION
We use ndnSIM [4] to recreate the GÉANT network topology [2]
with 45 nodes. We run SVS at each node and create a single Sync
group. Each link has a 10ms latency, and we vary packet drop rates
from 0 to 50%. To test effects of connectivity, we randomly remove
edges from the GÉANT topology and create five variations. The
node degree is the number of neighbors for a node, with the avg.
varying from 1.9 to 3.2. Correspondingly, the avg. hop count varies
from 6.3 to 3.1, and the longest path delay ranges between 70ms to
150ms.

In each run, each node randomly chooses a time in the [0s, 45s]
range for the first publication, and publishes new data every 45s
thereafter. This yields an overall publication rate of one per second.
We set the suppression timer to range between [0, 200ms], and test
periodic timer values of 250ms, 1s and 4s, both timers having a 25%
random jitter. We define the 90%tile of the time taken for a node to
learn about data production as Sync latency, and the total number
of packets sent as the overhead metric.

From Fig. 1, we can infer that SVS increasingly benefits from
richer connectivity in the presence of losses. This is expected, since
a node can receive Sync Interest from any of its multiple links. With
sparse connectivity and high losses, the probability of any Sync
Interest reaching a given node goes down, resulting in some nodes
falling behind in the dataset state updates. Under these conditions,
periodic Sync Interests are likely to help correct outdated state, and
thus a shorter period can significantly reduce latency.

Fig. 2 highlights the corresponding overhead trade-off. As the
period gets shorter, more Sync Interests are produced thus increas-
ing overhead. Further, with a very short period that is comparable
to the network diameter, suppression becomes ineffective leading
to a great increase in overhead.

By observing the results, we can draw the following conclusions:
(1) SVS benefits significantly from richer connectivity, improving

metrics of latency and overhead especially in lossy conditions.
(2) SVS successfully mitigates overhead to a large degree using the

Sync Interest suppression mechanism, despite Sync Interests
not being aggregatable in the network2.

(3) The ideal timer values have a positive correlation to the network
diameter. Values that are too short make suppression ineffective,
greatly increasing overhead.

(4) A shorter periodic timer can improve Sync latency in the pres-
ence of losses, at the cost of increased overhead.

4 FUTURE WORK
The optimal choices for the values of SVS timers depend on the
application, topology and network conditions, which may change
dynamically over time. We recognize self-adjusting timer values as
a future research direction for SVS. Such automated adjustments
may use heuristics such as the maximum latency within the group,
the data production rate, and the observed packet loss rate.

2Each Sync Interest in SVS is signed with the sender’s private key, making it unique.

2.0 2.2 2.4 2.6 2.8 3.0 3.2
0

2500

5000

7500

10000
Periodic timer of 0.25 sec

2.0 2.2 2.4 2.6 2.8 3.0 3.2
0

2500

5000

7500

10000
Periodic timer of 1 sec

2.0 2.2 2.4 2.6 2.8 3.0 3.2
Average node degree

0

2500

5000

7500

10000

90
th

 p
er

ce
nt

ile
 la

te
nc

y 
(m

s) Periodic timer of 4 sec

Drop rate=0
Drop rate=0.125

Drop rate=0.25
Drop rate=0.375

Drop rate=0.5

Figure 1: Comparison of Sync latency.

2.0 2.2 2.4 2.6 2.8 3.0 3.2
0

20000

40000

60000
GÉANT (Publish rate of 1/sec, Periodic timer of 0.25 sec)

2.0 2.2 2.4 2.6 2.8 3.0 3.2
0

5000

10000

15000
GÉANT (Publish rate of 1/sec, Periodic timer of 1 sec)

2.0 2.2 2.4 2.6 2.8 3.0 3.2
Average node degree

0

2000

4000

6000

To
ta

l s
yn

c 
in

te
re

st
 c

ou
nt GÉANT (Publish rate of 1/sec, Periodic timer of 4 sec)

drop rate=0
drop rate=0.125

drop rate=0.25
drop rate=0.375

drop rate=0.5

Figure 2: Total packet count

116



Timers in State Vector Sync ICN ’23, October 9–10, 2023, Reykjavik, Iceland

REFERENCES
[1] Alexander Afanasyev, Tamer Refaei, Lan Wang, and Lixia Zhang. 2018. A Brief

Introduction to Named Data Networking. In Proc. of MILCOM.
[2] GÉANT project. 2018. GÉANT topologymap. https://network.geant.org/ accessed:

2023-06-15.
[3] Tianxiang Li, Wentao Shang, Alex Afanasyev, Lan Wang, and Lixia Zhang. 2018.

A Brief Introduction to NDN Dataset Synchronization (NDN Sync). In MILCOM
2018-2018 IEEE Military Communications Conference (MILCOM). IEEE, 612–618.

[4] Spyridon Mastorakis, Alexander Afanasyev, and Lixia Zhang. 2017. On the Evolu-
tion of NdnSIM: An Open-Source Simulator for NDN Experimentation. SIGCOMM

Comput. Commun. Rev. 47, 3 (sep 2017), 19–33. https://doi.org/10.1145/3138808.
3138812

[5] Philipp Moll, Varun Patil, Nishant Sabharwal, and Lixia Zhang. 2021. A Brief
Introduction to State Vector Sync. Technical Report NDN-0073. NDN.

[6] Philipp Moll, Varun Patil, Lan Wang, and Lixia Zhang. 2022. SoK: The Evolution
of Distributed Dataset Synchronization Solutions in NDN. In Proceedings of the
9th ACM Conference on Information-Centric Networking (Osaka, Japan) (ICN ’22).
Association for Computing Machinery, New York, NY, USA, 33–44. https://doi.
org/10.1145/3517212.3558092

117

https://network.geant.org/
https://doi.org/10.1145/3138808.3138812
https://doi.org/10.1145/3138808.3138812
https://doi.org/10.1145/3517212.3558092
https://doi.org/10.1145/3517212.3558092

	Abstract
	1 Overview
	2 Loss recovery and timers
	3 Evaluation
	4 Future Work
	References

