
Experimentations with TCP Selective Acknowledgment

Renaud Bruyeron, Bruno Hemon, Lixia Zhang

UCLA Computer Science Department
{bruyeron, bruno, lixia}@cs.ucla.edu

A b s t r a c t

This paper reports our experimentation results with
TCP Selective Acknowledgments (TCP-Sack), which
became an Internet Proposed Standard protocol re-
cently. To understand the performance impact of
TCP-Sack deployment, in this study we examined
the following issues:

How much performance improvement TCP-Sack
may bring over the current TCP implementa-
tion, TCP-Reno. We conducted experiments
both on a lab testbed and over the Internet, un-
der various conditions of link delay and losses.

• In particular, how well TCP-Sack may perform
over long delay paths that include satellite links.

What is the performance impact of TCP con-
nections with Sack options on those connections
without Sack when the two types running in par-
allel, if there is any.

1 I n t r o d u c t i o n

Up until now the common TCP implementation with
the latest Performance tuning has been TCP-Reno,
which uses Cumulative Acknowledgments. Recently,
the T C P Selective Acknowledgment option (TCP-
Sack) became an Internet Proposed Standard proto-
col, and is described in the RFC 2018 [8]. TCP-Sack
aims at improving TCP ' s ability to recover from mul-
tiple losses within the same congestion control win-
dow.

With the current TCP implementation (TCP-
Reno), the sender can quickly recover from an iso-
lated packet loss using the fast retransmit and fast
recovery mechanisms [13]. When multiple packets
are lost, however, the sender times out in most cases
and enter the slow-start phase ([7],[13]). To minimize
false-alarms, the retransmission t imeout often takes
long, and when combined with the following Slow-
start phase which reduces the congestion window size
to one data segment, can be particularly damaging to
TCP 's throughput.

To allow incremental deployment, the two ends of a
TCP connection performs a Sack negotiation during
the connection setup. A TCP implementation that
supports Sack appends a S a c k O k option in its SYN
packet. If both ends advertise Sack option, then Sack
will be used for data transmission in both Directions.
If any one end does not advertise Sack, the other end
shall not a t tempt to use Sack.

To understand how TCP-Sack works, let us look
at the receiver's end first. If a packet is dropped,
it creates a hole in the receiver's window of incom-
ing data. When the receiver receives the data seg-
ment right after the hole, it sends a duplicate ACK
for the segment be]ore the hole, as what TCP-Reno
does. In addition, TCP-Sack also adds to the ACK
packet an option field tha t contains a pair of sequence
numbers which describe the block of data tha t was
received out-of-order. Given the maximum size of
the TCP option field (40 bytes), an ACK packet can
carry at most 4 Sack blocks. This means that 4 holes
in the same congestion window can be advertised in
one ACK packet. Practically, because of the increas-

ACM SIGCOMM 54 Computer Communication Review

ing use of the timestamp option described in [6], the
number of Sack blocks carried by each ACK is limited
to 3.

A TC P sender uses Sack options to build a table
of all the correctly received data segments, thus it
knows exactly which parts are missing. It can re-
transmit them together during a recovery phase. In
TCP-Reno, a Duplicate ACK means that the receiver
received data out of order and was sending ACKs for
the left edge of the window. In TCP-Sack, a du-
plicate ACK carries the same information, in addi-
tion it also carries information on what other data
segments that have been received out-of-order. The
sender starts the data recovery mechanism after re-
ceiving 3 duplicate ACKs (as suggested in the RFC
[8]).

1.1 P r e v i o u s work

TC P Sack was first described in RFC 1072, and be-
came an Internet Proposed Standard protocol in RFC
2018. In [4], Sally Floyd addressed several issues in
the behavior and performance of TCP-Sack. In [3],
Kevin Fall and Sally Floyd used simulation to com-
pare the performance of TCP-Tahoe, TCP-Reno, and
TCP-Sack.

Our work on TCP-Sack is an extension to the
above, as we performed real experiments on our
testbed and over the Internet to verify and confirm
previous results.

1.2 P e r f o r m a n c e Issues

Our first goal was to measure the throughput im-
provement TCP-Sack may bring over TCP-Reno. We
conducted test runs over both our own testbed in
UCLA's Internet Research Lab and two multi-hop
paths over the Internet.

Our second goal was to evaluate the benefits of
TCP-Sack over long delay links such as a satellite link
(typically with a round trip time of 500 msec.). In the
case of long delay links, the time-out and slow-start
phase proves especially harmful to TCP 's through-
put: Our aim was to measure TCP-Sack throughput
under controlled packet losses, and compare the re-
sults with the throughput of TCP-Reno, as well as

with the theoretical maximum achievable through-
put.

Our last, but not the least, goal was to under-
stand the impact of TCP-Sack on competing TC P
connections without Sack. Since TCP-Sack connec-
tions achieve higher throughput than TCP-Reno con-
nections, one concern is whether TCP-Sack makes
TCP-Reno connections starve when the latter com-
pete for bandwidth against the former.

1 .3 I m p l e m e n t a t i o n o f T C P - S a c k

We used a TCP-Sack implementation by Elliot Yan
of USC, which in term is ported to FreeBSD from
PSC's Sack code for NetBSD 1, which itself is a port
of Sally Floyd's Sack code for the NS simulator. Yan's
implementation contains several flavors of TCP that
can be selected for each connection at run-time using
a socket option, making it easy to run TCP connec-
tions with or without Sack at the same time on the
same host.

Certain coupling and interaction exist between
TCP 's congestion control algorithms and the Se-
lective Acknowledgment processing and generation,
which must be compliant with the specification [8].
How much of the current Congestion Algorithms
should be altered to benefit from Selective Acknowl-
edgments remains an open research question. Several
Modifications to TCP 's congestion control algorithm
have been proposed recently ([9], [2], [1]).
The congestion control algorithm in FreeBSD imple-
mentation is described in [3]. It features the pipe
algorithm from Sally Floyd's NS code, basically an
adaptation of TCP-Reno to the new Sack capabil-
ity. Therefore, it is considered fairly conservative.
More aggressive congestion control algorithms were
proposed, most notably Forward Acknowledgment in
[9] (which is explicitly designed to work together with
Sack) and TCF-Vegas ([2]). In this study, we used
TCP-Sack with the Pipe algorithm.

1 ht tp : / /www.psc .edu/networking/ tcp .h tml

ACM SIGCOMM 55 Computer Communication Review

I

#pinglO.O.O.2

Tunneling
Process

TCP

IP

I/dev/tun * ~'~

tristan.cs.ucla.edu

bors.cs.ucla.edu

Router

Delaying Code

morgana.cs.ucla.edu

Tunneling
Process

TCP

IP

' i
I/dev/tun *

10.0.0.1

Figure 1: Testbed - Tunneling to emulate delay

10.0.0.2

1 . 4 T e s t b e d

The testbed consisted of two PCs running FreeBSD
2.1.5 connected by a Sun UltraSparc workstation
which behaves as a controllable IP router that can
introduce defined link delay and packet loss patterns.
To avoid modifying the Solaris kernel we imple-
mented the above router functions in the user space
on the Ultrasparc, and to make this user level ma-
nipulation t ransparent to the end-to-end T C P con-
nections we used IP- in-IP tunneling. FreeBSD kernel
supports a generic tunneling interface, which is used
in our tes tbed implementat ion to build an IP tunnel
between the Ultrasparc router and each of the two
end PC's .

IP-Tunnel ing in FreeBSD

The tunnel device in FreeBSD is a pseudo-device
tha t can be binded to a source and a destination ad-
dress (see Fig. 2, the source address on the figure
is 10.0.0.1, and the destination address is 10.0.0.2).
When IP sends a packet to the destination address

(e.g 10.0.0.2), the kernel captures the packet and
hands it to the tunnel device instead of the network
interface. The packets are queued in the tunnel de-
vice, and can be unqueued by a user process. Simi-
larly, a user process can write a packet into the tunnel
device. If the packet bears the source address of the
tunnel (10.0.0.1 in Fig. 2), the kernel will unqueue it
and move it to the IP layer, as if the packet was an
incoming packet.

Delay Emulat ion

Fig. 1 shows how the tunneling comes into play in
our testbed. Our user process listens bo th to the tun-
nel device and to a prearranged UDP port . What-
ever is read from the tunnel device is sent to the
router through the UDP socket (IP- in-UDP encapsu-
lation), and whatever comes from the router through
the UDP port is writ ten to the tunnel device. The
trick is invisible to the end-to-end T C P connections.
The client program runs on every PCs, and can han-
dle several tunnel interfaces, e.g. it can handle several

ACM SIGCOMM 56 Computer Communication Review

tunnel destinations. The server program runs on the
UltraSparc, and listens to a prearranged UDP port .
All incoming packets are queued in a FIFO queue.
The delay in the queue is defined by a command-
line parameter . We added the possibility to have a
separate queue for each way. We also added a leaky-
bucket algorithm 2 to limit the available bandwidth.

User Process

Kemel

TCP UDP

IP

10.0.0.2[10.0.0.1

Tunnel Ethernet

u

Cable

Figure 2: Tunneling in FreeBSD

Each end host 'sees' a vir tual link between 10.0.0.1
and 10.0.0.2. The characteristics of this virtual link
depend on the settings of the FIFO queue on the
server process on the router, and on the settings of
the user processes on both hosts. The server takes
care of the delay and the bandwidth limitations, while
the artificial losses were introduced in the user pro-
cesses.

1.5 M e a s u r e m e n t s , i n s t r u m e n t a t i o n

To gather da ta on our experiments, we added instru-
mentat ion code in the FreeBSD kernel to plot the
values of cwnd and ssthresh for a given connection.
These plots are very interesting in tha t they show
congestion events and slow-starts.
We also hacked LBNL's tcpdump u to make it com-
pliant with the new specifications of TCP-Sack de-
scribed in [8]. To process the output of tcpdump, we
used both Shawn Ostermann 's tcptrace [11] and our
own AWK scripts.

1.6 Tests on the real I n t e r n e t

In order to confirm the results from our testbed, we
ran similar experiments on the real Internet. We had
two partners for this project, the Pi t t sburgh Super-
computing Center and the NASA's Goddard Space
Flight Center. PSC provided us with a NetBSD
machine running an experimental kernel with PSC's
implementat ion of TCP-Sack. At NASA, we used

2Packets entering the FIFO queue are time-stamped. The
output of the queue is limited to X byte/sec by setting the
time to wait before sending next packet to P where P is the
size of the previous packet.

3$cpdump is available at f tp . ee . lb l .gov . Our patch can be
found at h t t p : / / i r l . c s . u c l a . e d u / s a c k . h t m l .

ACM SIGCOMM 57 Computer Communication Review

a host running an experimental implementation of
TCP-Sack on SunOS.

2 Comparison of TCP-Sack
and T C P - R e n o

In the first phase of our project, we studied the
behavior of TCP-Sack and compared it to TCP-
Reno. We focused on the congestion window and

t h e throughput. We started with some tests in our
lab and then moved on to the Internet to confirm our
results.

2 . 1 O v e r t h e T e s t b e d

2.1.1 D e s c r i p t i o n o f t h e t e s t s

During these experiments, we studied the behavior
of TCP-Sack or TCP-Reno, alone, facing the same
delay, bandwidth and loss conditions. The simulation
involved a FTP-like transfer of data during typically
5 minutes. Using tcpdump and our instrumentation
code, we gathered data on the congestion window size
and the throughput.

The link delay was 25 ms and the bandwidth was
limited to 2 Mb/s. We used different packet loss prob-
abilities. The buffer space at the sender and at the
receiver was set to allow a maximum window size of
16 KB. The packets were 1400 bytes long. One ad-
vantage of using our tunnel was that the conditions
were perfectly reproductible between each run.

There were two sets of experiments, with two dif-
ferent loss patterns: isolated drops or bursty drops.

• For isolated losses, a single packet is dropped
with a given probability (between 0% and 9%).

• For bursty losses, a burst of packets is dropped
in a row, with a given burst loss probability. The
number of packets in the burst is constant, typi-
cally three. Therefore the packet loss probability
is equal to the burst loss probability multiplied
by the number of packets in the burst. In the fol-
lowing sections, we will refer to P as the packet
loss probability, P~ as the burst loss probability
and b as the number of packets in a burst.

2.1.2 I s o l a t e d losses

We present in this section typical results from our
tests with isolated packet losses. The following table
(Fig. 3) shows the throughput of TCP-Reno or TCP-
Sack when the packet loss probability is between 0%
to 9%.

TCP-Reno TCP Sack Sack/Reno
P = 0% 184 KB/s 184 KB/s 1.00
P = 1% 132 KB/s 133 KB/s 1.01
P = 3% 60 KB/s 67 KB/s 1.12
P = 9 % 19 KB/s 19 KB/s 1.00

Figure 3: TCP-Reno and TCP-Sack with isolated
drops - separate runs of 5 minutes (50ms RTT,
2Mb/s)

First, if there is no loss (P=0%), TCP-Reno and
TCP-Sack have exactly the same behavior and have
the same throughput. The congestion window opens
during the initial slow-start until it reaches its max-
imum and then remains at its maximum. The
throughput of 184 kB/s is the maximum achievable
with our test parameters.

If the loss probability is low (P-- l%) and if the
losses are isolated, only one packet loss per window
is likely to occur. In this case, TCP-Reno recovers
using fast retransmit and fast recovery. TCP-Sack
does not bring any improvement.

If the loss probability is P=3%, the probability of
having multiple lost packets per window is greater.
TCP-Sack can recover most of the time from multiple
losses within the same window, while TCP-Reno very
often experiences a time-out followed by a slow-start.

Fig. 4 and 5 show some plots of the conges-
tion window size (cwnd) and the slow-start threshold
(ssthresh) for TCP-Reno and TCP-Sack during an
interval of 50 seconds in the P=3%, 50ms RT T and
2 Mb/s case. A slow-start event is characterized by
a 'falling edge' on the congestion window plot (cwnd
is suddenly set to 1). On Fig. 4 and Fig. 5, each
of these 'falling edges' represents a slow-start (this is
confirmed by the numeric data from the kernel logs).
When comparing the two plots, one can notice tha t
TCP-Sack does not show as many of these events as

ACM SIGCOMM 58 Computer Communication Review

L ~

Figure 4: TCP-Reno - Congestion window - P=3~o,
50ms RTT, 2 Mb/s

=eClnO x lOS

II

~ P I ~ K

¢ J i
j
r

o,oo 100100 zoo.oo 30o.oo

Figure 6: Compared Throughput of TCP-Sack and
TCP-Reno - P=3~o, 50ms RTT, 2Mb/s

Figure 5: TCP-Sack - Congestion window - P=3~o,
50ms RTT, 2 Mb/s

TCP-Reno (5 against 16).

As a result, the average congestion window size is
larger with TCP-Sack and the throughput of TCP-
Sack is better. See Fig. 6 for the throughput plot for
TCP-Reno and TCP-Sack during this typical exper-
iment. Note that even if the tests were run one after
another, the plots are on the same figure. We see in
this case that TCP-Sack improved the throughput by
12%.

Finally, if the loss probability is P=9%, both TCP-
Reno and TCP-Sack show poor performance. The
main reason is that , according to RFC 2018 [8], TCP-
Sack has to time-out when a retransmitted packet
is lost again. TCP-Sack will also have to time-out
if a lot of acknowledgments are lost. Therefore, if
the loss probability is high, retransmitted packets
get dropped and TCP-Sack cannot avoid a time-
out/slow-start. The result is tha t both TCP-Reno
and TCP-Sack have a low throughput in case of high
loss probability.

ACM SIGCOMM 59 Computer Communication Review

2.1.3 B u r s t y losses

When congestion occurs in the real Internet, several
packets are likely to be lost. Therefore, we decided to
repeat the previous experiments with 'bursty losses'.
The loss distribution is very simple : a 'drop event'
happen with a given probability, and at each drop
event, a fixed number of packets is dropped. In the
following sections, we will note P~ the probability of
a drop event, and b the number of packets in a burst.
In this section, we have b = 3.

The following table (Fig. 7) shows the throughput
of TCP-Reno and TCP-Sack, with b = 3 and P~ set
to 1%, 2% or 3%.

TCP-Reno TCP-Sack Sack/Reno
P ' = 1% 60 KB/s' 98 KB/s 1.63
b = 3
P~ = 2% 29 KB/s 50 KB/s 1.72
b = 3
P ' = 3% 23 kB/s 24 kB/s 1.04
b = 3

Figure 7: Comparison o] TCP-Reno and TCP-Sack
with bursty losses

The first obvious result is that TCP-Sack improved
the throughput by 60% to 70%, when the drop event
probability is 1% or 2%. In the next paragraphs, we
review the results for a drop event probability of 1%.
The same comments apply for a burst loss probability
o f 2 % .

See Fig. 8 and 9 for the cwnd and ssthresh plots
for TCP-Reno and TCP-Sack during an interval of
50 seconds. See Fig. 10 for the throughput plots•

We can see on the cwnd plots that the number of
time-outs and slow-starts is higher with TCP-Reno
(see Section 2.1.2 to understand what a slow-start
looks like on these plots). While TCP-Reno times-out
and slow-starts often and regularly (approximately
3 times every 5 seconds (Fig. 8)), we can see that
TCP-Sack is able to keep its window open during 30
seconds without any slow-start (Fig. 9).

Fig. 10 shows the difference in term of through-
put between TCP-Reno and TCP-Sack. The final
throughput of TCP-Sack is 63% higher than the

.. miiiiiliili

I0~0

0 I I

5O ~ 6O

L

i

i i ! i 1 i i

Figure 8: cwnd and ssthresh /or TCP-Reno -
P'=l~o, b=3, 50ms RTT, 2Mb/s

i ,,,, •

,,r, i

fin
y :!,,

,r

J

"' i,, ,r

Figure 9: cwnd and ssthresh for TCP-Sack -
P '=I~, b=3, 50ms RTT, 2Mb/s

ACM SIGCOMM 60 Computer Communication Review

throughput of TCP-Reno.

seqr~ x I ~ o:,

!iit/ '

~ P S~K

/
J

J
,}

time
0,00 100.00 200.00 300.00

Figure 10: Time-sequence diagram - P ' = l ~ o - b=3

We illustrate now the different behaviors of TCP-
Reno and TCP-Sack after a drop event (b = 3). Fig.
11 and 12 represent the packet sequence numbers and
the acknowledgement sequence numbers with respect
to time, for TCP-Reno and TCP-Sack respectively.
Both plots represent an interval of t ime of 1.5 second
centered on the drop event.

For TCP-Reno, we can see on Fig. 11 that the
drop event occurs at t = 122.93s. Just after the loss,
several duplicate acknowledgements are received. Af-
ter the third duplicate acknowledment has been re-
ceived, the first missing packet is re t ransmit ted at
t = 123.07s, using the fast retransmit mechanism.
After the fast retransmit , if the sending window is
not exhausted, more packets can be sent. We see tha t
at t = 123.09s a new packet is sent. Up to this point,
TCP-Reno has fast-retransmit ted one missing packet
and sent new packets until the sending window is ex-
hausted. But now, the sending window is exhausted,
no more acknowledgements are received and some
packets are still missing. TCP-Reno has to t ime-out
and enter a slow-start phase. At t = 123.91s, the sec-
ond missing packet is retransmitted. At t = 124.07

an acknowledgement is received. The window size is
now 2 packets. The two next packets are now retrans-
mitted. The first one was the third missing packet
and the second one an unnecessary retransmission.
At t = 124.14s, an acknowledgement for all the sent
da ta is received. The window size is now three pack-
ets and TCP-Reno can now send new data. Recover-
ing from this drop event involved 900ms of idle t ime
and a slow-start.

For TCP-Sack, we can see on Fig. 12 tha t the drop
event occurs at t = 123.43. After the loss, several
duplicate acknowledgements are received. After the
third duplicate acknowledgement, the three missing
packets are re t ransmit ted at t = 123.55s, using fast
retransmit . After this fast retransmit , if the sending
window is not exhausted, more da ta can be sent. In
this case the sending window was exhausted. At t =
123.63, an acknowledgement for all the sent data is
received and some new data can be sent. We see
that in this case, no t ime-out and slow-start occured.
All the data has been correctly recoverered using fast
retransmit .

The two previous scenarios illustrate clearly the
benefit of using TCP-Sack when the losses are bursty.
We can note the interesting fact tha t TCP-Reno has
the same throughput (60 KB/s) for isolated losses
with a packet loss probabili ty of 3% and for bursty
losses with a burst loss probabil i ty of 1% and a burst
size of three packets. This means tha t for TCP-Reno,
three consecutive drops and three separate drops look
and feel the same. For TCP-Sack, on the other hand,
the size of the drop event does mat te r to the recovery
mechanism.

When the burst loss probabil i ty is higher (P '=3%) ,
then both TCP-Reno and TCP-Sack have the same
poor performance. The reason is the same as in the
isolated losses case. When the loss probabil i ty is too
high, The window size remains small and some time-
outs and slow-starts can not be avoided, even with
TCP-Sack.

2.1.4 C o n c l u s i o n s

We can draw some conclusions from these experi-
ments. First, it was observed tha t TCP-Sack is useful
for a given range of packet loss probability. If there

ACM SIGCOMM 61 Computer Communication Review

seqno x 106

8.51

0.50- -

8,50

8.50 '

0.48
1

8.48 ;

0 . 4 7 - - ~

123,00

T C P _ R e n o

+

123.50 124.00
~rne

Figure 11: C l o s e - u p o n a b u r s t y d r o p e v e n t - T C P -

R e n o - P ' - - l ~ o - b = 3

. IIII
T C P _ S a c k

seqno x 106

1~84

12.83"--

1 2 . 0 2 - - -

12.8"P----

12,80

12.79

12.7¢

12,77

12.7@- - -

12.75

12.74

12~00

/ ,A

123.50

IIII IIIIII II II

t

i 6me
124 O0 , ,,

Figure 12: C l o s e - u p o n a b u r s t y d r o p e v e n t - T C P -

S a c k - P ' - - I ~ - b = 3

is no loss or if the loss probabil i ty is very low, then
TCP-Reno can recover using fast re t ransmit and fast
recovery. If the loss probabil i ty is very high, even
TCP-Sack is subject to some t ime-outs and slow-
starts and can not keep a large window. In both
cases, there is no real benefit of using TCP-Sack.

Then, it was observed tha t for a drop ra te between
2% and 4%, TCP-Sack improved the throughput by
a significant amount. This improvement is really im-
por tant when the packet losses are bursty. We illus-
t ra ted in a detailed analysis the difference in behavior
of TCP-Reno and TCP-Sack after a loss of a burst
of packets. While TCP-Reno can only recover from
an isolated loss using fast retransmit , TCP-Sack can
recover from a burst loss without any t ime out or
slow-start. As a result, we observed a throughput
improvement of 60% to 70% with TCP-Sack when
the packet losses were bursty.

The results presented in this section are typical of
the results we got during our numerous experiments.

2 . 2 E x p e r i m e n t s o v e r t h e I n t e r n e t

There are two main reasons to t ry to validate our
results by running experiments on a real network.
First, the topology of our tes tbed is very simple (one
hop): it is interesting and useful to know what the
picture is on a multi-hop path. The second reason is
tha t we used fixed loss distributions to get the bot-
tom line. On a real multi-hop path, the congestion
pat terns are very complex and difficult to model: we
want to know what the results are in this case. The
main problem with real-life experiments is tha t the
network conditions are not reproductible from one
test to another.

2.2.1 B e t w e e n U C L A a n d t h e P i t t s b u r g h Su-
p e r C o m p u t i n g C e n t e r

In this set of experiments, we used one host in our
lab at UCLA and one host at the Pi t t sburgh Super-
Computing Center. The pa th is 14 hops long, with
an average round-trip t ime of 65 ms and a bott leneck
link of 6 Mb/ s (Van Jacobson 's pa thchar to measure
the path). The packet size is 496 bytes. The buffer

ACM SIGCOMM 62 Computer Communication Review

space at the sender and at the receiver was set up to
65535 bytes (approximately 132 packets).

One important difference with our testbed is that
depending on the time of the day the traffic condi-
tions change dramatically. Therefore, we show here
three typical experiments, with typical (average) re-
sults.

For each one of our tests, we established an ftp
connection between UCLA and PSC for 2 minutes,
first with TCP-Reno and after with TCP-Sack. For
each test three plots were generated. The first plot
is the usual time-sequence diagram for TCP-Reno
and TCP-Sack. Even if the two connections were
run one after another, the throughputs of TCP-Reno
and TCP-Sack appear on the same graph for easy
comparison. The second and third plots show the
congestion window size for TCP-Reno and TCP-Sack
respectively.

The first experiment (Fig. 13 and 14) was per-
formed at 12 pm (pacific time). The Internet traffic
at this time is heavy. The second experiment (Fig. 15
and 16) was performed at 4 pm (pacific time) when
the traffic is 'average'. The third test (Fig. 17 and
18) was performed at 8 pm (pacific time) when the
Internet traffic is light.

The first interesting thing to notice is the behavior
of the congestion window (Fig. 14, 16 and 18). Every
time a time-out followed by a slow-start occurs, the
congestion window is reduced to 1 (falling edge on
the diagram). We can estimate the number of time-
outs and slow-starts by counting the number of falling
edges. For example, we can see on Fig. 14 that TCP-
Reno timed-out approximately 50 times in 2 minutes
while TCP-Sack timed-out only twice. In all our test,
TCP-Reno timed-out more often than TCP-Sack.

Since TCP-Sack is able to avoid some time-outs
and slow-starts, it can keep a larger average conges-
tion window. It is especially true when the Inter-
net traffic is heavy. We can see on Fig. 14 and 16
that TCP-Sack timed-out respectively 2 and 3 times
in 2 minutes, while TCP-Reno timed-out 50 and 25
times. The average congestion window is therefore
larger with TCP-Sack. As a result, the throughput
of TCP-Sack is higher than the throughput of TCP-
Reno. When the Internet traffic is light, TCP-Reno
can recover from congestion using fast retransmit and

fast recovery and there is less benefit using TCP-
Sack. Looking at the tcpdump traces of our tests,
we were able to figure out what the loss pat tern is
during the experiments. As we expected, the losses
are very bursty. We observed that the average burst
length is 20 to 30 packets. The maximum window
size is set to 65535 bytes and the packets are 496
bytes long. Therefore, the maximum window size is
set to approximately 132 packets. This very bursty
loss pat tern explains why TCP-Sack is more efficient
than TCP-Reno.

The following table (Fig. 19) shows the throughput
of TCP-Reno and TCP-Sack at these three typical
times of the day.

Figure 19: UCLA to P S C - Throughput comparison
Fig. Fig. Fig.

1 3 & 1 4 1 5 & 1 6 1 7 & 1 8
Reno 63 KB/s 104 KB/s 2 2 1 K B / s
Sack 81 KB/s 132 KB/s 257 KB/s
Sack/Reno 1.29 1.27 1.16

The first comment is that there is more benefit
using TCP-Sack when the Internet traffic is average
or heavy. This was expected since TCP-Reno is able
to recover from one single isolated loss. In this case,
TCP-Sack does not do bet ter than TCP-Reno. We
found a throughput improvement of 15% with TCP-
Sack during a period of light Internet traffic.

We found a throughput improvement of approxi-
mately 30% with TCP-Sack during periods of aver-
age or heavy Internet traffic. We think that such an
improvement of 30% is significant.

There are two interesting conclusions to these ex-
periments. First, the bursty loss pat tern observed
during our tests over the real Internet was what we
expected. The behavior of both TCP-Reno and TCP-
Sack in the face of congestion was also what we ex-
pected. While TCP-Reno had to time-out and slow-
start after congestion, TCP-Sack was able to recover
smoothly. The second interesting point is that we ob-
served a throughput improvement of 30% with TCP-
Sack when facing heavy or average Internet traffic.

ACM SIGCOMM 63 Computer Communication Review

seqno x 10 6

IO.O0~F ~.- i "top ,'~¢K

9.o I ~ I --

, , oo- t - : f ! - -
o.oo-~" i

0.00 50.00 100.00
tim

Figure 13: UCLA to P S C - Heavy Traffic Conditions (12 p m p. t .) - Time-sequence

l
{c-~i' :i-1~ TCP_Reno i,:, - ;~ i t lcwndxl ~ TCP_Sack 1

18.0 - ' I 1 ~ . 0 ° - I t l - - 4 - - - - - t ~ U
, j

121 12120 - _ - -

1 °°io!0 ;;o 1211o2 " °4 [°°°o.!o :o!oo ,oZ.oo "°'H
Figure 14: UCLA to P S C - Heavy Traffic Conditions (12 p m p. t .) - c w n d

ACM SIGCOMM 64 Computer Communication Review

s e q n o x 106

18.00-

is .00-] . l . t ~-c?- -s~c~ -

12.oo-I - - - i ~ ~ -

8.00 w - - ,

6 .00 - -

4"00--~ ~
2.011--
0.00 i i

I time
0.00 50.00 100.00

Figure 15: UCLA to P S C - Average Traffic Conditions (4 p m p.t .) - Time-sequence diagram

• rF(ll"l"rr T IV
T C P _ R e n o

' cwnd x 103

28,00

26,00

24 ,00 - -

22 ,00 - -

20,00 .

18.00 .

16.00

14.00- -

12.00- -

10 .00~

8 . 0 0 ~

6 . 0 ~ - -

4.00- -

2 .00- -

0.00
~mE

100.00 0.00 50.00

T C P _ S a c k
cwnd x 103

I

28.o~ I !

24.00- -

22 ,00- -

2o .oo i

10.00---
8.00--
6.00-- i
2,00

0.00
time

0.00 50.00 100.00

Figure 16: UCLA to P S C - Average Traffic Conditions (4 p m p. t .) - c w n d

A C M S I G C O M M 6 5 C o m p u t e r C o m m u n i c a t i o n R e v i e w

Figure 17:

seqno x 106

35.00

30.00

25.00

20.00-- ~ - -

15.00-

10"00 I ~ I

time
0 .00 50 .00 100 .00

T C P 9RCK
V - - - - - -

UCLA to PSC - Light Traffic Conditions (8 pm p.t.) - Time-sequence diagram

. " 'rl TCP_Reno cwnd x 103
65.oo--I J

60.00 I
55,00--I
50.00--+--
45.00--~ I ~
4o.oo- I I

3 5 . 0 0 1

3 0 . 0 0 - . ~ ~ ..

25.00 ' - " "
2ooo I / I / I / i

,.oo i ' :
0.00

i time 0,00 50.00 100.00

TCP_Sack cwnd x 103
65.00--
60 .00 - -

55.00--
50.00--
4 5 . 0 0 - - 40.00-- ~~_.~_~ ~ - - - - ~ - ~
35.0C i
30.00- .
25.00-- . _ ~ ~
20.00--
15.00-
10.0(}--
5.00--- \

0.00 J time
0.00 50.00 "100.00

Figure 18: UCLA to PSC - Light Traffic Conditions (8 pm p.t.) - cwnd

A C M S I G C O M M 6 6 C o m p u t e r C o m m u n i c a t i o n R e v i e w

2.2.2 B e t w e e n U C L A and the N A S A ' s G o d -
d a r d Space Flight Center

We tried to run the same experiments between UCLA
and NASA's Goddard Space Flight Center. Due to
technical problems with the experimental SunOS ker-
nel we used at GSFC, we did not apply the same
methodology and could not run as many tests be-
tween UCLA and the NASA lab as in the previous
section. Here, we show some typical results.

The pa th between the two hosts is 16 hop long.
Using pathchar , we measured a round-tr ip t ime of 80
ms and a bott leneck of 8.4 Mb/s . We could not use
our own traffic generator for these experiments and
we used instead a regular F T P program to transfer
one big file. The file was 29 MB long and the duration
of the transfer was between 2 and 3 minutes.

See Fig. 20 and 21 for the results of one typical
test. Fig. 20 shows the time-sequence diagram of
TCP-Reno and TCP-Sack. The two tests were run
one after the other but we show both results on the
same plot. Fig. 21 is a table which compares the
throughput of TCP-Reno and TCP-Sack.

Because of technical problems, we could not use
the instrumentat ion code to plot c w n d and s s t h r e s h .

Still, it is possible to see on the time-sequence dia-
grams tha t more t ime-outs and slow-starts occur with
TCP-Reno. A t ime-out is an accident in the time-
sequence diagram, like a bump (see the close-up on
Fig. 20). The number of t ime-outs and slow-starts
with TCP-Sack is smaller, and the transfer appears
to be much smoother and steadier.

We found a throughput improvement of 46% when
using TCP-Sack. This improvement is a typical value
tha t was confirmed by our other tests. Almost 50% of
improvement for an F T P transfer is very significant.

2.2.3 Conc lus ion

Thanks to our two partners, the Pi t tsburgh Su-
perComput ing Center and NASA's Goddard Space
Flight Center, we have been able to compare the per-
formance of TCP-Reno and TCP-Sack over a real
pa th on Internet. All our tests confirmed the same
conclusions. We first observed tha t the real loss pat-
terns are burs ty as we suspected. Then we had con-

UCLA NASA
seqno x 106

30.00- i

"rCPSRCK / I Z _

\ i
, \

_ _

0.00 50.00 100.00 150.00

Figure 20: N A S A to U C L A - 29 M B F T P - close-up

on a t i m e - o u t even t

firmation tha t TCP-Sack is able to avoid most time-
outs and slow-starts, keeping a larger congestion win-
dow than TCP-Reno. Finally we observed some im-
por tan t throughput improvement with TCP-Sack, es-
pecially when facing heavy traffic.

We found tha t TCP-Sack could improve the
throughput by 30% to 45% over two different multi-
hop paths over the real Internet. Wha t is interesting
is tha t these experiments were done in real condi-
tions. We believe tha t a such a big throughput im-
provement meets the expectat ions placed on TCP-
Sack.

Our last conclusion is tha t these experiments con-
firm the results on our testbed.

ACM S IGCOMM 67 Computer Communication Review

Figure 21: N A S A to UCLA - Throughput comparison
Fig. 20

Reno 183 kB/s
Sack 268 kB/s
Sack/Reno 1.46

3 Long delay links

One goal of our project was to study the behavior of
TCP-Sack over long delay links, when used together
with the Window Scale option defined in [6].
Our focus was mainly on the 500ms range, since this
is a typical value for a Geosynchronous satellite. We
ran several experiments with different loss rates and
different scenarios.
We set the buffer sizes to 256 KB on both sides
of the virtual link, to take advantage of the large
delay - bandwid th product. The bandwidth setting
varied between 2 Mb/s and full 10BT bandwidth (10
Mb/s). Note that when limiting the bandwidth using
the leaky bucket algorithm, the average delay is im-
pacted by the modified behavior of the FIFO queue
in the delaying server (see Section 1.4).

3 .1 P r e l i m i n a r y r e s u l t s

Using the full bandwidth available, and with a long
RTT, we are able to generate some congestion on the
virtual link. Indeed, with buffers set to 256 KB on
both PCs, with a rate of 10 Mb/s, the link can get
congested in a realistic way (several drops per win-
dow, bursty drops, etc). The congestion is caused by
buffer overflows on the router (the maximum UDP
buffer size on Solaris is limited to 64 KB, hence this
problem). The delay was 80ms, and Sack does 100%
better than Reno. The time-sequence diagram can
be seen in Fig. 22, and the c w i n and s s t h r e s h plots
can be seen in Fig. 23.
This experiment gives the bottom line for further re-
finement of the experiments. The striking difference
between the congestion behavior of Reno and Sack
is very obvious when looking at the t i m e - c w i n di-
agrams. In this case (80ms, full 10BT bandwidth,
congestion loss), Sack is able to avoid almost all the

s low - s t a r t s , hence the huge throughput increase.

3 .2 A r t i f i c i a l l o s s e s

In this experiment, we set the round trip time to
500ms, and we limited the bandwidth to 2 Mb/s. All
the drops are artificially introduced. The drop rate
is P ' = 0.18% with b = 3. This case is extremely
favorable to TCP-Sack. The time-sequence diagram
is at Fig. 25.

Figure 24: 0.15~o drop rate, burs t iness 3
Throughput

TCP-Reno 32 KB/s
TCP-Sack 55 KB/s

1.2e+07

le+07

8e+06

6e+06

4e+06

2e+06

i i

i Sahk
i Re~0 +

20 40 60 80 100 120 140 160 180 200

Figure 25: Time-Sequence diagram - - Sack vs. Reno
- - Link: 500ms R T T , 2 Mb/ s , 0.18Vo drop rate,
burst iness 3

3.3 S a c k a n d R e n o vs . T h e o r e t i c a l
b a n d w i d t h

Next, we focused on the link utilization. In [10],
Mathis et al. defined a macroscopic behavior of

ACM SIGCOMM 68 Computer Communication Review

:) Jie<417

$e,~07

2 JSe.,.O7

2 e . ~ 7

0

100000

9O00O

80000

70000

6O0OO

5OOO0

40000

300OO

20000

1 0) 0 0

Figure 22: Preliminary test: Sack ~ Reno with Congestion-like type of loss

Reno

~ ~ ~ ° - -

.............. i ! ... i

20 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0

Sack
1O60OO ~ ~ 1

j i i o~ ln - -

~ o o .. i ~ ~ i i ~ ' " ~ :::

8ooo0 i i i ~ ~ ~ i i i

7o0oo ~, i i ~ i ' i i

6 o o o o i i . i i

5 o o 0 0 i ~ i i

4o~o " i . . . i . i

300OO i

20O0O J

0 2O 4(1 60 8O 100 120 140 160 180 20O

Figure 23: Preliminary test: time-cwin and time-ssthresh diagrams

the congestion avoidance algorithm. It starts with
the hypothesis that the current congestion algorithm
(halving the congestion window when there is a con-
gestion signal, e.g a drop) is necessary in any TCP
implementation. Given this hypothesis, the model
gives an ideal throughput that can be achieved un-
der a given (moderate) drop rate, and a given delay.
The assumption behind the formula is that the con-
nection does not experience any time-outs, and that

the effects of the start-up phase are diluted over a
very long connection. The formula for the achievable
throughput is

M S S • C
B W - (z)

RTTv/- ~

where M S S is the segment size, R T T is the round
trip time, and p is the drop rate . C is a constant
that depends on the ACK strategy and several other

A C M S I G C O M M 6 9 C o m p u t e r C o m m u n i c a t i o n R e v i e w

factors. As one can see in this equation, the through-
put achievable is proportional to the inverse of R T T .
That is, the longer the delay, the smaller the through-
put. Why ? Isn' t the wscale option supposed to ad-
dress the issue of long-delay ?
The reason is that with long delay, the linear expan-
sion of a large cwin is very long. Therefore, reach-
ing the optimum cwin (i.e the optimum throughput)
takes a long time. This is why one can expect the
link utilization to be low for long delay.

We compared the performance of TCP-Sack and
TCP-Reno against the model, and the results back
the conclusion of [10] tha t TCP-Sack is indeed closer
to the ideal congestion behavior. We also focused on
the throughput increase brought by TCP-Sack when
the burstiness of the drops is higher than one.
In this experiment, we set the link propagation de-
lay to 250ms (RTT=500ms). We used large win-
dows (256 KB of available queue length) and artificial
losses introduced at the end points. For the model,

we took C = ~/3 since the ACKs in our implemen-

tat ion are not delayed (see [10]).

Drop Rates Sack Reno
O.O5 73 % 69 %
0.1 87 % 77 %

0.15 88 % 70.5 %
0.18 82 % 66.5 %
0.2 76 % 62 %
0.3 81% 73 %
0.4 90 % 66 %
O.5 85 % 68 %
O.8 86 % 68 %
1 87.5 % 64.5 %

Figure 26: Sack ~ Reno vs. Theoretical Throughput

In Fig. 26, we show the performance of Sack
and Reno compared to the throughput according to
the model from [10]. 100% would mean that T C P
achieved the best possible throughput using the Con-
gestion Algorithm. The reason why Sack and Reno
do not achieve 100 % is because of time-outs and be-

Drop Rates Sack Reno
0.05 37 % 34 %
0.1 28.5 % 25 %

0.15 25.7 % 2O.5 %
0.18 22 % 17.7 %
0.2 19 % 15.6 %
0.3 16.7 % 15 %
0.4 16 % 11.7 %
0.5 13.5 % 10.7 %
0.8 10.7 % 8.5 %

1 9.7% 7%

Figure 27: Link Utilization for Sack and Reno

cause of the start-up phase. TCP-Sack is closer to
the model because there are less time-outs. The plot
of this table can be seen in Fig. 28.
In Fig. 27, one can see the link utilization achieved
by TCP-Sack and TCP-Reno under the same condi-
tions. It of course depends strongly on the state of
the link. It is very low. The reason is because every
time a drop occur, cwin is divided by 2. Therefore,
at this point, the throughput is divided by 2. Then,
linearly expanding cwin back to a large value takes
a long time because of the delay, and because of the
large size of the window (see sec. 3.4).

The key to the bet ter behavior of TCP-Sack is
its ability to avoid slow-starts. Slow-starts are es-
pecially damaging to the throughput over long-delay
links. To time-out, TCP-Sack must face heavy con-
gestion: loose a string of ACKs, or loose a retrans-
mitted packet.

3 . 4 I s s u e o f I n i t i a l s s t h r e s h s e t t i n g

When we first had a look at Fig. 27, we did not
understand the shape of the plot 'Throughput
Improvement of Sack over Reno', and especially why
the plot for burstiness -- 3 has this shape: why is
the improvement of Sack maximum for p -- 0.4%,
and why is it so low for small drop rates ?

ACM SIGCOMM 70 Computer Communication Review

Pe~tage of theomti~l Bandwidth Achieved by Sack ~ d n ~ o

Sack - -
Reno

• / -\,. f..-'/" "-........ ..

0.1 0.2 0.3 0.4 O.5 0.6 0.7 0.8 0.9
Drop Rate

140

120

1OO

e0 I

I
6o i

I

Throughput I m p ~ t o l Sack ~ r R ~ o

burs t lneu=3

/ ',,

I

h a l

;

i i i i i i i i i

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 ~.B
Drop Rate

Figure 28: TCP-Sack and TCP-Reno against Congestion Avoidance Model - on the left, how close to the
model TCP-Sack and TCP-Reno are - on the right, per]ormance improvement o] TCP-Sack over TCP-Reno,
as a]unction o/ P ' and b

The culprit seems to be the default initial setting
of ss thresh when a T C P connection is started.
In most implementations of TCP, ss thresh is initially
set to the maximum window size. If the wscale op-
tion is used, the maximum possible window size is 4
GB. This initial value lets TCP start with a slow-start
that can be interrupted only by congestion signals,
at which point ss thresh is set to a more reasonable
value (cwin /2 when the congestion signal occurs).
Unfortunately, if several congestion signals occur,
cwin is divided by two several times. If the conges-
tion signal is very bursty, then ss thresh is likely to
be set to a very small value (a few packets).
This is extremely costly in the case of long-delay (lin-
ear increase of cwin takes a long time) and large win-
dows. The large delay and high bandwidth cause the
slow-start phase to shoot up very high, and then the
connection usually experiences a burst of loss, which
resets ss thresh to a very low value (sometimes a few
packets).

To illustrate this effect, we show in Fig. 29 a plot
of c w i n / s s t h r e s h for a connection over the virtual
link with the following settings: bandwidth = 5Mbps,
RTT = 500ms, buffers = 512KB, no artificial losses.
The drops are caused by congestion at the UDP inter-

400000

350000

3000O0

25OOOO

200O00

lOOOO0

culn m

sst~'esh - -

J
. j J"

i i i i i

20 40 60 80 100 120 140 160 180 200

Figure 29: Effect o] high initial setting o/ s s thresh
on cwin expansion over long-delay with large window
- cwnd collapses to a very low value after 8s because
o/ a slow-start phase that lasts too long

ACM SIGCOMM 71 Computer Communication Review

face in the router (the UDP buffers on the UltraSparc
were set to 64KB, the max imum value allowed by So-
laris).
On this plot, we see the slow-start phase shoots up
very high, then we see a burst of drops, and ss thresh
collapses to a low value (around 15KB). We can see
tha t the equilibrium for the window size seems to be
around 130KB, and it takes about 85s for cwin to
expand to this value. Therefore, the s tar t -up behav-
ior of T C P in this case resulted in a poor est imate of
ss thresh .

This affects both TCP-Sack and TCP-Reno, hence
the lower improvements of Sack over Reno with small
drop rates. Why does it affect the results with small
drop rate ? Because with higher drop rate, an artifi-
cial drop is more likely to occur during slow-start and
interrupts it before it shoots too high and generates
a burst of congestion drops. With higher drop rates,
the slow-start phase results in a be t ter est imate of
ss thresh .
This problem is described in [5], and several solutions
are being reviewed.

3 . 5 C o n c l u s i o n s o v e r l o n g d e l a y p e r -

f o r m a n c e

The key to high performance when facing high delay-
bandwidth product links is the use of the wscale op-
tion. Being able to "fill the pipe" during the transfer
is what really mat ters .
Yet, the long delay makes the slow-start algorithm ex-
t remely costly, since it takes several RTT to get the
ack-based clock running again. Wha t TCP-Sack does
much bet ter than TCP-Reno is recover from multiple
loss within one window of data. TCP-Reno needs one
R T T per packet drop to recover, while TCP-Sack is
able to recover from several losses in one single RTT:
the most obvious benefit, as one can see in Fig. 23,
is tha t TCP-Sack avoids some of the slow-starts.

4 N e g a t i v e impact of T C P -
Sack on T C P - R e n o

TCP-Sack is now a proposed Internet s tandard and
is soon to be deployed over the Internet. This deploy-
ment will be incremental. TCP-Sack is expected to
be in most cases more efficient than TCP-Reno and
one key issue is to know what will be the behavior of
TCP-Reno when it is competing against the more ef-
ficient TCP-Sack. I t would not be fair to have all the
bandwith taken by TCP-Sack, while TCP-Reno con-
nections are starving. The purpose of the last par t of
our experiments is to s tudy the impact of TCP-Sack
on TCP-Reno.

In the following tests, we are not interested in the
benefit of TCP-Sack but in knowing what happens to
a TCP-Reno connection when it is compet ing against
a TCP-Sack connection. One typical test features 2
ftp connections at the same time, one with TCP-Sack
and one with TCP-Reno. Then the same experiment
is performed with 2 ftp connections both using TCP-
Reno. The point is to compare the performance of the
lone TCP-Reno of the first test with the two TCP-
Reno in the second run.

4 . 1 E x p e r i m e n t s w i t h a f e w f l o w s

4.1.1 F i r s t e x p e r i m e n t s

This experiment is over our testbed. First, 2 T C P -
Reno connections share the link for 5 minutes. Then
we run in the same conditions 1 TCP-Reno and 1
TCP-Sack connections at the same time.

The link delay is set to 20 ms, the burst loss proba-
bility is 1% and the burst size 3 packets long (b -- 3).
We saw earlier tha t TCP-Sack significantly outper-
forms TCP-Reno under these conditions. The ques-
tion is: would the throughput of TCP-Reno drop
when it is competing against TCP-Sack ?

See Fig. 30 for the time-sequence plots of these 2
tests.

See the following table (Fig. 31) for a summary of
the throughput of each connection.

In the first test, the 2 TCP-Reno connections have
approximately the same throughput (10~0 difference).
We will refer to the one with the highest th roughput

ACM SIGCOMM 72 Computer Communication Review

.............. i111'i i iii
TCP_Reno vs TCP_Reno

seqno x 106

/ ' ' 60.00 I ~---

I .1. I,
 o.oo | l -

40.O0-~ I ~--

20.00

10.00

5.00--

t
o.oo [i t ~mc

0.00 100.00 200.00 300.00

Figure 30: link delay=20 ms, burst loss probability=l~o,
TCP-Reno and TCP-Reno vs. TCP-Reno

~r m'rprn . r,
TCP_Sack vs_TCP_Reno

seqno x 106

60.00 1

0.00

so o o - ~

TCP ,RCK

L

I i
............. _'77

J i
I ̧ V

i
I ' i m ~

200.00 300.00

I

i

t
100.00

burst length=3 - Comparison o] TCP-Sack vs.

Figure 31: Throughput table]or Fig. 30
TCP-Reno vs.
TCP-Reno

TCP-Sack vs.
TCP-Reno

101 kB/s (Reno) 95.5 kB/s (Reno)
110 kB/s (Reno) 202 kB/s (Sack)

as the best TCP-Reno. The difference may seem sig-
nificant between two identical algorithm, but it is ac-
tually a constant feature of long tests (the odds of an
unlucky succession a drop events are greater). What
is important is that the slope of the two plots are
equal on average.

We can first notice that the throughput of TCP-
Sack in the second test is really higher than the
throughput of the best TCP-Reno in the first test.
The throughput improvement with TCP-Sack is
roughly 84%.

But if we compare the throughput of the TCP-
Reno with the lowest throughput in the first test and
the throughput of TCP-Reno in the second test, we
can see that this throughput decreased by only 5.4%.
As we said earlier, a 10% difference between two iden-

tical algorithms is not significant. Therefore a 5.4%
difference here is not significant.

If we compare the aggregated throughput of the 2
connections in the first and second test, we see that
it increased by 41%. Tha t means that TCP-Sack
uses more efficiently the bandwith than TCP-Reno.
Some bandwith which was wasted in the first test is
now used by TCP-Sack in the second test.

4.1.2 Second example

In this experiment, two TCP-Reno connections start
together at t=0s. At t=90s, a third connection
starts. At t=270s, the third connection terminates.
At t--360s, the first two connections terminate. We
repeated this test twice in the same conditions, once
with TCP-Reno as the third connection and once
with TCP-Sack. The focus is on what is happening
to the two first connections when a third flow enters
the competition for bandwidth.

The link delay is set to 50ms and the bandwith is
set to 10 Mb/s

See Fig. 32 for time-sequence plots.
See Fig. 33 and 34 for throughput tables.

ACM SIGCOMM 73 Computer Communication R e v i e w

-- ::~: : :
i

seqno x 1 0 6

i 70.00- i I i i
65.00- . ~ .

60.00 [- ~ ~

50.00
45.00--
40.00
35.00
30.00

25.00--
20.00-- /
15.00--
10.00
5.00

0.00 1
0.00

TCP RENO

.............. l

100.00 200.00 300.00
time

seqno x 106

70.0@ /
/

55.00-- - i ~ - -
,o oo_ i / f
45.oo- , ~ S ~ - / ~
40.00-- ~
35 O0 ~)

3010@-.~
 5.oo i

2 o . o o - . - ~ - - ~ r _ _ _ ~ _ _ . _ _ I . - - -

- 7 - - } i / -

................. I .
, i !

0.00 ~ ~ I ' tim,
0.00 100.00 200.00 300.00

Figure 32: Second example (link delay=5Oms, bandwith=lOMB/s)

Figure 33: Second example - 1st test
TCP-Renol TCP-Reno2 TCP-Reno

t=90s 190 kB/s 193 kB/s
t=270s 153 kB/s 162 kB/s 140 kB/s
t=360s 167 kB/s 166 kB/s

Figure 34: Second example - 2nd test
TCP-Renol TCP-Reno2 TCP-Sack

t=90s 180 kB/s 204 kB/s
t=270s 136 kB/s 139 kB/s 222 kB/s
t=360s 160 kB/s 147 kB/s

The throughput of the third connection, starting
at t=90s, improved by 58% with TCP-Sack. But,
if we compare the throughput of the 2 TCP-Reno
connections, it decreased by 11% and 14% at t=270s
and by 4% and 11% at t=360s.

If we compare our first and second test, we can
see that TCP-Sack is really more efficient than TCP-
Reno. We can also see that TCP-Sack has an impact
on the two other TCP-Reno connections. The two
TCP-Reno connections are less efficient when they

are competing against the more efficient TCP-Sack.
But this effect is limited in its magnitude, compared
to the throughput improvement provided by TCP-
Sack.

4 . 2 E x p e r i m e n t s w i t h m u l t i p l e f l o w s

In Section 4.1, the focus was on experiments with
only a few connections. In this part, we focus on the
impact of TCP-Sack when there are multiple flows.

4 . 2 . 1 M e t h o d o l o g y

All the following experiments were performed over
our testbed, with a link delay of 10 ms, a link band-
with of 4 Mbps, a burst loss probability of land this
is exactly what we need in order to study the impact
of TCP-Sack on TCP-Reno.

In this experiment, N TCP-Reno connections com-
pete in parallel for 90 seconds. Then, in the same
conditions, N - 1 TCP-Reno compete with 1 TCP-
Sack connections. To compare the two experiments
and what their results mean, one can imagine that
the 'best' TCP-Reno is replaced by a TCP-Sack. The

ACM S IGCOMM 74 Computer Communication Review

meaningful information here is what is the impact on
the N - 1 other flows.

4.2.2 R e s u l t s

The values of N range from 3 to 10. 4 useful variables
R, r, S and s are used in the computations:

Fi
N
3
4
5
6
7
8
9
10

ure 35: R,
R

r, S, s f o r N ranging f rom 3 to 10
r s

266 kB/s 172 kB/s 312 kB/s 170 kB/s
319 kB/s 234 kB/s 349 kB/s 234kB/s
352 kB/s 274 kB/s 393 kB/s 270 kB/s
378 kB/s 311kB/ s 399 kB/s 304 kB/s
400 kB/s 335 kB/s 419 kB/s 324 kB/s
413 kB/s 355 kB/s 420 kB/s 344 kB/s
418 kB/s 365 kB/s 421kB/ s 358 kB/s
419 kB/s 367 kB/s 423 kB/s 362 kB/s

(See Fig. 36 for a plot of R , S , r and s in function
of N.)

• R is the aggregated throughput of the N con-
nections, in the case (N TCP-Reno).

• r is the aggregated throughput of the N - 1 con-
nections with the lowest throughputs, in the case
(N TCP-Reno).

* S is the aggregated throughput of the N connec-
tions, in the case (N - 1 TCP-Reno + 1 TCP-
Sack).

* s is the aggregated throughput of the N - 1 con-
nections with the lowest throughputs, in the case
(N - 1 TCP-Reno + 1 TCP-Sack).

Therefore, R - r is the highest throughput, in the case
(N TCP-Reno). S - s is the highest throughput, in
the case (N - 1 TCP-Reno + 1 TCP-Sack).

4.2.3 A n a l y s i s o f t h e r e s u l t s

If we compare S - s to R - r, we can find the
t h r o u g h p u t i m p r o v e m e n t for t h e b e s t T C P -
R e n o when it is replaced by TCP-Sack. r a t i o l =

,50 i i ! ! i T s
i , i i R ~ -
i ' * # . . = 2 r . o - -

4o0 i , ~ , - - : T ! . • i . .

i i :

..... i ~ ,,k~ ~ i ~ : :~ : : : ~ : : : : = i 3 5 O , , ~ . . . ~ . ,

3 O O -..-.--..- . : ' ~ - . . i . ~ " - " " ' = ~ " ~ " , . i . ~ i . i .

3 6 8 9 10 11

Figure 36: R, r, S, s f o r N ranging f rom 3 to 10

Fi
N rat iol
3 51.0%
4 35.3%
5 57.7%
6 41.8%
7 46.2%
8 33.3%
9 18.9%
10 17.4%

ure 37: ratio1, ratio2, ratio3
ratio2 ratio3
19.7% -1.16%
16.6% -0.00%
27.7% -1.46%
17.2% -2.25%
19.0% -3.28%
8.05% -3.10%
3.66% -1.92%
4.94% -1.37%

((S - s) - (R - r)) / (R - r) quantifies this improve-
ment.

If we compare S to R, we can find what is happen-
ning to the aggregated throughput of our N connec-
tions after changing the best TCP-Reno into TCP-
Sack. An interesting variable to measure the gain in
aggregated bandwith is : rat io2 = (S - R) / (B - R) ,
with B being the maximum link bandwith (500 kB/s
in our case). B - R is the unused bandwith when all
connections are TCP-Reno and rat io2 is t h e p ro -
p o r t i o n o f t h i s u n u s e d b a n d w i t h w h i c h is n o w
u s e d when there is one TCP-Sack.

If we compare s to r, we can find h o w m u c h
t h e t o t a l t h r o u g h p u t o f t h e o t h e r N - 1 T C P -
R e n o is d e c r e a s i n g w h e n t h e b e s t T C P - R e n o
is c h a n g e d in to T O P - S a c k . ra t io3 = (s - r) / r
quantifies this negative impact of TCP-Sack.

The first interesting thing is that the throughput

A C M S I G C O M M 7 5 C o m p u t e r C o m m u n i c a t i o n R e v i e w

improvement for the best TCP-Reno when it is re-
placed by TCP-Sack is quite high. For N ranging
from 3 to 8, this improvement (ratiol) ranges from
30% to almost 60%. For N equal to 9 or 10, this
improvement is a little less than 20%.

ratio2 is also relatively high for N ranging from 3
to 7, being between 15% and 20%. Tha t means that
TCP-Sack uses more efficiently the bandwith than
TCP-Reno. TCP-Sack is able to use some bandwith
which was wasted by TCP-Reno and therefore when
one TCP-Reno is replaced by one TCP-Sack, the to-
tal aggregated bandwith increases. When the num-
ber of connections N is high (9 or 10), filling com-
pletely the link capacity, ratio2 gets smaller because
the amount of wasted is smaller. This explains too
why ratiol is smaller for high value of N.

Finally, ratio3 is small with a maximum value of
approximately 3%. This means that the impact of
TCP-Sack on the other N - 1 TCP-Reno 's is not
significant.

The conclusion of these experiments is that even
when TCP-Sack outperforms TCP-Reno by a large
amount, the negative impact on the other compet-
ing connections is small. It can be explained by the
fact that TCP-Sack uses more efficiently the band-
with and increases the total aggregated bandwith.

5 Conclusion

In this report of our work, we presented the
experimental results of our study of TCP-Sack
performance, and how it compares to the very
common TCP-Reno.
We believe our s tudy is the first to combin~ experi-
ments on a testbed and experiments over a real path
of the Internet.
It backs initial expectations that TCP-Sack is able
to recover from multiple losses within one window
of data without necessarily timing out. TCP-Sack
slow-starts less often than TCP-Reno, and it is
therefore closer to the ideal T C P Congestion Avoid-
ance behavior [10].

The improvement in throughput between UCLA
and the two test hosts at NASA's GSFC and PSC

ranged between 15% and 45%. On the testbed (us-
ing virtual links and emulating a long-delay link), we
had throughput improvements ranging from 10% to
120%, mainly depending on the congestion pattern.
The other issue was the possible unfairness of TCP-
Sack when facing congestion. It was feared that TCP-
Sack might take bandwidth away from non-Sack T C P
stacks. Our experiments show that the implementa-
tion of TCP-Sack we used is not too aggressive: it
makes a bet ter use of the bandwidth wasted by TCP-
Reno, but the competing TCP stacks are not affected
by TCP-Sack.

We believe that Selective Acknowledgment is first
and foremost a data recovery mechanism, and that
it should be clearly separated from the Congestion
Avoidance and Control algorithms. In TCP-Reno,
the data recovery and congestion control algorithms
were very tightly bound. Modifying each of them
was very difficult. Data Recovery using Selective
Acknowledgments is more robust, and less dependant
on the Congestion Algorithms.

As a side effect, the current Congestion Algorithms
(that are very much like Reno, even in the implemen-
tat ion we used) are perhaps a bit conservative when
associated with Sack. We believe that Sack should
not be viewed as Congestion Control Algorithm, but
solely as a Data Recovery algorithm. We believe that
there is room for improvements in the Congestion
Control Algorithms, as illustrated in [9].

6 Acknowledgements

We would like to thank the following people for
their help and support throughout this project: Lixia
Zhang, our advisor, for her insight and support. All
members of the UCLA's Internet Research Labora-
tory, and especially Scott Michel for his help in set-
ting up the testbed. Elliot L. Yan of USC, for let-
ting us use his port of Sack to FreeBSD. Kalyan Ki-
dambi of NASA's Goddard Space Flight Center, and
Jeff Semke of PSC, for providing us with two test
hosts to conduct tests over the Internet. Shawn Os-
termann for modifying TcpTrace for packets without

ACM SIGCOMM 76 Computer Communication Review

Link Layer Headers.

References

[1] Jong Suk Ahn, Peter B. Danzig, Zhen Liu, and
Limin Yan. Evaluation of tcp vegas: Emulation
and experiment. Technical report, USC, 1995.
http : / / excalibur.usc.edu / research/ vegas / doc / .

[2] Lawrence S. Brakmo, Sean W. O'Malley,
and Larry L. Peterson. Tcp vegas: New
techniques for congestion detection and
avoidance. Proceedings o] A CM SIG-
COMM '94, pages 24-35, May 1994.
ftp://ftp.cs.arizona.edu/xkernel/Papers/vegas.ps.

[3] Kevin Fall et al. Simulation-based comparisons
of reno, tahoe, and sack tcp. Computer commu-
nications Review, July 1996.

[4] Sally Floyd. Issues of tcp with sack. Technical
report, LBL Network Group, January 1996.

[5] Janey C. Hoe. Improving the start-up behavior
of a congestion control scheme for tcp. Proceed-
ings o] ACM SIGCOMM '96, August 1996.

[6] V. Jacobson, R. Braden, and D. Borman. Tcp
extensions for high performance. Technical Re-
port RFC 1323, IETF, 1992.

[7] Van Jacobson. Congestion avoidance and con-
trol. In Proceedings o] SIGCOMM'88, 1988.

[8] M. Mathis, J. Mahdavi, S. Floyd, and A. Ro-
manow. Tcp selective acknowledgement options.
Technical Report RFC 2018, IETF, 1996.

[9] M. Mathis and M. Mahdavi. Forward acknowl-
edgment: Refining tcp congestion control. Com-
puter Communication Review, 26(4), 1996.

[10] M. Mathis, M. Mahdavi, J. Semke, and T. Ott.
The macroscopic behaviour of the tcp conges-
tion avoidance algorithm. Computer Communi-
cations Review, 1997.

[11] Shawn Ostermann. TcpTrace, a Trace Analyser.
http://jarok.cs.ohiou.edu/software/tcptrace.

[12] Luigi Rizzo. Issues on the implementation of
selective acknowledgement for tcp. Technical re-
port, Universita diPisa, 1996.

[13] W. Stevens. Tcp slow start, congestion avoid-
ance, fast retransmit, and fast recovery algo-
rithms. RFC 2001, IETF, January 1997.

ACM SIGCOMM 77 Computer Communication Review

