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A b s t r a c t  

This paper reports our experimentation results with 
TCP  Selective Acknowledgments (TCP-Sack), which 
became an Internet  Proposed Standard protocol re- 
cently. To understand the performance impact of 
TCP-Sack deployment, in this study we examined 
the following issues: 

How much performance improvement TCP-Sack 
may bring over the current TCP  implementa- 
tion, TCP-Reno.  We conducted experiments 
both on a lab testbed and over the Internet, un- 
der various conditions of link delay and losses. 

• In particular, how well TCP-Sack may perform 
over long delay paths that  include satellite links. 

What  is the performance impact of TCP  con- 
nections with Sack options on those connections 
without Sack when the two types running in par- 
allel, if there is any. 

1 I n t r o d u c t i o n  

Up until now the common TCP  implementation with 
the latest Performance tuning has been TCP-Reno,  
which uses Cumulative Acknowledgments. Recently, 
the T C P  Selective Acknowledgment option (TCP- 
Sack) became an Internet Proposed Standard proto- 
col, and is described in the RFC 2018 [8]. TCP-Sack 
aims at improving TCP ' s  ability to recover from mul- 
tiple losses within the same congestion control win- 
dow. 

With the current TCP  implementation (TCP- 
Reno), the sender can quickly recover from an iso- 
lated packet loss using the fast retransmit  and fast 
recovery mechanisms [13]. When multiple packets 
are lost, however, the sender times out in most cases 
and enter the slow-start phase ([7],[13]). To minimize 
false-alarms, the retransmission t imeout often takes 
long, and when combined with the following Slow- 
start phase which reduces the congestion window size 
to one data  segment, can be particularly damaging to 
TCP 's  throughput.  

To allow incremental deployment, the two ends of a 
TCP  connection performs a Sack negotiation during 
the connection setup. A TCP  implementation that  
supports Sack appends a S a c k O k  option in its SYN 
packet. If both ends advertise Sack option, then Sack 
will be used for data  transmission in both Directions. 
If any one end does not advertise Sack, the other end 
shall not a t tempt  to use Sack. 

To understand how TCP-Sack works, let us look 
at the receiver's end first. If a packet is dropped, 
it creates a hole in the receiver's window of incom- 
ing data. When the receiver receives the data  seg- 
ment right after the hole, it sends a duplicate ACK 
for the segment be]ore the hole, as what TCP-Reno  
does. In addition, TCP-Sack also adds to the ACK 
packet an option field tha t  contains a pair of sequence 
numbers which describe the block of data  tha t  was 
received out-of-order. Given the maximum size of 
the TCP  option field (40 bytes), an ACK packet can 
carry at most 4 Sack blocks. This means that  4 holes 
in the same congestion window can be advertised in 
one ACK packet. Practically, because of the increas- 
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ing use of the timestamp option described in [6], the 
number of Sack blocks carried by each ACK is limited 
to 3. 

A TC P  sender uses Sack options to build a table 
of all the correctly received data  segments, thus it 
knows exactly which parts are missing. It can re- 
transmit them together during a recovery phase. In 
TCP-Reno,  a Duplicate ACK means that  the receiver 
received data  out of order and was sending ACKs for 
the left edge of the window. In TCP-Sack, a du- 
plicate ACK carries the same information, in addi- 
tion it also carries information on what other data  
segments that  have been received out-of-order. The 
sender starts the data  recovery mechanism after re- 
ceiving 3 duplicate ACKs (as suggested in the RFC 
[8]). 

1.1 P r e v i o u s  work 

TC P  Sack was first described in RFC 1072, and be- 
came an Internet Proposed Standard protocol in RFC 
2018. In [4], Sally Floyd addressed several issues in 
the behavior and performance of TCP-Sack. In [3], 
Kevin Fall and Sally Floyd used simulation to com- 
pare the performance of TCP-Tahoe,  TCP-Reno,  and 
TCP-Sack. 

Our work on TCP-Sack is an extension to the 
above, as we performed real experiments on our 
testbed and over the Internet to verify and confirm 
previous results. 

1.2 P e r f o r m a n c e  Issues  

Our first goal was to measure the throughput  im- 
provement TCP-Sack may bring over TCP-Reno. We 
conducted test runs over both our own testbed in 
UCLA's Internet Research Lab and two multi-hop 
paths over the Internet. 

Our second goal was to evaluate the benefits of 
TCP-Sack over long delay links such as a satellite link 
(typically with a round trip time of 500 msec.). In the 
case of long delay links, the time-out and slow-start 
phase proves especially harmful to TCP 's  through- 
put: Our aim was to measure TCP-Sack throughput  
under controlled packet losses, and compare the re- 
sults with the throughput  of TCP-Reno,  as well as 

with the theoretical maximum achievable through- 
put. 

Our last, but not the least, goal was to under- 
stand the impact of TCP-Sack on competing TC P  
connections without Sack. Since TCP-Sack connec- 
tions achieve higher throughput  than TCP-Reno con- 
nections, one concern is whether TCP-Sack makes 
TCP-Reno connections starve when the latter com- 
pete for bandwidth against the former. 

1 .3  I m p l e m e n t a t i o n  o f  T C P - S a c k  

We used a TCP-Sack implementation by Elliot Yan 
of USC, which in term is ported to FreeBSD from 
PSC's Sack code for NetBSD 1, which itself is a port 
of Sally Floyd's Sack code for the NS simulator. Yan's 
implementation contains several flavors of TCP that  
can be selected for each connection at run-time using 
a socket option, making it easy to run TCP  connec- 
tions with or without Sack at the same time on the 
same host. 

Certain coupling and interaction exist between 
TCP 's  congestion control algorithms and the Se- 
lective Acknowledgment processing and generation, 
which must be compliant with the specification [8]. 
How much of the current Congestion Algorithms 
should be altered to benefit from Selective Acknowl- 
edgments remains an open research question. Several 
Modifications to TCP 's  congestion control algorithm 
have been proposed recently ([9], [2], [1]). 
The congestion control algorithm in FreeBSD imple- 
mentation is described in [3]. It features the pipe 
algorithm from Sally Floyd's NS code, basically an 
adaptation of TCP-Reno to the new Sack capabil- 
ity. Therefore, it is considered fairly conservative. 
More aggressive congestion control algorithms were 
proposed, most notably Forward Acknowledgment in 
[9] (which is explicitly designed to work together with 
Sack) and TCF-Vegas ([2]). In this study, we used 
TCP-Sack with the Pipe algorithm. 

1 ht tp : / /www.psc .edu/networking/ tcp .h tml  
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Figure 1: Testbed - Tunneling to emulate delay 

10.0.0.2 

1 . 4  T e s t b e d  

The  testbed consisted of two PCs running FreeBSD 
2.1.5 connected by a Sun UltraSparc workstation 
which behaves as a controllable IP router that  can 
introduce defined link delay and packet loss patterns.  
To avoid modifying the Solaris kernel we imple- 
mented the above router  functions in the user space 
on the Ultrasparc,  and to make this user level ma- 
nipulation t ransparent  to the end-to-end T C P  con- 
nections we used IP- in-IP tunneling. FreeBSD kernel 
supports  a generic tunneling interface, which is used 
in our tes tbed implementat ion to build an IP tunnel 
between the Ultrasparc router and each of the two 
end PC's .  

IP-Tunnel ing in FreeBSD 

The tunnel device in FreeBSD is a pseudo-device 
tha t  can be binded to a source and a destination ad- 
dress (see Fig. 2, the source address on the figure 
is 10.0.0.1, and the destination address is 10.0.0.2). 
When IP sends a packet to the destination address 

(e.g 10.0.0.2), the kernel captures the packet and 
hands it to the tunnel device instead of the network 
interface. The packets are queued in the tunnel de- 
vice, and can be unqueued by a user process. Simi- 
larly, a user process can write a packet into the tunnel 
device. If the packet bears the source address of the 
tunnel (10.0.0.1 in Fig. 2), the kernel will unqueue it 
and move it to the IP layer, as if the packet was an 
incoming packet. 

Delay Emulat ion 

Fig. 1 shows how the tunneling comes into play in 
our testbed. Our user process listens bo th  to the tun- 
nel device and to a prearranged UDP port .  What-  
ever is read from the tunnel device is sent to the 
router through the UDP socket ( IP- in-UDP encapsu- 
lation), and whatever comes from the router  through 
the UDP port  is writ ten to the tunnel device. The 
trick is invisible to the end-to-end T C P  connections. 
The client program runs on every PCs,  and can han- 
dle several tunnel interfaces, e.g. it can handle several 
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tunnel destinations. The server program runs on the 
UltraSparc, and listens to a prearranged UDP port .  
All incoming packets are queued in a FIFO queue. 
The delay in the queue is defined by a command-  
line parameter .  We added the possibility to have a 
separate queue for each way. We also added a leaky- 
bucket algorithm 2 to limit the available bandwidth.  

User  Process 

Kemel 

TCP UDP 

IP 

10.0.0.2[10.0.0.1 

Tunnel Ethernet 

u 

Cable 

Figure 2: Tunneling in FreeBSD 

Each end host 'sees' a vir tual  link between 10.0.0.1 
and 10.0.0.2. The characteristics of this virtual link 
depend on the settings of the FIFO queue on the 
server process on the router, and on the settings of 
the user processes on both hosts. The server takes 
care of the delay and the bandwidth limitations, while 
the artificial losses were introduced in the user pro- 
cesses. 

1.5 M e a s u r e m e n t s ,  i n s t r u m e n t a t i o n  

To gather da ta  on our experiments,  we added instru- 
mentat ion code in the FreeBSD kernel to plot the 
values of cwnd and ssthresh for a given connection. 
These plots are very interesting in tha t  they show 
congestion events and slow-starts. 
We also hacked LBNL's  tcpdump u to make it com- 
pliant with the new specifications of TCP-Sack  de- 
scribed in [8]. To process the output  of tcpdump, we 
used both Shawn Ostermann 's  tcptrace [11] and our 
own AWK scripts. 

1.6 Tests  on  the  real  I n t e r n e t  

In order to confirm the results from our testbed,  we 
ran similar experiments on the real Internet.  We had 
two partners for this project,  the Pi t t sburgh Super- 
computing Center and the NASA's Goddard  Space 
Flight Center. PSC provided us with a NetBSD 
machine running an experimental  kernel with PSC's  
implementat ion of TCP-Sack.  At NASA, we used 

2Packets entering the FIFO queue are time-stamped. The 
output of the queue is limited to X byte/sec by setting the 
time to wait before sending next packet to P where P is the 
size of the previous packet. 

3$cpdump is available at f tp . ee . lb l .gov .  Our patch can be 
found at h t t p : / / i r l . c s . u c l a . e d u / s a c k . h t m l .  
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a host running an experimental implementation of 
TCP-Sack on SunOS. 

2 Comparison of TCP-Sack 
and T C P - R e n o  

In the first phase of our project, we studied the 
behavior of TCP-Sack and compared it to TCP-  
Reno. We focused on the congestion window and 

t h e  throughput.  We started with some tests in our 
lab and then moved on to the Internet to confirm our 
results. 

2 . 1  O v e r  t h e  T e s t b e d  

2.1.1 D e s c r i p t i o n  o f  t h e  t e s t s  

During these experiments, we studied the behavior 
of TCP-Sack or TCP-Reno,  alone, facing the same 
delay, bandwidth and loss conditions. The simulation 
involved a FTP-like transfer of data  during typically 
5 minutes. Using tcpdump and our instrumentation 
code, we gathered data  on the congestion window size 
and the throughput.  

The link delay was 25 ms and the bandwidth was 
limited to 2 Mb/s.  We used different packet loss prob- 
abilities. The buffer space at the sender and at the 
receiver was set to allow a maximum window size of 
16 KB. The packets were 1400 bytes long. One ad- 
vantage of using our tunnel was that  the conditions 
were perfectly reproductible between each run. 

There were two sets of experiments, with two dif- 
ferent loss patterns: isolated drops or bursty drops. 

• For isolated losses, a single packet is dropped 
with a given probability (between 0% and 9%). 

• For bursty losses, a burst of packets is dropped 
in a row, with a given burst loss probability. The 
number of packets in the burst is constant, typi- 
cally three. Therefore the packet loss probability 
is equal to the burst loss probability multiplied 
by the number of packets in the burst. In the fol- 
lowing sections, we will refer to P as the packet 
loss probability, P~ as the burst loss probability 
and b as the number of packets in a burst. 

2.1.2 I s o l a t e d  losses 

We present in this section typical results from our 
tests with isolated packet losses. The following table 
(Fig. 3) shows the throughput  of TCP-Reno  or TCP-  
Sack when the packet loss probability is between 0% 
to 9%. 

TCP-Reno TCP  Sack Sack/Reno 
P = 0% 184 KB/s  184 KB/s  1.00 
P = 1% 132 KB/s  133 KB/s  1.01 
P = 3% 60 KB/s  67 KB/s  1.12 
P = 9 %  19 KB/s  19 KB/s  1.00 

Figure 3: TCP-Reno and TCP-Sack with isolated 
drops - separate runs of 5 minutes (50ms RTT, 
2Mb/s) 

First, if there is no loss (P=0%),  TCP-Reno  and 
TCP-Sack have exactly the same behavior and have 
the same throughput.  The congestion window opens 
during the initial slow-start until it reaches its max- 
imum and then remains at its maximum. The 
throughput  of 184 kB/s  is the maximum achievable 
with our test parameters.  

If the loss probability is low (P-- l%)  and if the 
losses are isolated, only one packet loss per window 
is likely to occur. In this case, TCP-Reno recovers 
using fast retransmit and fast recovery. TCP-Sack 
does not bring any improvement. 

If the loss probability is P=3%,  the probability of 
having multiple lost packets per window is greater. 
TCP-Sack can recover most of the time from multiple 
losses within the same window, while TCP-Reno  very 
often experiences a time-out followed by a slow-start. 

Fig. 4 and 5 show some plots of the conges- 
tion window size (cwnd) and the slow-start threshold 
(ssthresh) for TCP-Reno and TCP-Sack during an 
interval of 50 seconds in the P=3%,  50ms RT T and 
2 Mb/s case. A slow-start event is characterized by 
a 'falling edge' on the congestion window plot (cwnd 
is suddenly set to 1). On Fig. 4 and Fig. 5, each 
of these 'falling edges' represents a slow-start (this is 
confirmed by the numeric data  from the kernel logs). 
When comparing the two plots, one can notice tha t  
TCP-Sack does not show as many of these events as 
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Figure 4: TCP-Reno - Congestion window - P=3~o, 
50ms RTT, 2 Mb/s 
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Figure 6: Compared Throughput of TCP-Sack and 
TCP-Reno - P=3~o, 50ms RTT, 2Mb/s 

Figure 5: TCP-Sack - Congestion window - P=3~o, 
50ms RTT, 2 Mb/s 

TCP-Reno (5 against 16). 

As a result, the average congestion window size is 
larger with TCP-Sack and the throughput  of TCP-  
Sack is better.  See Fig. 6 for the throughput  plot for 
TCP-Reno and TCP-Sack during this typical exper- 
iment. Note that  even if the tests were run one after 
another, the plots are on the same figure. We see in 
this case that  TCP-Sack improved the throughput  by 
12%. 

Finally, if the loss probability is P=9%,  both TCP-  
Reno and TCP-Sack show poor performance. The 
main reason is that ,  according to RFC 2018 [8], TCP-  
Sack has to time-out when a retransmitted packet 
is lost again. TCP-Sack will also have to time-out 
if a lot of acknowledgments are lost. Therefore, if 
the loss probability is high, retransmitted packets 
get dropped and TCP-Sack cannot avoid a time- 
out/slow-start.  The result is tha t  both TCP-Reno 
and TCP-Sack have a low throughput  in case of high 
loss probability. 
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2.1.3 B u r s t y  losses 

When congestion occurs in the real Internet, several 
packets are likely to be lost. Therefore, we decided to 
repeat the previous experiments with 'bursty losses'. 
The loss distribution is very simple : a 'drop event' 
happen with a given probability, and at each drop 
event, a fixed number of packets is dropped. In the 
following sections, we will note P~ the probability of 
a drop event, and b the number of packets in a burst. 
In this section, we have b = 3. 

The following table (Fig. 7) shows the throughput 
of TCP-Reno and TCP-Sack, with b = 3 and P~ set 
to 1%, 2% or 3%. 

TCP-Reno TCP-Sack Sack/Reno 
P '  = 1% 60 KB/s'  98 KB/s 1.63 
b = 3  
P~ = 2% 29 KB/s 50 KB/s 1.72 
b = 3  
P '  = 3% 23 kB/s 24 kB/s 1.04 
b = 3  

Figure 7: Comparison o] TCP-Reno and TCP-Sack 
with bursty losses 

The first obvious result is that TCP-Sack improved 
the throughput by 60% to 70%, when the drop event 
probability is 1% or 2%. In the next paragraphs, we 
review the results for a drop event probability of 1%. 
The same comments apply for a burst loss probability 
o f  2 % .  

See Fig. 8 and 9 for the cwnd and ssthresh plots 
for TCP-Reno and TCP-Sack during an interval of 
50 seconds. See Fig. 10 for the throughput plots• 

We can see on the cwnd plots that the number of 
time-outs and slow-starts is higher with TCP-Reno 
(see Section 2.1.2 to understand what a slow-start 
looks like on these plots). While TCP-Reno times-out 
and slow-starts often and regularly ( approximately 
3 times every 5 seconds (Fig. 8)), we can see that 
TCP-Sack is able to keep its window open during 30 
seconds without any slow-start (Fig. 9). 

Fig. 10 shows the difference in term of through- 
put between TCP-Reno and TCP-Sack. The final 
throughput of TCP-Sack is 63% higher than the 
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throughput  of TCP-Reno.  
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Figure 10: Time-sequence diagram - P ' = l ~ o  - b=3 

We illustrate now the different behaviors of TCP-  
Reno and TCP-Sack  after a drop event (b = 3). Fig. 
11 and 12 represent the packet sequence numbers and 
the acknowledgement sequence numbers with respect 
to time, for TCP-Reno  and TCP-Sack respectively. 
Both plots represent an interval of t ime of 1.5 second 
centered on the drop event. 

For TCP-Reno,  we can see on Fig. 11 that  the 
drop event occurs at t = 122.93s. Just  after the loss, 
several duplicate acknowledgements are received. Af- 
ter the third duplicate acknowledment has been re- 
ceived, the first missing packet is re t ransmit ted at 
t = 123.07s, using the fast retransmit  mechanism. 
After the fast retransmit ,  if the sending window is 
not exhausted, more packets can be sent. We see tha t  
at t = 123.09s a new packet is sent. Up to this point, 
TCP-Reno  has fast-retransmit ted one missing packet 
and sent new packets until the sending window is ex- 
hausted. But  now, the sending window is exhausted, 
no more acknowledgements are received and some 
packets are still missing. TCP-Reno  has to t ime-out 
and enter a slow-start phase. At t = 123.91s, the sec- 
ond missing packet is retransmitted.  At t = 124.07 

an acknowledgement is received. The window size is 
now 2 packets. The two next packets are now retrans- 
mitted. The first one was the third missing packet 
and the second one an unnecessary retransmission. 
At t = 124.14s, an acknowledgement for all the sent 
da ta  is received. The window size is now three pack- 
ets and TCP-Reno  can now send new data.  Recover- 
ing from this drop event involved 900ms of idle t ime 
and a slow-start. 

For TCP-Sack,  we can see on Fig. 12 tha t  the drop 
event occurs at t = 123.43. After the loss, several 
duplicate acknowledgements are received. After the 
third duplicate acknowledgement, the three missing 
packets are re t ransmit ted at t = 123.55s, using fast 
retransmit .  After this fast retransmit ,  if the sending 
window is not exhausted, more da ta  can be sent. In 
this case the sending window was exhausted. At t = 
123.63, an acknowledgement for all the sent data  is 
received and some new data  can be sent. We see 
that  in this case, no t ime-out and slow-start  occured. 
All the data  has been correctly recoverered using fast 
retransmit .  

The two previous scenarios illustrate clearly the 
benefit of using TCP-Sack  when the losses are bursty. 
We can note the interesting fact tha t  TCP-Reno  has 
the same throughput  (60 KB/s )  for isolated losses 
with a packet loss probabili ty of 3% and for bursty 
losses with a burst  loss probabil i ty of 1% and a burst  
size of three packets. This means tha t  for TCP-Reno,  
three consecutive drops and three separate  drops look 
and feel the same. For TCP-Sack,  on the other hand, 
the size of the drop event does mat te r  to the recovery 
mechanism. 

When the burst  loss probabil i ty is higher (P '=3%) ,  
then both  TCP-Reno  and TCP-Sack  have the same 
poor performance. The reason is the same as in the 
isolated losses case. When the loss probabil i ty is too 
high, The window size remains small and some time- 
outs and slow-starts can not be avoided, even with 
TCP-Sack.  

2.1.4 C o n c l u s i o n s  

We can draw some conclusions from these experi- 
ments. First, it was observed tha t  TCP-Sack  is useful 
for a given range of packet loss probability. If there 
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is no loss or if the loss probabil i ty is very low, then 
TCP-Reno  can recover using fast re t ransmit  and fast 
recovery. If the loss probabil i ty is very high, even 
TCP-Sack is subject to some t ime-outs  and slow- 
starts  and can not keep a large window. In both  
cases, there is no real benefit of using TCP-Sack.  

Then, it was observed tha t  for a drop ra te  between 
2% and 4%, TCP-Sack improved the throughput  by 
a significant amount.  This improvement  is really im- 
por tant  when the packet losses are bursty. We illus- 
t ra ted  in a detailed analysis the difference in behavior 
of TCP-Reno  and TCP-Sack  after a loss of a burst  
of packets. While TCP-Reno  can only recover from 
an isolated loss using fast retransmit ,  TCP-Sack  can 
recover from a burst  loss without any t ime out or 
slow-start. As a result, we observed a throughput  
improvement  of 60% to 70% with TCP-Sack  when 
the packet losses were bursty. 

The  results presented in this section are typical of 
the results we got during our numerous experiments.  

2 . 2  E x p e r i m e n t s  o v e r  t h e  I n t e r n e t  

There are two main reasons to t ry  to validate our 
results by running experiments on a real network. 
First, the topology of our tes tbed is very simple (one 
hop): it is interesting and useful to know what  the 
picture is on a multi-hop path.  The second reason is 
tha t  we used fixed loss distributions to get the bot- 
tom line. On a real multi-hop path,  the congestion 
pat terns  are very complex and difficult to model: we 
want to know what the results are in this case. The 
main problem with real-life experiments  is tha t  the 
network conditions are not reproductible from one 
test  to another.  

2.2.1 B e t w e e n  U C L A  a n d  t h e  P i t t s b u r g h  Su-  
p e r C o m p u t i n g  C e n t e r  

In this set of experiments,  we used one host in our 
lab at UCLA and one host at the Pi t t sburgh Super- 
Computing Center. The pa th  is 14 hops long, with 
an average round-trip t ime of 65 ms and a bott leneck 
link of 6 Mb/ s  (Van Jacobson 's  pa thchar  to measure 
the path).  The packet size is 496 bytes. The buffer 
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space at the sender and at the receiver was set up to 
65535 bytes (approximately 132 packets). 

One important difference with our testbed is that 
depending on the time of the day the traffic condi- 
tions change dramatically. Therefore, we show here 
three typical experiments, with typical (average) re- 
sults. 

For each one of our tests, we established an ftp 
connection between UCLA and PSC for 2 minutes, 
first with TCP-Reno and after with TCP-Sack. For 
each test three plots were generated. The first plot 
is the usual time-sequence diagram for TCP-Reno 
and TCP-Sack. Even if the two connections were 
run one after another, the throughputs of TCP-Reno 
and TCP-Sack appear on the same graph for easy 
comparison. The second and third plots show the 
congestion window size for TCP-Reno and TCP-Sack 
respectively. 

The first experiment (Fig. 13 and 14) was per- 
formed at 12 pm (pacific time). The Internet traffic 
at this time is heavy. The second experiment (Fig. 15 
and 16) was performed at 4 pm (pacific time) when 
the traffic is 'average'. The third test (Fig. 17 and 
18) was performed at 8 pm (pacific time) when the 
Internet traffic is light. 

The first interesting thing to notice is the behavior 
of the congestion window (Fig. 14, 16 and 18). Every 
time a time-out followed by a slow-start occurs, the 
congestion window is reduced to 1 (falling edge on 
the diagram). We can estimate the number of time- 
outs and slow-starts by counting the number of falling 
edges. For example, we can see on Fig. 14 that  TCP-  
Reno timed-out approximately 50 times in 2 minutes 
while TCP-Sack timed-out only twice. In all our test, 
TCP-Reno timed-out more often than TCP-Sack. 

Since TCP-Sack is able to avoid some time-outs 
and slow-starts, it can keep a larger average conges- 
tion window. It is especially true when the Inter- 
net traffic is heavy. We can see on Fig. 14 and 16 
that TCP-Sack timed-out respectively 2 and 3 times 
in 2 minutes, while TCP-Reno timed-out 50 and 25 
times. The average congestion window is therefore 
larger with TCP-Sack. As a result, the throughput 
of TCP-Sack is higher than the throughput of TCP- 
Reno. When the Internet traffic is light, TCP-Reno 
can recover from congestion using fast retransmit and 

fast recovery and there is less benefit using TCP-  
Sack. Looking at the tcpdump traces of our tests, 
we were able to figure out what the loss pat tern is 
during the experiments. As we expected, the losses 
are very bursty. We observed that  the average burst 
length is 20 to 30 packets. The maximum window 
size is set to 65535 bytes and the packets are 496 
bytes long. Therefore, the maximum window size is 
set to approximately 132 packets. This very bursty 
loss pat tern explains why TCP-Sack is more efficient 
than TCP-Reno.  

The following table (Fig. 19) shows the throughput  
of TCP-Reno and TCP-Sack at these three typical 
times of the day. 

Figure 19: UCLA to P S C  - Throughput comparison 
Fig. Fig. Fig. 

1 3 & 1 4  1 5 & 1 6  1 7 & 1 8  
Reno 63 KB/s  104 KB/s  2 2 1 K B / s  
Sack 81 KB/s  132 KB/s  257 KB/s  
Sack/Reno 1.29 1.27 1.16 

The first comment is that  there is more benefit 
using TCP-Sack when the Internet traffic is average 
or heavy. This was expected since TCP-Reno is able 
to recover from one single isolated loss. In this case, 
TCP-Sack does not do bet ter  than TCP-Reno.  We 
found a throughput  improvement of 15% with TCP-  
Sack during a period of light Internet traffic. 

We found a throughput  improvement of approxi- 
mately 30% with TCP-Sack during periods of aver- 
age or heavy Internet traffic. We think that  such an 
improvement of 30% is significant. 

There are two interesting conclusions to these ex- 
periments. First, the bursty loss pat tern observed 
during our tests over the real Internet was what we 
expected. The behavior of both TCP-Reno and TCP-  
Sack in the face of congestion was also what we ex- 
pected. While TCP-Reno had to time-out and slow- 
start  after congestion, TCP-Sack was able to recover 
smoothly. The second interesting point is that  we ob- 
served a throughput  improvement of 30% with TCP-  
Sack when facing heavy or average Internet traffic. 
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2.2.2 B e t w e e n  U C L A  and the  N A S A ' s  G o d -  
d a r d  Space Flight Center  

We tried to run the same experiments between UCLA 
and NASA's Goddard  Space Flight Center. Due to 
technical problems with the experimental  SunOS ker- 
nel we used at GSFC, we did not apply the same 
methodology and could not run as many tests be- 
tween UCLA and the NASA lab as in the previous 
section. Here, we show some typical results. 

The pa th  between the two hosts is 16 hop long. 
Using pathchar ,  we measured a round-tr ip t ime of 80 
ms and a bott leneck of 8.4 Mb/s .  We could not use 
our own traffic generator  for these experiments and 
we used instead a regular F T P  program to transfer 
one big file. The file was 29 MB long and the duration 
of the transfer was between 2 and 3 minutes. 

See Fig. 20 and 21 for the results of one typical 
test. Fig. 20 shows the time-sequence diagram of 
TCP-Reno  and TCP-Sack.  The two tests were run 
one after the other but  we show both  results on the 
same plot. Fig. 21 is a table which compares the 
throughput  of TCP-Reno  and TCP-Sack.  

Because of technical problems, we could not use 
the instrumentat ion code to plot c w n d  and s s t h r e s h .  

Still, it is possible to see on the time-sequence dia- 
grams tha t  more t ime-outs  and slow-starts occur with 
TCP-Reno.  A t ime-out is an accident in the time- 
sequence diagram, like a bump (see the close-up on 
Fig. 20). The  number  of t ime-outs and slow-starts 
with TCP-Sack  is smaller, and the transfer appears  
to be much smoother  and steadier. 

We found a throughput  improvement  of 46% when 
using TCP-Sack.  This improvement  is a typical value 
tha t  was confirmed by our other tests. Almost 50% of 
improvement  for an F T P  transfer is very significant. 

2.2.3 Conc lus ion  

Thanks to our two partners,  the Pi t tsburgh Su- 
perComput ing  Center and NASA's Goddard  Space 
Flight Center, we have been able to compare the per- 
formance of TCP-Reno  and TCP-Sack  over a real 
pa th  on Internet.  All our tests confirmed the same 
conclusions. We first observed tha t  the real loss pat-  
terns are burs ty  as we suspected. Then we had con- 

UCLA NASA 
seqno x 106 
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Figure 20: N A S A  to U C L A  - 29 M B  F T P  - close-up 

on a t i m e - o u t  even t  

firmation tha t  TCP-Sack  is able to avoid most  time- 
outs and slow-starts, keeping a larger congestion win- 
dow than  TCP-Reno.  Finally we observed some im- 
por tan t  throughput  improvement  with TCP-Sack,  es- 
pecially when facing heavy traffic. 

We found tha t  TCP-Sack  could improve the 
throughput  by 30% to 45% over two different multi- 
hop paths over the real Internet.  Wha t  is interesting 
is tha t  these experiments were done in real condi- 
tions. We believe tha t  a such a big throughput  im- 
provement meets the expectat ions placed on TCP-  
Sack. 

Our last conclusion is tha t  these experiments  con- 
firm the results on our testbed. 
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Figure 21: N A S A  to UCLA - Throughput comparison 
Fig. 20 

Reno 183 kB/s 
Sack 268 kB/s 
Sack/Reno 1.46 

3 Long delay links 

One goal of our project was to study the behavior of 
TCP-Sack over long delay links, when used together 
with the Window Scale option defined in [6]. 
Our focus was mainly on the 500ms range, since this 
is a typical value for a Geosynchronous satellite. We 
ran several experiments with different loss rates and 
different scenarios. 
We set the buffer sizes to 256 KB on both sides 
of the virtual link, to take advantage of the large 
delay - bandwid th  product. The bandwidth setting 
varied between 2 Mb/s and full 10BT bandwidth (10 
Mb/s). Note that when limiting the bandwidth using 
the leaky bucket algorithm, the average delay is im- 
pacted by the modified behavior of the FIFO queue 
in the delaying server (see Section 1.4). 

3 .1 P r e l i m i n a r y  r e s u l t s  

Using the full bandwidth available, and with a long 
RTT, we are able to generate some congestion on the 
virtual link. Indeed, with buffers set to 256 KB on 
both PCs, with a rate of 10 Mb/s, the link can get 
congested in a realistic way (several drops per win- 
dow, bursty drops, etc). The congestion is caused by 
buffer overflows on the router (the maximum UDP 
buffer size on Solaris is limited to 64 KB, hence this 
problem). The delay was 80ms, and Sack does 100% 
better than Reno. The time-sequence diagram can 
be seen in Fig. 22, and the c w i n  and s s t h r e s h  plots 
can be seen in Fig. 23. 
This experiment gives the bottom line for further re- 
finement of the experiments. The striking difference 
between the congestion behavior of Reno and Sack 
is very obvious when looking at the t i m e - c w i n  di- 
agrams. In this case (80ms, full 10BT bandwidth, 
congestion loss), Sack is able to avoid almost all the 

s low - s t a r t s ,  hence the huge throughput increase. 

3 .2  A r t i f i c i a l  l o s s e s  

In this experiment, we set the round trip time to 
500ms, and we limited the bandwidth to 2 Mb/s. All 
the drops are artificially introduced. The drop rate 
is P '  = 0.18% with b = 3. This case is extremely 
favorable to TCP-Sack. The time-sequence diagram 
is at Fig. 25. 

Figure 24: 0.15~o drop rate, burs t iness  3 
Throughput 

TCP-Reno 32 KB/s 
TCP-Sack 55 KB/s 
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Figure 25: Time-Sequence  diagram - -  Sack vs. Reno  
- -  Link:  500ms R T T ,  2 Mb/ s ,  0.18Vo drop rate, 
burst iness  3 

3.3  S a c k  a n d  R e n o  vs .  T h e o r e t i c a l  
b a n d w i d t h  

Next, we focused on the link utilization. In [10], 
Mathis et al. defined a macroscopic behavior of 
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Figure 23: Preliminary test: time-cwin and time-ssthresh diagrams 

the congestion avoidance algorithm. It starts with 
the hypothesis that the current congestion algorithm 
(halving the congestion window when there is a con- 
gestion signal, e.g a drop) is necessary in any TCP 
implementation. Given this hypothesis, the model 
gives an ideal throughput that can be achieved un- 
der a given (moderate) drop rate, and a given delay. 
The assumption behind the formula is that the con- 
nection does not experience any time-outs, and that 

the effects of the start-up phase are diluted over a 
very long connection. The formula for the achievable 
throughput is 

M S S  • C 
B W  - (z) 

RTTv/- ~ 

where M S S  is the segment size, R T T  is the round 
trip time, and p is the drop rate .  C is a constant 
that depends on the ACK strategy and several other 
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factors. As one can see in this equation, the through- 
put  achievable is proportional to the inverse of R T T .  
That  is, the longer the delay, the smaller the through- 
put. Why ? Isn' t  the wscale option supposed to ad- 
dress the issue of long-delay ? 
The reason is that  with long delay, the linear expan- 
sion of a large cwin is very long. Therefore, reach- 
ing the optimum cwin (i.e the optimum throughput)  
takes a long time. This is why one can expect the 
link utilization to be low for long delay. 

We compared the performance of TCP-Sack and 
TCP-Reno  against the model, and the results back 
the conclusion of [10] tha t  TCP-Sack is indeed closer 
to the ideal congestion behavior. We also focused on 
the throughput  increase brought by TCP-Sack when 
the burstiness of the drops is higher than one. 
In this experiment,  we set the link propagation de- 
lay to 250ms (RTT=500ms).  We used large win- 
dows (256 KB of available queue length) and artificial 
losses introduced at the end points. For the model, 

we took C = ~/3 since the ACKs in our implemen- 

tat ion are not delayed (see [10]). 

Drop Rates Sack Reno 
O.O5 73 % 69 % 
0.1 87 % 77 % 

0.15 88 % 70.5 % 
0.18 82 % 66.5 % 
0.2 76 % 62 % 
0.3 81% 73 % 
0.4 90 % 66 % 
O.5 85 % 68 % 
O.8 86 % 68 % 
1 87.5 % 64.5 % 

Figure 26: Sack ~ Reno vs. Theoretical Throughput 

In Fig. 26, we show the performance of Sack 
and Reno compared to the throughput  according to 
the model from [10]. 100% would mean that  T C P  
achieved the best possible throughput  using the Con- 
gestion Algorithm. The reason why Sack and Reno 
do not achieve 100 % is because of time-outs and be- 

Drop Rates Sack Reno 
0.05 37 % 34 % 
0.1 28.5 % 25 % 

0.15 25.7 % 2O.5 % 
0.18 22 % 17.7 % 
0.2 19 % 15.6 % 
0.3 16.7 % 15 % 
0.4 16 % 11.7 % 
0.5 13.5 % 10.7 % 
0.8 10.7 % 8.5 % 

1 9.7% 7% 

Figure 27: Link Utilization for Sack and Reno 

cause of the start-up phase. TCP-Sack is closer to 
the model because there are less time-outs. The plot 
of this table can be seen in Fig. 28. 
In Fig. 27, one can see the link utilization achieved 
by TCP-Sack and TCP-Reno  under the same condi- 
tions. It of course depends strongly on the state of 
the link. It is very low. The reason is because every 
time a drop occur, cwin is divided by 2. Therefore, 
at this point, the throughput  is divided by 2. Then, 
linearly expanding cwin back to a large value takes 
a long time because of the delay, and because of the 
large size of the window (see sec. 3.4). 

The key to the bet ter  behavior of TCP-Sack is 
its ability to avoid slow-starts. Slow-starts are es- 
pecially damaging to the throughput  over long-delay 
links. To time-out, TCP-Sack must face heavy con- 
gestion: loose a string of ACKs, or loose a retrans- 
mitted packet. 

3 . 4  I s s u e  o f  I n i t i a l  s s t h r e s h  s e t t i n g  

When we first had a look at Fig. 27, we did not 
understand the shape of the plot 'Throughput  
Improvement of Sack over Reno', and especially why 
the plot for burstiness -- 3 has this shape: why is 
the improvement of Sack maximum for p -- 0.4%, 
and why is it so low for small drop rates ? 
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The culprit seems to be the default initial setting 
of ss thresh  when a T C P  connection is started. 
In most implementations of TCP, ss thresh  is initially 
set to the maximum window size. If the wscale op- 
tion is used, the maximum possible window size is 4 
GB. This initial value lets TCP  start  with a slow-start 
that  can be interrupted only by congestion signals, 
at which point ss thresh  is set to a more reasonable 
value (cwin /2  when the congestion signal occurs). 
Unfortunately, if several congestion signals occur, 
cwin is divided by two several times. If the conges- 
tion signal is very bursty, then ss thresh  is likely to 
be set to a very small value (a few packets). 
This is extremely costly in the case of long-delay (lin- 
ear increase of cwin  takes a long time) and large win- 
dows. The large delay and high bandwidth cause the 
slow-start phase to shoot up very high, and then the 
connection usually experiences a burst of loss, which 
resets ss thresh  to a very low value (sometimes a few 
packets). 

To illustrate this effect, we show in Fig. 29 a plot 
of c w i n / s s t h r e s h  for a connection over the virtual 
link with the following settings: bandwidth = 5Mbps, 
RTT = 500ms, buffers = 512KB, no artificial losses. 
The drops are caused by congestion at the UDP inter- 
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Figure 29: Effect o] high initial setting o/ s s thresh  
on cwin expansion over long-delay with large window 
- cwnd collapses to a very low value after 8s because 
o/ a slow-start phase that lasts too long 
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face in the router  (the UDP buffers on the UltraSparc 
were set to 64KB, the max imum value allowed by So- 
laris). 
On this plot, we see the slow-start phase shoots up 
very high, then we see a burst  of drops, and ss thresh  
collapses to a low value (around 15KB). We can see 
tha t  the equilibrium for the window size seems to be 
around 130KB, and it takes about  85s for cwin to 
expand to this value. Therefore, the s tar t -up behav- 
ior of T C P  in this case resulted in a poor  est imate of 
ss thresh .  

This affects both  TCP-Sack  and TCP-Reno,  hence 
the lower improvements  of Sack over Reno with small 
drop rates. Why does it affect the results with small 
drop rate  ? Because with higher drop rate, an artifi- 
cial drop is more likely to occur during slow-start and 
interrupts it before it shoots too high and generates 
a burst  of congestion drops. With  higher drop rates, 
the slow-start phase results in a be t ter  est imate of 
ss thresh .  
This problem is described in [5], and several solutions 
are being reviewed. 

3 . 5  C o n c l u s i o n s  o v e r  l o n g  d e l a y  p e r -  

f o r m a n c e  

The key to high performance when facing high delay- 
bandwidth  product  links is the use of the wscale op- 
tion. Being able to "fill the pipe" during the transfer 
is what  really mat ters .  
Yet, the long delay makes the slow-start algorithm ex- 
t remely costly, since it takes several RTT to get the 
ack-based clock running again. Wha t  TCP-Sack  does 
much bet ter  than  TCP-Reno  is recover from multiple 
loss within one window of data.  TCP-Reno  needs one 
R T T  per packet drop to recover, while TCP-Sack  is 
able to recover from several losses in one single RTT: 
the most  obvious benefit, as one can see in Fig. 23, 
is tha t  TCP-Sack  avoids some of the slow-starts. 

4 N e g a t i v e  impact  of  T C P -  
Sack on T C P - R e n o  

TCP-Sack  is now a proposed Internet  s tandard  and 
is soon to be deployed over the Internet.  This deploy- 
ment  will be incremental.  TCP-Sack  is expected to 
be in most  cases more efficient than  TCP-Reno  and 
one key issue is to know what  will be the behavior  of 
TCP-Reno  when it is competing against  the more ef- 
ficient TCP-Sack.  I t  would not be fair to have all the 
bandwith taken by TCP-Sack,  while TCP-Reno  con- 
nections are starving. The purpose of the last par t  of 
our experiments is to s tudy the impact  of TCP-Sack  
on TCP-Reno.  

In the following tests, we are not interested in the 
benefit of TCP-Sack  but  in knowing what  happens to 
a TCP-Reno  connection when it is compet ing against  
a TCP-Sack  connection. One typical test  features 2 
ftp connections at the same time, one with TCP-Sack  
and one with TCP-Reno.  Then the same experiment  
is performed with 2 ftp connections both  using TCP-  
Reno. The point is to compare  the performance of the 
lone TCP-Reno  of the first test  with the two TCP-  
Reno in the second run. 

4 . 1  E x p e r i m e n t s  w i t h  a f e w  f l o w s  

4.1.1 F i r s t  e x p e r i m e n t s  

This experiment is over our testbed. First, 2 T C P -  
Reno connections share the link for 5 minutes. Then 
we run in the same conditions 1 TCP-Reno  and 1 
TCP-Sack  connections at  the same time. 

The link delay is set to 20 ms, the burst  loss proba- 
bility is 1% and the burst  size 3 packets long (b -- 3). 
We saw earlier tha t  TCP-Sack  significantly outper-  
forms TCP-Reno  under these conditions. The ques- 
tion is: would the throughput  of TCP-Reno  drop 
when it is competing against TCP-Sack  ? 

See Fig. 30 for the time-sequence plots of these 2 
tests. 

See the following table (Fig. 31) for a summary  of 
the throughput  of each connection. 

In the first test, the 2 TCP-Reno  connections have 
approximately  the same throughput  (10~0 difference). 
We will refer to the one with the highest th roughput  
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Figure 31: Throughput table ]or Fig. 30 
TCP-Reno vs. 
TCP-Reno 

TCP-Sack vs. 
TCP-Reno 

101 kB/s  (Reno) 95.5 kB/s  (Reno) 
110 kB/s  (Reno) 202 kB/s  (Sack) 

as the best TCP-Reno.  The difference may seem sig- 
nificant between two identical algorithm, but it is ac- 
tually a constant feature of long tests (the odds of an 
unlucky succession a drop events are greater). What  
is important  is that  the slope of the two plots are 
equal on average. 

We can first notice that  the throughput  of TCP-  
Sack in the second test is really higher than the 
throughput  of the best TCP-Reno in the first test. 
The throughput  improvement with TCP-Sack is 
roughly 84%. 

But if we compare the throughput  of the TCP-  
Reno with the lowest throughput  in the first test and 
the throughput  of TCP-Reno in the second test, we 
can see that  this throughput  decreased by only 5.4%. 
As we said earlier, a 10% difference between two iden- 

tical algorithms is not significant. Therefore a 5.4% 
difference here is not significant. 

If we compare the aggregated throughput  of the 2 
connections in the first and second test, we see that  
it increased by 41%. Tha t  means that  TCP-Sack 
uses more efficiently the bandwith than TCP-Reno.  
Some bandwith which was wasted in the first test is 
now used by TCP-Sack in the second test. 

4.1.2 Second example 

In this experiment, two TCP-Reno connections start  
together at t=0s.  At t=90s, a third connection 
starts. At t=270s, the third connection terminates. 
At t--360s, the first two connections terminate. We 
repeated this test twice in the same conditions, once 
with TCP-Reno as the third connection and once 
with TCP-Sack. The focus is on what is happening 
to the two first connections when a third flow enters 
the competition for bandwidth. 

The link delay is set to 50ms and the bandwith is 
set to 10 Mb/s  

See Fig. 32 for time-sequence plots. 
See Fig. 33 and 34 for throughput  tables. 
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Figure 32: Second example (link delay=5Oms, bandwith=lOMB/s)  

Figure 33: Second example - 1st test 
TCP-Renol TCP-Reno2 TCP-Reno 

t=90s 190 kB/s 193 kB/s 
t=270s 153 kB/s 162 kB/s 140 kB/s 
t=360s 167 kB/s 166 kB/s 

Figure 34: Second example - 2nd test 
TCP-Renol TCP-Reno2 TCP-Sack 

t=90s 180 kB/s 204 kB/s 
t=270s 136 kB/s 139 kB/s 222 kB/s 
t=360s 160 kB/s 147 kB/s 

The throughput of the third connection, starting 
at t=90s, improved by 58% with TCP-Sack. But, 
if we compare the throughput of the 2 TCP-Reno 
connections, it decreased by 11% and 14% at t=270s 
and by 4% and 11% at t=360s. 

If we compare our first and second test, we can 
see that TCP-Sack is really more efficient than TCP- 
Reno. We can also see that TCP-Sack has an impact 
on the two other TCP-Reno connections. The two 
TCP-Reno connections are less efficient when they 

are competing against the more efficient TCP-Sack. 
But this effect is limited in its magnitude, compared 
to the throughput improvement provided by TCP- 
Sack. 

4 . 2  E x p e r i m e n t s  w i t h  m u l t i p l e  f l o w s  

In Section 4.1, the focus was on experiments with 
only a few connections. In this part, we focus on the 
impact of TCP-Sack when there are multiple flows. 

4 . 2 . 1  M e t h o d o l o g y  

All the following experiments were performed over 
our testbed, with a link delay of 10 ms, a link band- 
with of 4 Mbps, a burst loss probability of land this 
is exactly what we need in order to study the impact 
of TCP-Sack on TCP-Reno. 

In this experiment, N TCP-Reno connections com- 
pete in parallel for 90 seconds. Then, in the same 
conditions, N - 1 TCP-Reno compete with 1 TCP- 
Sack connections. To compare the two experiments 
and what their results mean, one can imagine that 
the 'best' TCP-Reno is replaced by a TCP-Sack. The 
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meaningful information here is what is the impact on 
the N - 1 other flows. 

4.2.2 R e s u l t s  

The values of N range from 3 to 10. 4 useful variables 
R, r, S and s are used in the computations: 

Fi 
N 
3 
4 
5 
6 
7 
8 
9 
10 

ure 35: R,  
R 

r, S, s f o r  N ranging f rom 3 to 10 
r s 

266 kB/s  172 kB/s  312 kB/s  170 kB/s  
319 kB/s  234 kB/s  349 kB/s  234kB/s  
352 kB/s  274 kB/s  393 kB/s  270 kB/s  
378 kB/s  311kB/ s  399 kB/s  304 kB/s  
400 kB/s  335 kB/s  419 kB/s  324 kB/s  
413 kB/s  355 kB/s  420 kB/s  344 kB/s  
418 kB/s  365 kB/s  421kB/ s  358 kB/s  
419 kB/s  367 kB/s  423 kB/s  362 kB/s  

(See Fig. 36 for a plot of R , S , r  and s in function 
of N.) 

• R is the aggregated throughput  of the N con- 
nections, in the case (N TCP-Reno).  

• r is the aggregated throughput  of the N - 1 con- 
nections with the lowest throughputs,  in the case 
(N TCP-Reno).  

* S is the aggregated throughput  of the N connec- 
tions, in the case (N - 1 TCP-Reno + 1 TCP-  
Sack). 

* s is the aggregated throughput  of the N - 1 con- 
nections with the lowest throughputs,  in the case 
(N - 1 TCP-Reno + 1 TCP-Sack).  

Therefore, R - r  is the highest throughput,  in the case 
(N TCP-Reno).  S - s is the highest throughput,  in 
the case (N - 1 TCP-Reno + 1 TCP-Sack).  

4.2.3 A n a l y s i s  o f  t h e  r e s u l t s  

If we compare S -  s to R -  r, we can find the 
t h r o u g h p u t  i m p r o v e m e n t  for  t h e  b e s t  T C P -  
R e n o  when it is replaced by TCP-Sack. r a t i o l  = 

,50 i i ! ! i T s 
i , i i R ~ -  
i ' * . . . .  # . . =  . . . . . . .  2 r . o - -  

4o0 . . . .  i , ~ , - - : T  ! .  • i . .  
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Figure 36: R, r, S, s f o r  N ranging f rom  3 to 10 

Fi 
N rat iol  
3 51.0% 
4 35.3% 
5 57.7% 
6 41.8% 
7 46.2% 
8 33.3% 
9 18.9% 
10 17.4% 

ure 37: ratio1, ratio2, ratio3 
ratio2 ratio3 
19.7% -1.16% 
16.6% -0.00% 
27.7% -1.46% 
17.2% -2.25% 
19.0% -3.28% 
8.05% -3.10% 
3.66% -1.92% 
4.94% -1.37% 

( (S  - s) - ( R  - r ) ) / ( R  - r)  quantifies this improve- 
ment. 

If we compare S to R, we can find what is happen- 
ning to the aggregated throughput  of our N connec- 
tions after changing the best TCP-Reno into TCP-  
Sack. An interesting variable to measure the gain in 
aggregated bandwith is : rat io2  = (S  - R ) / ( B  - R ) ,  
with B being the maximum link bandwith (500 kB/s  
in our case). B - R is the unused bandwith when all 
connections are TCP-Reno and rat io2  is t h e  p ro -  
p o r t i o n  o f  t h i s  u n u s e d  b a n d w i t h  w h i c h  is n o w  
u s e d  when there is one TCP-Sack. 

If we compare s to r, we can find h o w  m u c h  
t h e  t o t a l  t h r o u g h p u t  o f  t h e  o t h e r  N - 1 T C P -  
R e n o  is d e c r e a s i n g  w h e n  t h e  b e s t  T C P - R e n o  
is c h a n g e d  in to  T O P - S a c k .  ra t io3  = ( s -  r ) / r  
quantifies this negative impact of TCP-Sack.  

The first interesting thing is that  the throughput  
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improvement for the best TCP-Reno when it is re- 
placed by TCP-Sack is quite high. For N ranging 
from 3 to 8, this improvement (ratiol) ranges from 
30% to almost 60%. For N equal to 9 or 10, this 
improvement is a little less than 20%. 

ratio2 is also relatively high for N ranging from 3 
to 7, being between 15% and 20%. Tha t  means that  
TCP-Sack uses more efficiently the bandwith than 
TCP-Reno.  TCP-Sack is able to use some bandwith 
which was wasted by TCP-Reno and therefore when 
one TCP-Reno is replaced by one TCP-Sack, the to- 
tal aggregated bandwith increases. When the num- 
ber of connections N is high (9 or 10), filling com- 
pletely the link capacity, ratio2 gets smaller because 
the amount  of wasted is smaller. This explains too 
why ratiol is smaller for high value of N.  

Finally, ratio3 is small with a maximum value of 
approximately 3%. This means that  the impact of 
TCP-Sack on the other N -  1 TCP-Reno 's  is not 
significant. 

The conclusion of these experiments is that  even 
when TCP-Sack outperforms TCP-Reno by a large 
amount,  the negative impact on the other compet- 
ing connections is small. It can be explained by the 
fact that  TCP-Sack uses more efficiently the band- 
with and increases the total  aggregated bandwith. 

5 Conclusion 

In this report  of our work, we presented the 
experimental results of our study of TCP-Sack 
performance, and how it compares to the very 
common TCP-Reno.  
We believe our s tudy is the first to combin~ experi- 
ments on a testbed and experiments over a real path 
of the Internet. 
It backs initial expectations that  TCP-Sack is able 
to recover from multiple losses within one window 
of data  without necessarily timing out. TCP-Sack 
slow-starts less often than TCP-Reno,  and it is 
therefore closer to the ideal T C P  Congestion Avoid- 
ance behavior [10]. 

The improvement in throughput  between UCLA 
and the two test hosts at NASA's GSFC and PSC 

ranged between 15% and 45%. On the testbed (us- 
ing virtual links and emulating a long-delay link), we 
had throughput  improvements ranging from 10% to 
120%, mainly depending on the congestion pattern.  
The other issue was the possible unfairness of TCP-  
Sack when facing congestion. It was feared that  TCP-  
Sack might take bandwidth away from non-Sack T C P  
stacks. Our experiments show that  the implementa- 
tion of TCP-Sack we used is not too aggressive: it 
makes a bet ter  use of the bandwidth wasted by TCP-  
Reno, but the competing TCP  stacks are not affected 
by TCP-Sack. 

We believe that  Selective Acknowledgment is first 
and foremost a data  recovery mechanism, and that  
it should be clearly separated from the Congestion 
Avoidance and Control algorithms. In TCP-Reno,  
the data  recovery and congestion control algorithms 
were very tightly bound. Modifying each of them 
was very difficult. Data  Recovery using Selective 
Acknowledgments is more robust, and less dependant 
on the Congestion Algorithms. 

As a side effect, the current Congestion Algorithms 
(that are very much like Reno, even in the implemen- 
tat ion we used) are perhaps a bit conservative when 
associated with Sack. We believe that  Sack should 
not be viewed as Congestion Control Algorithm, but 
solely as a Data  Recovery algorithm. We believe that  
there is room for improvements in the Congestion 
Control Algorithms, as illustrated in [9]. 
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