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IDMaps: A Global Internet Host
Distance Estimation Service
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and Lixia Zhang, Senior Member, IEEE

Abstract—There is an increasing need to quickly and efficiently
learn network distances, in terms of metrics such as latency or
bandwidth, between Internet hosts. For example, Internet content
providers often place data and server mirrors throughout the In-
ternet to improve access latency for clients, and it is necessary to
direct clients to the nearest mirrors based on some distance metric
in order to realize the benefit of mirrors. We suggest a scalable
Internet-wide architecture, called IDMaps, which measures and
disseminates distance information on the global Internet. Higher
level services can collect such distance information to build a vir-
tual distancemap of the Internet and estimate the distance between
any pair of IP addresses. We present our solutions to the measure-
ment server placement and distance map construction problems in
IDMaps.We show that IDMaps can indeed provide useful distance
estimations to applications such as nearest mirror selection.
Index Terms—Distributed algorithms, modeling, network ser-

vice, scalability.

I. INTRODUCTION

I T IS increasingly the case that a given service request from aclient can be fulfilled by one of several Internet servers. Ex-
amples range from short-lived interactions such as a single Web
page access, to the long-term peering relationship between two
news (NNTP) servers. In all such interactions, all other things
being equal, it is advantageous to access the “nearest” server
with low latency or high bandwidth. Even when all other things
are not equal, for instance, when different Web servers have dif-
ferent response times, it is still useful to include the distance to
each candidate host as a factor in making a selection [1].
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One method to obtain distance information is for the ini-
tiating host to measure it itself, using either unicast (ping,
traceroute) or multicast (expanding ring search) tools.
While these tools are easy to use, their utility is generally
limited by their overhead. For instance, the latency of running
a single traceroute can exceed the latency of a Web page
access itself. More important still, a large number of hosts
making independent and frequent measurements could have a
severe impact on the Internet. Ideally, measurements made by
one system (host or router) should be made available, with low
overhead, to other hosts.
A useful general service for the Internet should enable a host

to quickly and efficiently learn the distance between any two
hosts. To be widely useful, such a service should provide an an-
swer with a delay overhead less than the speedup gained using
the service. A simple protocol for such a service, SONAR, was
discussed in the IETF as early as February 1996 [2], and in April
1997 as a more general service called Host Proximity Service
(HOPS) [3]. Both of these efforts proposed lightweight client-
server query/reply protocols similar to theDNS query/reply pro-
tocol. The specifications also required each server to produce an
answer in a very short time—preferably, though not necessarily,
by using information already stored locally. As stated, both ser-
vices need some underlying measurement infrastructure to pro-
vide the distance measurements.
In this paper, we propose a global architecture for Internet

host distance estimation and distribution which we call Internet
Distance Map Service (IDMaps). We intend to have IDMaps
be the underlying service that provides the distance information
used by SONAR/HOPS. We discuss the basic IDMaps architec-
ture and show, through Internet experiments and simulations,
that our approach can indeed provide useful distance informa-
tion.

II. OVERVIEW OF IDMAPS

A. IDMaps Goals

A distance estimation service could be called upon to sup-
port a wide range of applications, from a client’s accessing a
single page once, to Network Time Protocol (NTP) servers es-
tablishing long-term peering relationships with each other. Each
application that can potentially find a distance estimation ser-
vice useful will have its own set of requirements. IDMaps is not
designed to satisfy all conceivable requirements for distance es-
timation service. For instance, due to technology constraints and
the need for global scalability of the service, we cannot hope
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for a general IDMaps service to provide near-instantaneous in-
formation about current delays and bandwidth seen between
two Internet hosts, even though such information could be very
useful to some applications.
Rather, we have taken the opposite tack—we determined

roughly the best service we may be able to provide given
technology constraints and the need for global scalability of the
service, and then considered whether there are applications for
which this level of service would be useful. We now turn to a
discussion of the resulting goals.
Separation of Functions: We envision IDMaps as an under-

lying measurement infrastructure to support a distance informa-
tion query/reply service such as SONAR. The full separation of
IDMaps and the query/reply service is necessary because the
different functionalities place different constraints on the two
systems. The requirements for IDMaps are relative accuracy of
distance measurements with lowmeasurement overheads, while
the requirements for the query/reply service are low query la-
tency, high aggregate query throughput, and reasonable storage
requirements. By decoupling the different functionalities, we
can streamline the design of IDMaps to perform measurements
with low overheads and allow the query/reply service to make
flexible uses of the measured distances.
Distance Metrics: Our goal is to provide distance informa-

tion in terms of latency (e.g., round-trip delay) and, where pos-
sible, bandwidth. Latency is the easiest distance metric to pro-
vide, and luckily the most generally useful. There are two rea-
sons latency information is easy to provide. First, it is easy
to measure. A small number of packets can produce a good
coarse-grain estimate. Second, two different paths may have
the same latency such that while our probe packets may not
travel the same path as the path actually taken by the users’
data packet, the reported latency would still be useful (see Fig. 2
and accompanying text). Bandwidth is also clearly important for
many applications, but compared to latency, bandwidth is more
difficult to provide. It is more expensive to measure, and it is
also more sensitive to the exact path—a single low-bandwidth
link dictates the bandwidth for the whole path.
Accuracy of the Distance Information: We believe highly

accurate distance estimates (say, within 5% of the distance
measured by the end-host itself) are impossible to achieve
efficiently for a large-scale Internet service. While we may be
able to achieve this level of accuracy for each path measured,
an estimate based on triangulation of such measurements will
see an accumulation of the error terms. Instead, our goal is to
obtain accuracy within a factor of 2 with very high probability
and often better than that. We expect this level of accuracy
to be adequate for SONAR and HOPS servers. Being able to
distinguish systems that are very close, very far, or somewhere
in between is useful for a wide range of applications. For those
that require more accurate measurements, they may at least use
this coarse-grained information as a hint to server selection.
Timeliness of the Distance Information: We must consider

two kinds of distance information—load sensitive and “raw”
(distances obtained assuming no load on the network, which
generally can be approximated by saving the minimum of a
number of measurements). In the interest of scalability, we plan
to provide the raw distance information with an update fre-
quency on the order of days, or if necessary, hours. In other
words, the distance information will not reflect transient net-

work conditions, and will only adjust to “permanent” topology
changes. Instantaneous or near-instantaneous (within 15 or 20 s)
load information is both impossible to distribute globally and of
diminishing importance to future applications: as the Internet
moves to higher and higher speed, the propagation delay will
become the dominant factor in distance measurements.1
Scope of the Distance Information: We assume that the dis-

tance information applies only to the “public” portion of the In-
ternet—the backbone networks, border gateway protocol (BGP)
information, and possibly the public side of firewalls and border
routers of private networks. Even if distance information of pri-
vate networks were obtainable, it may be desirable not to in-
clude it for scalability reasons. This is not to suggest that dis-
tance information inside private networks is not important. We
believe the architecture presented in this proposal can be repli-
cated within a private network, but otherwise do not address dis-
tance measurement within private networks.

B. Alternative Architectures and Related Works
The primary motivation of IDMaps is to provide an estimate

of the distance between any two valid IP addresses on the In-
ternet. It is important to discuss this motivation because it signif-
icantly differentiates IDMaps from other services that also pro-
vide distance information, e.g., the SPAND and Remos projects
[4], [5], which are localized service that provides only distance
information between hosts close to a distance server and remote
hosts on the Internet. Such a service is simpler to provide be-
cause the amount of information each distance server has to
work with scales proportionally to the number of possible desti-
nations ( ). When all sites on the Internet require distance ser-
vice, however, the aggregated load of localized distance service
scales on the order of . The amount of measurement traffic
under IDMaps will likely be much smaller than the order
because of the global sharing of distance information and as a
result of our application of graph compression techniques such
as -spanners (see Sections III-C and IV-D). The administrative
cost of setting up and maintaining IDMaps service is also fixed.
Stemm et al. in [4] argue for the use of passive monitoring be-

cause it does not send additional traffic to perturb actual Internet
traffic. Although the nonintrusive nature of passive monitoring
is very appealing, it has several limitations:
1) Passive monitoring can only measure regions of the In-
ternet that application traffic has previously traversed. For
example, a client trying to choose the nearest among mul-
tiple copies (or mirrors) of a Web server requires distance
information to all mirrors, whereas a passive monitoring
system can only provide distance information to mirrors
that have been previously accessed.

2) When Internet topology changes, passive monitoringmay
be forced to recollect most, if not all, of its distance infor-
mation. Distances in IDMaps are collected from multiple
intermediate points on the Internet; this allows the dis-
tance database to locate any topological change and up-
date only those actually affected.

1While propagation delay is lower bounded by geographic distance, it is deter-
mined by topological distance. Given the dynamic nature of Internet topology,
changes to topological distances can be scalably tracked only by an automatic
system such as IDMaps.
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Fig. 1. Various forms of distance information.

3) Localized passive monitoring systems require human ef-
fort to install and maintain at each site. The responsibility
of deploying passive-monitoring-based distance service
rests on the administrator of each individual network and
requires certain expertise and resources. With IDMaps,
network administrators only need to install a querying
system, which can be standardized similar to the Domain
Name System (DNS).

4) Finally, passive monitoring typically requires measure-
ment or snooping of network traffic, which may raise pri-
vacy and security concerns.2

Another alternative to providing distance information on
the Internet is by charting the physical connectivities between
nodes (hosts and routers) on the Internet and computing a
spanning tree on the resulting connectivity map. Distances
between pairs of nodes can then be estimated by their distances
on the spanning tree. We call this alternative the hop-by-hop
approach. The projects described in [6], [7], for example,
provide snapshots of the Internet topology at the hop-by-hop
level. This approach largely relies on sending Internet Control
Message Protocol (ICMP) packets to chart the Internet. To
minimize perturbation to the network, each snapshot of the
topology is usually taken over a period of weeks, hence, the
result does not adapt well to topological changes. More seri-
ously, however, due to the recent increase in security awareness
on the Internet, such measurement probes are often mistaken
for intrusion attempts.

III. IDMAPS ARCHITECTURE

This section outlines the IDMaps architecture. Specifically,
we address the following three questions:
1) What form does the distance information take?
2Activemeasurements can also raise security concerns, e.g., Denial of Service

attacks. We try to address these security concerns in the design of protocols used
in IDMaps, which will be reported in a future publication.

2) What are IDMaps’ components?
3) How should the distance information be disseminated?

A. Various Forms of Distance Information
The conceptually simplest andmost accurate form of distance

information IDMaps can measure consists of distances between
any pair of globally reachable IP addresses3 (as shown in Fig. 1).
The distance from one IP address to another is then determined
by simply indexing the list to the appropriate entry (using a
hashing algorithm) and reading the number. The large scale of
this information (on the order of , where , number of hosts,
could be hundreds of millions) makes this simple form of dis-
tance infeasible—as does the task of finding all such hosts in an
ever-changing Internet in the first place.
The next simplest would be to measure the distances from

every globally reachable Address Prefix (AP) on the Internet to
every other (Fig. 1). An AP is a consecutive address range of
IP addresses within which all hosts with assigned addresses are
equidistant (with some tolerance) to the rest of the Internet. De-
termining the distance from one IP address to another is only
slightly more complicated than the first approach—each IP ad-
dress is first mapped into its AP, and the AP is then indexed in
the list. Unlike determining the global set of IP addresses, deter-
mining the set of APs, while nontrivial, seems feasible (see Sec-
tion III-D). The scale of the information, however, is still pro-
hibitive. The number of assigned classless interdomain routing
(CIDR) blocks [8] is around 100 000 as of March 2001 and
growing; there are probably several times as many distinct APs
as there are CIDR blocks. Probing, disseminating, and storing
the full list of pairs of AP–AP distances (easily a terabyte,
given 200 000 APs, assuming on average two APs per CIDR
block, and 25 bytes per list entry) is probably out of the ques-
tion.
3Understanding here that different IP addresses may be reachable at different

times, given technologies like NAT and dial-up Internet access.
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Clearly, some way of further compressing this information
is needed. One way is to keep a list of distances from every
Autonomous System (AS) to every other. The AS is the unit
of path information carried by the BGP inter domain routing
protocol. BGP also maps blocks of IP addresses into their ASs.
This shrinks the size of the information to , where
( ) is the number of ASs and the number of BGP-
advertised IP address blocks (not an AP by the above definition,
but of the same order of magnitude in size). While still a large
list, maintaining it is certainly feasible (there are about 10 000
ASs as of March 2001). The resulting accuracy of the estimated
distances, however, is highly suspect. Many ASs are global in
scope, and multiple ASs can cover the same geographic area. It
is often the case that some IP hosts are very close to each other
(both in geographical and latency terms) yet belong to different
ASs, while other IP hosts that are very far apart belong to the
same AS.4
Yet another form of distance information includes some clus-

tering of APs, but at a smaller unit than the AS. We can select
certain systems, which we will call Tracers, to be distributed
around the Internet, so that every AP is relatively close to
one or more Tracers. The distances between these Tracers are
then measured, and so are the distances between APs and their
nearest Tracer(s). The distance between any two APs can then
be calculated as the sum of the distance from each AP to its
nearest Tracer, and the distance between the two Tracers. The
resulting accuracy depends on the number of Tracers and where
they are located. Assuming that we can manipulate the number
and location of Tracers, we have a tuning knob for increasing
accuracy at the expense of measuring more raw distances.
This approach scales as , where is the number of

Tracers. Assuming that , the number of APs, is a manageable
number (no more than several hundred thousand), the question
then becomes, how big should we make ? If is on the order
of 10 000, then the size of the list is quite large. If, however, is
on the order of 500, then the component is roughly the same
as the component and, at least in terms of simple storage and
lookup, definitely manageable.
Of the four forms of distance information mentioned above,

the last one appears to have the best scalability with reasonable
estimation accuracy. We decided to use this form of distance
information in IDMaps. There are thus three main components
of IDMaps: APs, Tracers, and the raw distances, which we call
virtual links (VLs). We further differentiate VLs into two types:
those between Tracers5 (Tracer–Tracer VLs) and those between
Tracers and APs (Tracer–AP VLs). Before we examine each
component in greater detail, we first evaluate the basic assump-
tion that we can estimate the distance between two points as the
sum of distances between intermediate points. In analytic terms,
this assumption relates to whether the triangle inequality holds.
Triangulation on the Internet: Given a graph with a set

of vertices , a cost function is said to satisfy the triangle in-
4If the internal topology of each AS is known, a more accurate distance can

be computed as the shortest-path across the internal topologies of transit ASs
between the two hosts.
5The actual distances used would not include the legs from the Tracers to their

backbone routers, since this part of the path is not used by other hosts. For the
sake of readability, however, we refer to the distance between one Tracer’s router
and another Tracer’s router simply as the distance between the two Tracers.

equality if for all vertices , , in a graph,
[9] [in the remainder of the paper, we use the nota-

tion interchangeably with ]. If distances
and are known, then from the triangle inequality we have
that is bounded above by , and below by

. If either of the two distances is small relative
to the other, the bound is tight and the estimate accurate. De-
riving a distance estimate from this bound has been referred to
as “triangulation” [10].
A key point to keep in mind is that any time we estimate a

distance from to based on distances to an intermediary ,
we are to some degree relying on what we will term efficient
routing: that Internet routing does indeed strive to find low-la-
tency paths, and that the routes used by two nearby hosts will
not be drastically different from each other. This assumption can
be violated due to policy-based routing, and also by the use of
large layer-2 “clouds” by ISPs that are invisible at the network
layer, and hence contain significantly complex topology that are
completely hidden from network-layer-only viewpoints such as
available to IDMaps. If efficient routing is violated, it can render
the triangle inequality incorrect: might be much higher
than or much lower than .
We now present results from rudimentary experiments done

on the Internet to explore the feasibility of using triangulation to
estimate distances. Our intention here is not to test whether the
triangle inequality holds over all parts of the Internet (indeed it
does not [11]), but only whether using triangulation to estimate
distances on the Internet, independent of IDMaps, is at least
feasible.
We analyze end-to-end traceroute measurements col-

lected using the Network Probe Daemon (NPD) tool described
in [12]. A number of sites on the Internet were recruited to
run NPDs. At random intervals, each NPD measured the route
to another NPD site using traceroute. In this paper,we
analyze the traceroute data collected by the NPDs in
two experiments: the November 3 to December 21, 1995
experiment ( ) and the September 4, 1996 to January 24,
1997 experiment ( ). We split experiment into six data
sets, and experiment into three data sets. The data sets are
nonoverlapping in time. Thirty-three hosts distributed around
the globe participated in experiment , 48 in experiment
. A description of the measurement process, such as inter

measurement interval, number of measurements per period,
etc., and data cleansing done on the collected data are available
in [12] for the data set and in [13] for the data set.
In addition, we collected two more data sets, and
, using the Multiple Traceroute Gateways (MTGs)[14]

during January 2000. The MTGs are a collection of volun-
tary Web sites, each of which can run traceroute from
itself to a specified remote address. Data set contains
traceroutes from 33 Traceroute Gateways measuring
distances to all the others continuously in a round-robin fashion
over a period of five days. Each round took 20 to 40 min. Data
set contains the traceroutes from 74 Traceroute
Gateways measuring distances to all the others exactly once.
For each data set, we estimate the latency between every

traceroute source, , and every traceroute destination,
, as the minimum of the end-to-end roundtrip times reported
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TABLE I
NUMBER OF TRIANGLES OBTAINED FROM EACH DATA SET

across all of the traceroutes from to . From each data
set, we then compute a set of triangles, each involving three
such minimum latency traceroutes: from a host to an-
other host , from host to a third host , and from host to
host . Column 2 of Table I lists the number of triangles we ob-
tained from each of the 11 data sets. Column 3 lists the number
of shortest-path triangles computed from each data set. Given
all the s that can potentially be used to estimate the distance

as , we call the path that uses the that pro-
vides the smallest the shortest-path triangle.
We use only the additive form of triangulation [estimating

using ] in this paper because concatena-
tion of distances involving multiple intermediary points is much
simpler for the additive form and, as we show below, the re-
sulting estimates are acceptable for our purposes.We emphasize
that computing distances on the Internet is not a straightforward
process and there is future work needed on distance measure-
ment and estimation; however, we also caution against inter-
preting the triangulation results presented here as an indication
of how well IDMaps will perform. We expect IDMaps to per-
form better than the results presented here due to the more de-
liberate placement of Tracers under IDMaps. For example, we
expect the additive form of triangulation to hold more preva-
lently when Tracers are placed strategically and addresses are
aggregated into APs (see Sections III-B and IV-D).
Fig. 2 shows the ratios of for all

shortest-path triangles in our data sets. The closer this ratio is
to 1, the smaller the triangulation error. Without differentiating
which curves belong to which data set, we observe that between
75% and 90% of triangulation estimates fall within a factor of 2
of the real distances. We reported similar results involving only
the and data sets in an earlier version of this work ([15],
though an analysis error in that paper incorrectly reports the fig-
ures), and this was also shown by [11]. Studying the extreme
cases at both ends of the distributions, we found that being
orders of magnitude smaller than is mostly caused
by and being colocated. On the other extreme, being
much larger than is mostly caused by large .
We were not able to track down why these paths have very long
distances in general (see, however, [11]).
For comparative purposes, we also show in Fig. 3 the cumu-

lative distribution function of the triangulation error from trian-
gles involving all potential s. The figure shows, for example,

Fig. 2. Cumulative Distribution Function (CDF) of the ratio of
for shortest-path triangles.

Fig. 3. Cumulative Distribution Function (CDF) of the ratio of
for all triangles.

that the actual distance between and in about 40% of the tri-
angles formed is shorter than half the sum of and ,
which gives good indication that triangulating shortest-paths
will more closely approximate the actual distances. Note that
for to be 100 times longer than is as bad
as for it to be 100 times shorter.
In summary, while we cannot as yet make any claim as to the

potential accuracy of triangulation in IDMaps, results presented
in this section suffice to argue that the use of the additive form
of triangulation as a method to estimate distances on the Internet
is feasible.

B. Tracer Placement
As mentioned above, the resulting accuracy of IDMaps

distances depends on the number of Tracers and where they are
located. Ideally, Tracers should be placed where they are able
to obtain accurate raw distance information. In this section, we
briefly review two graph theoretic approaches we can apply to
determine the number and placement of Tracers, namely the
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-HST and the minimum -center algorithms. These algo-
rithms have been used to determine placement of fire stations,
ambulance placement, etc. [16]. More formal descriptions of
these algorithms are available in [17], [18]. The assumption
we make in applying these algorithms to the Tracer placement
problem is that the most accurate distance information can be
obtained by minimizing the maximum distance between an AP
and its nearest Tracer. Given a graph, these algorithms partition
it into subgraphs satisfying certain conditions. Since IDMaps
cannot assume prior knowledge of Internet topology, these
algorithms are mostly useful in informing and evaluating our
placement heuristics. We describe three placement heuristics in
Section III-B-3.
We use the generic term “center” in place of “Tracer” in the

following descriptions. We present two variants of the center
placement problem: in the first case, the maximal center-node
distance is given, and one is required to find theminimal number
of centers needed to satisfy this constrain; in the second case, the
number of centers is given, and one needs to decide the locations
of these centers such that the maximum distance between a node
and the nearest center is minimized. Each of the two algorithms
described below can be used to solve both of these problems.
Number of Centers: Given a network with nodes (that

is, the topology is a priori known), and a bound , one has to
find a smallest set of centers such that the distance between
any node and its nearest center is bounded by . The
performance metric ( ) is the size of this set ( ). More
formally, find the minimal such that there is a set
with and , where is the
nearest center to .
Center Placement: For the placement of a given number of

centers, one could consider the followingmetric ( ): given
a network with nodes, and a number , find a set of centers

of size that minimizes the maximum distance between
a node and the nearest center. This problem is known as the
minimum -center problem.
While our Tracer placement problem is similar in spirit to the

center placement problem articulated above, for Tracer place-
ment we have to consider other practical deployment issues,
primarily that we do not know the Internet topology a priori,
and that the Internet topology changes dynamically. Further-
more, we must consider the willingness of network owners to
host Tracers, and the managerial and financial constraints on the
number of Tracers we can afford to deploy andmaintain. Hence,
our goal is not to determine the minimum number of Tracers re-
quired to provide distance estimates at a given precision, but
rather to evaluate the effectiveness of various Tracer placement
and number of Tracers. In Section IV-D-4, we present results
from experiments with different number of Tracers. We use the
graph theoretic results only as yardsticks to evaluate the perfor-
mance of our placement heuristics presented in Section III-B-3;
we do not intend to directly use these graph theoretic algorithms
in actual deployment of Tracers for reasons cited above.
1) -HST: We present in this subsection a placement algo-

rithm based on -hierarchically well-separated trees ( -HST)
[17]. Intuitively, think of the algorithm that generates a -HST
as a top-down graph partitioning algorithm that transforms a
graph into a tree of partitions by recursively dividing far-apart

Fig. 4. Greedy placement of centers on an -HST tree.

nodes in each partition into several smaller child partitions. The
diameter of a partition is defined to be the furthest distance be-
tween two nodes in the partition. More formally, the -HST al-
gorithm consists of two phases. In the first phase, the graph is
recursively partitioned as follows: A node is arbitrarily selected
from the current (parent) partition, and all the nodes that are
within a random radius from this node form a new (child) parti-
tion. The value of the radius of the child partition is a factor of
smaller than the diameter of the parent partition. This process

recurses for each partition, until each node is in a partition of
its own. We then obtain a tree of partitions with the root node
being the entire network and leaf nodes being individual nodes
in the network. In the second phase, a virtual node is assigned
to each of the partitions on each level. Each virtual node in a
parent partition becomes the parent of the virtual nodes of the
child partitions. The length of the links from a virtual node to
its children is half the partition diameter. We embed the virtual
nodes in the original graph based on a technique developed by
Awerbuch and Shavitt [19]. Together, the virtual nodes also form
a tree.
The randomization of a partition radius is done so that the

probability of a short link being cut by partitioning decreases
exponentially as one climbs up the tree. Hence, nodes close to-
gether are more likely to be partitioned lower down the tree.
We take advantage of this characteristic of the resulting -HST
tree to devise the following greedy algorithm to find the number
of centers needed when the maximum center-node distance is
bounded by . Let node be the root of the partition tree,
be the children of node on the partition tree, and be a list
of partitions sorted in the decreasing order of the partition di-
ameter at all times. Let denote the partition at the head
of the list, and its diameter. Fig. 4 presents our
greedy algorithm on the -HST tree (see [19] for a more formal
presentation of the algorithm). The algorithm pushes the centers
down the tree until it discovers a partition with diameter .
The number of partitions, , is the minimum number of cen-
ters required to satisfy the performance metric . To select
the actual centers, we can simply set the virtual nodes of these
partitions in to be the centers.
The -HST-based greedy placement algorithm presented

above tells us the number of centers needed to satisfy the
performance metric . For any given budget of centers, the
algorithm above can also be used to determine their placement.
For example, to place centers, we simply change line 3
in Fig. 4 to “while ( ).” Obviously, the performance
metric may no longer be satisfied for below a certain
number.
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Fig. 5. Two-approximate algorithm for the minimum - center problem.

2) Minimum -Center: The placement of a given number
of centers such that the maximum distance from a node to the
nearest center is minimized, known as the minimum -center
problem, is NP-complete [20]. However, if we are willing to
tolerate inaccuracies within a factor of 2 (2-approximate), i.e.,
the maximum distance between a node and the nearest center
being no worse than twice the maximum in the optimal case, the
problem is solvable in O [18]. In contrast to the -HST
algorithm, one can intuitively think of the minimum -center
algorithm as a bottom-up approach to graph partitioning: it col-
lects nearby nodes into clusters.
More formally, the minimum -center algorithm receives as

input a graph where is the set of nodes,
, and the cost of an edge , , is the

cost of the shortest-path between and . All the graph edges
are arranged in nondecreasing order by cost :

, let , where .
A square graph of , is the graph containing and edges

wherever there is a path between and in of at most
two hops, . An independent set of a graph is
a subset such that, for all , the edge is
not in . An independent set of is thus a set of nodes in
that are at least three hops apart in . We also define amaximal
independent set as an independent set such that all nodes
in are at most one hop away from nodes in .
The outline of the minimum -center algorithm from [18]

is shown in Fig. 5. The basic observation is that the cost of the
optimal solution to the -center problem is the cost of , where
is the smallest index such that has a dominating set6 of
size at most . This is true since the set of center nodes is a
dominating set, and if has a dominating set of size , then
choosing this set to be the centers guarantees that the distance
from a node to the nearest center is bounded by . The second
observation is that a star topology in , transfers into a clique
(full-mesh) in . Thus, a maximal independent set of size
in implies that there exists a set of stars in , such that the
cost of each edge in it is bounded by : the smaller the , the
larger the . The solution to the minimum -center problem
is the with stars. Note that this approximation does not
always yield a unique solution.
The 2-approximate minimum -center algorithm can also

be used to determine the number of centers needed to satisfy
the performance metric by picking an index such that

. The maximum distance between a node and the
nearest center in is then at most , and the number of centers
needed is .

6A dominating set is a set of nodes such that every is either in
or has a neighbor in .

3) Tracer Heuristics: The graph theoretic approaches de-
scribed above assume known network topologies. However, the
topology of the Internet may not be known to all parties at any
one time. Furthermore, the Internet topology changes continu-
ously, from physical and algorithmic causes. In this paper, re-
sults from the graph theoretic algorithms are used as yardsticks
to evaluate the performance of our Tracer placement heuristics.
Given a number of Tracers and an unknown topology, we

devise the following heuristics for Tracer placement:
Stub-AS: Tracers are placed only on stub Autonomous Sys-

tems (ASs). This would most likely reflect the initial deploy-
ment of Tracers on the Internet, when Tracers would be run from
end hosts.
Transit-AS: Tracers are placed only on transit ASs, i.e., ASs

that are connected to several neighboring ASs and are willing to
carry traffic from one of its neighbors to another. This reflects
deployment of IDMaps on ISP backbones. As IDMaps becomes
more popular, we hope that there will be enough incentives for
network providers and institutions with private networks to de-
ploy IDMaps. For networks that do not have IDMaps deployed,
Tracers could still be run from end hosts.
Mixed: Tracers are randomly, with uniform distribution,

placed on the network. This is the simplest placement method
and does not assume any knowledge of network characteristics.
It means Tracers are placed on both stub and transit ASs (hence
the name “Mixed”). In terms of deployment, this placement
reflects IDMaps being partially deployed on some ISPs.
The choice of these very simple placement heuristics reflects

our intention to delimit how well IDMaps can be expected to
perform. While the graph-theoretic approaches described in
the previous section assume full knowledge of the underlying
network topology, our placement heuristics intentionally as-
sume minimal knowledge of the underlying network topology.
Knowing the performance of these boundary cases, we can
evaluate the benefits of further refinements to the algorithm,
for example, by iteratively using the distance map collected
to compute better placement. As we show in Section IV-D-1,
even these most rudimentary placement heuristics can give
very good results.

C. Virtual Links

Once Tracers are placed on the Internet, they start tracing
each other and APs (defined in Section III-A). The resulting dis-
tance information are advertised to IDMaps’ clients. Clients of
IDMaps, such as SONAR or HOPS servers, collect the adver-
tised distance information and construct distance maps. In this
section, we first discuss the Tracer-to-Tracer part of the distance
map; then we discuss Tracer-to-AP virtual links.
1) Tracer–Tracer Virtual Links: As of March 2001, there

are close to 100 000 routing address prefixes in the Internet [8].
Assuming we have 5% as many Tracers (see Section IV-D-4
for the effect of having more or less Tracers) and each Tracer
traces to every other Tracer, there will be millions of VLs to
be continually traced and advertised. Where efficient routing
and triangle inequality hold (see Section III-A), it is not nec-
essary to list all Tracer–Tracer distances to achieve good
accuracy. For example, given a number of Tracers in the Seattle
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Fig. 6. Distance measurement reduction.

and Boston areas, it would almost certainly not be very useful
to know all of the distances between them.7 Knowing the dis-
tance of one Tracer from each area would likely allow a suffi-
cient distance approximation between hosts in Seattle and hosts
in Boston (Fig. 6).
We now generalize the above observations by applying

the -spanner algorithm [21] to distance map construction. A
-spanner of a graph is a subgraph where the distance between
any pair of nodes is at most times larger than the distance
in the original graph [22], [23]. Formally, given a graph,

, a -spanner is a subgraph , such
that , . The number of
edges required to build a 5-spanner, for example, on a graph
with nodes is bounded by O . For , the
bound on the number of edges required is O . We examine
the effect of using different values on the performance metric

in Section IV-D.
Cai [24] showed that the minimum -spanner (a -spanner

with the minimum number of edges) is an NP-complete
problem. However, asymptotically, the algorithm of Althöfer
et al. generates, from a graph , a -spanner whose
edge count is on the same order of magnitude as the optimal
-spanner [21]. Fig. 7 presents the -spanner algorithm of
Althöfer et al. [21]. It first sorts, in increasing order, all the
edges in by the edge cost. The edges are examined starting
with the shortest. An edge is added to the spanner if it
improves the distance between and by at least a factor of .
To apply the -spanner algorithm described above would re-

quire IDMaps clients to first collect and store all VLs ad-
vertised by the Tracers. It also assumes that once a -spanner
is computed, it will remain static. In reality, we do not expect
all IDMaps clients to be able to store VLs. As the under-
lying Internet topology changes, we expect the set of VLs that
makes up the -spanner to change from time to time. To keep
track of topological changes, Tracers continually trace and ad-
vertise all VLs—albeit at different frequencies, with higher
frequencies for those used by the -spanner and those that are

7We recognize that geographical distance does not directly relate to network
distance (though often the two are related), for instance because of multipoint
traffic exchange between global ISPs. We use geographical locations here to
simplify the discussion.

Fig. 7. The -spanner algorithm.

Fig. 8. Network with multiple connections to the Internet.

less stable; accordingly, IDMaps clients must continually ex-
amine each new advertisement of a VL and continually update
their -spanners.
2) Tracer–AP Virtual Links: Recall that an Address Prefix

(AP) is a consecutive address range within which all assigned
addresses are equidistant (with some hysteresis) to the rest of the
Internet. Unless an AP is preconfigured into a dedicated Tracer
(see Section III-D), only the Tracers nearest to the AP itself can
discover and subsequently advertise the Tracer–AP distance. As
a result, when a Tracer first discovers an AP, it assumes itself to
be the nearest Tracer and advertises its distance to the AP as the
Tracer–AP distance. Thereafter, however, other Tracers should
probe the AP to determine if they may be closer. If one is, then it
advertises its closer distance. Upon hearing this, the Tracer with
the longer distance can stop advertising its distance to the AP.
We also study whether it is sufficient for each AP to be traced

by only a single Tracer. If an AP has more than one path to the
rest of the Internet, having a single Tracer tracing to that AP
could result in inaccurate distance estimates between this AP
and hosts that are not sharing paths with the Tracer. Fig. 8 shows
a network of four ISPs and three APs. One Tracer each is placed
in ISP1, ISP2, and ISP3, i.e., T1, T2, and T3, respectively. The
label on each link denotes the distance of the link. Consider the
following scenario. Mirrors M1 and M2 of a service are placed
in AP3 and AP2, respectively. Assume that Tracer T1 traces to
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AP1, T2 traces to AP2, and T3 traces to AP3. Client C in AP1
will then be directed to mirror M1 in AP3 instead of M2 in AP2.
Had Tracer T2 also traced to AP1, the client would have been
directed to M2. We investigate the effect of having more than
one Tracer tracing to each AP in Section IV-D-6.

D. Discovering APs
APs in IDMaps are the endpoints of distance information. The

difficulty in grouping Internet hosts into APs is that the address
blocks advertised by ISPs in BGP do not necessarily represent a
group of addresses in a single Internet “location.” Inside an ISP,
a BGP-advertised block may be further partitioned into many
subblocks (i.e., APs) that are topologically far away from each
other. The only direct way the address ranges of these subblocks
can be learned is by querying the ISPs’ routers using simple
network management protocol (SNMP), or by listening to their
internal routing protocols. Where ISPs themselves have set up
Tracers, these methods can be used. Ideally, a large number of
Tracers should be installed by each ISP to provide accurate dis-
tance information for each site. These “dedicated” Tracers can
easily be configured with site AP information. For APs not cov-
ered by either of the above, “general purpose” Tracers will have
to discover the address boundaries of APs. Due to space con-
straint, we will report on our AP discovery algorithm in a future
publication.

E. Distance Information Dissemination
In this section, we explore how distance information pro-

duced by IDMaps can be collected by higher level services in
the context of a complete distance map service. Fig. 9 illustrates
a three-tier model of a distance map service. At the bottom are
the Tracers (T) that measure and advertise raw Internet distances
(VLs). In the middle layer, we have IDMaps Clients (iC), or
simply Clients, that collect the raw distances and build a virtual
distance map of the Internet. SONAR and HOPS servers are ex-
amples of potential IDMaps Clients. These Clients use the dis-
tance maps computed to answer queries from their clients (C),
which are user applications such as a web browser or a napster
client. IDMaps itself is concerned only with the infrastructure
at the bottom tier that collects and advertises raw distances.
IDMaps Tracers continuously send probe packets to “ex-

plore” the Internet to measure distances. Measured distances are
then advertised to Clients. Upon receiving such advertisements,
each Client independently determines the usefulness of the
advertised information and handles it appropriately. To capture
topological changes, instead of completely disregarding virtual
links not currently used by Clients, Tracers will simply reduce
the frequencies at which they trace and advertise these links.
When an Internet host is interested in learning the distance

between two hosts, it queries a Client. The Client then runs a
shortest-path algorithm to determine the end-to-end distance of
the two hosts in its distance map. The result of the computation
is sent back as a reply to the host. A more thorough description
and examination of the distance information dissemination pro-
tocol used by IDMaps will be reported in a future publication.

IV. PERFORMANCE EVALUATION

To study the various algorithms presented in this paper prior
to the deployment of IDMaps on the Internet, we conduct some

Fig. 9. Basic model: Two tiers of functionality.

simulations on generated network topologies. In this section, we
give a brief summary of the three topology generation processes
used in this study. Then we describe how we “deploy” IDMaps
on the generated topologies. Finally, we describe how the per-
formance metric is computed.

A. Topology Generation
We use three models to generate network topologies: the

Waxman model [25], Tiers [26], and a model based on AS-con-
nectivity observed from data collected on the Internet (“Inet”).8
We decided to use more than one topology generator because
the actual topology of the Internet is still under research. The
Waxman model provides us topologies with exponential growth
as hop-count increases, whereas the Inet generator generates
graphs with power-law vertex degree frequency distribution.
The Tiers generator generates networks with hierarchical
structure. More detailed description of the topology generation
processes can be found in [27].

B. Simulating IDMaps Infrastructure
Once a network is generated, we “build” an IDMaps infra-

structure on it. In this section, we describe how the various
Tracer placement and distance map computation algorithms and
heuristics are implemented.
Tracer Placement. In Section III-B, we described two

graph-theoretic approaches and three heuristics to Tracer
placement. To implement the graph-theoretic approaches, we
compute Tracer placement using the algorithms described. To
implement Stub-AS Tracer placement, given Tracers, we
pick nodes with the lowest degrees of connectivity to host
Tracers. Conversely, for Transit-AS placement, we pick
nodes with the highest degrees of connectivity. We implement
Mixed Tracer placement by giving equal probability to all
nodes on the generated network to host a Tracer.
Distance Map Computation. A distance map consists of two

parts: Tracer–Tracer VLs and Tracer–AP VLs. Each Tracer ad-
vertises the VLs it traces. We do not simulate VL tracing and
8Our Inet topology generator is available online at:

http://topology.eecs.umich.edu/inet/
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advertisement or AP discovery in this study, and we only simu-
late a single IDMaps Client. Since IDMaps Clients operate in-
dependently, the use of a single IDMaps Client has no loss of
generality for the performance metrics evaluated here. The sim-
ulated IDMaps Client has a full list of Tracers and their loca-
tions. The Tracer–Tracer part of the distance map is computed
either assuming a full-mesh among all Tracers, or by executing
the original -spanner algorithm shown in Fig. 7.
Each AP (node) can be traced by one or more Tracers. When

each AP is traced by a single Tracer, the Tracer nearest to an AP
is assigned to trace the AP. If an AP is traced by more than one
Tracer, Tracers are assigned to the AP in order of increasing dis-
tance. In our simulations, we assume all edges are bidirectional,
and paths have symmetric and fixed costs. We will report on the
effect of measurement error and stability on IDMaps’ perfor-
mance in a future publication.
Once a distance map is built, the distance between two APs,
and is estimated by summing up the distance from to

its nearest Tracer , the distance from to its nearest Tracer
, and the distance between and . When a full-mesh

is computed between Tracers, the to distance is exactly
the length of the shortest path between them on the underlying
network. Otherwise, they are computed from the -spanner. If
and have multiple Tracers tracing to them, the distance

between and is the shortest among all combinations of
Tracer–AP VLs and Tracer–Tracer VLs for the Tracers and APs
involved.

C. Performance Metric Computation
Ultimately, IDMaps will be evaluated by how useful its dis-

tance information is to applications. We evaluate the perfor-
mance of IDMaps using nearest mirror selection as a proto-
typical application and adopt an application-level performance
metric which measures how often the determination of the
nearest mirror to a client, using the information provided by
IDMaps, results in a correct answer, i.e., the mirror the client
would have been redirected based on a shortest-path tree con-
structed from the underlying physical topology. Incidentally, the
localized distance measurement service (see Section II-B) such
as provided by [4], [28] in effect constructs a shortest-path tree
from each client (or stub network) to all mirrors. thus can
be considered as comparing the performance of IDMaps against
the localized services in the best-case scenario for the localized
services, i.e., the distances from the clients to all mirrors are
known a priori and are obtained at no cost. Performance com-
parison between localized services and IDMaps in the common
case must take into account the shortcomings of localized ser-
vices (see Section II-B), chief among which is the time lag in
obtaining distance to “uncharted” parts of the Internet due to
the “on-demand” nature of the service, the additional cost of
collecting distance information due to the lack of information
sharing between clients, and the cost of maintaining each in-
stance of the localized service.
Considering, however, that the goal of IDMaps is not to pro-

vide precise estimates of distances between hosts on the In-
ternet, but rather estimates of relative distances between a source
(e.g., a client) and a set of potential destinations (e.g., server
mirrors), we adopt a lax version of this measure in this paper, as

TABLE II
SIMULATION PARAMETERS

follows. In each simulation experiment, we first place (from
3 to 24) server mirrors in our simulated network. We place the
mirrors such that the distance between any two of them is at
least the diameter of the network. We consider all the other
nodes on the network as clients to the server and compute for
each client the nearest mirror according to the distance map ob-
tained from IDMaps and the nearest mirror according to the ac-
tual topology. For a given -mirror placement, we compute
as the percentage of correct IDMaps’ answers over total number
of clients.
On the Internet, a client served by a server 15 ms away would

probably not experience a perceptible difference from being
served by a server 35 ms away, or that a server 200 ms away
will not appear much closer than one 150 ms away. We con-
sider IDMaps’ server selection correct as long as the distance
between a client and the nearest mirror determined by IDMaps
is within a factor of times the distance between the client and
the actual nearest mirror (here, we use ).
We repeat this procedure for 1000 different -mirror place-

ments, obtaining 1000 values in each experiment. In the
next section, we present our simulation results by plotting the
complementary distribution function9 of these values.

D. Simulation Results
Table II summarizes the parameters of our simulations. The

heading of each column specifies the name of the parameter,
and the various values tried are listed in the respective column.
The column labeled “Topology” lists the three models we use to
generate random topologies. The “Placement” column lists the
Tracer placement algorithms and heuristics. The “ ” column
lists the number of Tracers we use on 1000-node networks.
The “T–T Map” column lists the methods used to compute the
Tracer–Tracer part of the distance map. The “T/AP” column
lists the number of Tracers tracing to an AP. We experimented
with almost all of the 540 possible combinations of the param-
eters on 1000-node networks and several of them on 4200-node
networks. In addition, we also examined the case of havingmore
mirrors for a few representative simulation scenarios.
The major results of our study are:
1) Mirror selection using IDMaps gives noticeable improve-
ment over random selection.

2) Network topology can affect IDMaps’ performance.
3) Tracer placement heuristics that do not rely on knowing
the network topology can perform as well as or better
than algorithms that require a priori knowledge of the
topology.

9The complementary distribution function, , where
is the cumulative distribution function of the random variable .
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(a) (b)

(c)

Fig. 10. Three-mirror selection on 1000-node network with ten Tracers. (a) Inet. (b) Waxman. (c) Tiers.

4) Adding more Tracers (over a 2% threshold) gives dimin-
ishing return.

5) Number of Tracer–Tracer VLs required for good perfor-
mance can be on the order of with a small constant.

6) Increasing the number of Tracers tracing to each AP im-
proves IDMaps’ performance with diminishing return.

These results apply to both the 1000-node and 4200-node net-
works. We present simulation data substantiating each of the
above results in the following subsections. Due to space con-
straints, we are not able to include data confirming some of these
results on the Internet [29].
1) Mirror Selection: Results presented in this subsection are

obtained from simulations on 1000-node randomly generated
topologies. In all cases, three mirrors are manually placed on the
network, the number of Tracers deployed is ten (1% of nodes),
and the distance maps are built by computing full-meshes be-
tween the Tracers, with only a single Tracer tracing to each AP.
We compare the results of random selection against selec-

tion using the distance map generated by IDMaps. The metric of
comparison is . Each line in Fig. 10 shows the complemen-
tary distribution function of 1000 values as explained in
the previous section. Each line is the average of 31 simulations
using different random topologies; the error bars show the 95%
confidence interval. For example, the line labeled “Transit-AS”
in Fig. 10(a) shows that on an Inet-generated topology, when

mirrors are selected based on the distance map computed from
Tracers placed by the Transit-AS heuristic, the probability that
at least 80% of all clients will be directed to the “correct” mirror
is 100% (recall our definition of correctness from the previous
section); however, the probability that up to 98% of all clients
will be directed to the correct mirror is only 85%. We start the
-axis of the figure at 40% to increase legibility. The line la-
beled “ -HST” is the result when the -HST algorithm is used to
place Tracers. The -HST algorithm requires knowledge of the
topology (see Section III-B-1). The line labeled “RandomSelec-
tion” is the result when mirrors are randomly selected without
using a distance map. As expected, given that there are three
mirrors, it performs well for less than 40% correctness and the
performance deteriorates beyond 60% correctness. Mirror se-
lection using distance maps outperforms random selection re-
gardless of the Tracer placement algorithm.
We include only the best- and worst-performing Tracer place-

ment algorithms in Fig. 10 for legibility of the graphs. The rel-
ative performance of the various placement algorithms is pre-
sented in Section IV-D-3. Fig. 11 shows results from simula-
tions with 24 mirrors. Qualitatively, these results agree with our
conclusion that mirror selection using distance maps outper-
forms random selection.
2) Effect of Topology: Fig. 10(b) and (c) show the results of

running the same set of simulations as in the previous section,
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(a) (b)

(c)

Fig. 11. Twenty-four mirror selection on 1000-node network with ten Tracers.(a) Inet. (b) Waxman. (c) Tiers.

but on topologies generated using the Waxman and Tiers
models, respectively. Again, the error bars on each figure show
the 95% confidence intervals computed from 31 randomly
seeded topologies. While mirror selection using a distance
map provides better performance than random selection in all
cases, performance on the Tiers-generated topology exhibits
a qualitatively different behavior than those in the other two
topologies. Namely, the Transit-AS heuristic gives better
IDMaps performance than the -HST algorithm on topologies
generated from the Inet and Waxman models, but not so in the
topology generated from Tiers.
We offer a hypothesis for the relatively poor performance of

random mirror selection on Tiers topology. Our earlier work
in [27] shows that almost all the end-to-end distances in the
Inet-generated network fall between 20% and 60% of the net-
work diameter. When we randomly pick two distances from this
network, it is highly likely that they will fall within this range.
Consequently, one distance will be no more than three times
longer than the other. Therefore, given our definition of the per-
formance metric, even random selection can give acceptable
performance. As can be seen by comparing Fig. 10(b) against
Fig. 10(a) and (c), this is more evident in the network gener-

ated from the Waxman model, where the distances fall between
30% and 70% of the network diameter. However, the distance
distribution for the Tiers topology is much more dispersed, and
the range is between 10% and 70% of the diameter. It is much
harder for two randomly picked distances to be within a factor
3. This is corroborated by the poor results returned by random
selection. We note again that despite the significant differences
in the three models, IDMaps is able to provide noticeable im-
provements to nearest mirror selection in all three cases.
3) Performance of Placement Algorithms: To compare

the relative performance of the various Tracer placement
algorithms and heuristics, we repeat the same simulations
as in the previous two subsections, once for each placement
algorithm. Then using the complementary distribution function
of the values obtained from running the Mixed placement
algorithm as the baseline, we compute the improvement of each
placement algorithm relative to Mixed placement. The results
are presented in Fig. 12(a)–(c) for networks generated using
the Inet, Waxman, and Tiers models, respectively. There is no
clear winning placement algorithm across all topologies, but
the minimum -center algorithm and Transit-AS placements
consistently perform well in all three topologies. In general,
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(a) (b)

(c)

Fig. 12. Improvement of placement algorithms over the Mixed algorithm on 1000-node network with ten Tracers. (a) Inet. (b) Waxman. (c) Tiers.

(a) (b)

Fig. 13. Mirror selection using IDMaps with varying number of Tracers. (a) 1000-note Tiers network. (b) 4200-node Inet network.

the simple heuristics can often perform as well as the graph
theoretic placement algorithms. In [29], we also present results
of applying the graph theoretic placement algorithms on
distance maps computed from the Transit-AS heuristics.

4) Having More Tracers: In this subsection, we study the
effect of increasing the number of Tracers on IDMaps’ perfor-
mance. Fig. 13(a) shows the results of running the Transit-AS
placement algorithm on a 1000-node network generated using
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Fig. 14. Effect of -spanner on 1000-node Inet network with 100 Tracers.

the Tiers model. Increasing the number of Tracers from 10
to 20 improves performance perceptibly, with diminishing
improvements for further increases. Comparing Fig. 13(a)
against Fig. 10(c) from Section IV-D-2, we see that increasing
the number of Tracers from 10 to 20 makes the performance of
IDMaps using the Transit-AS placement algorithm comparable
to that of using the -HST algorithm with ten Tracers.
Fig. 13(b) shows the results of running the Transit-AS place-

ment algorithm on a 4200-node network generated using the
Inetmodel. Again, we see a perceptible improvement in IDMaps
performance when the number of Tracers increases from ten to
35, with diminishing improvements for further increases. Also
of significance is that having only 0.2% of all nodes serving as
Tracers already provides a correct answer 90% of the time with
very high probability. To the extent that larger networks means
denser networks,10 a Tracer can servemore nodes in a larger net-
work than it does in smaller networks. Thus to achieve the same
IDMaps performance, the number of Tracers needed to serve a
larger network does not necessarily increase as fast as the in-
crease in network size. Overall, we do not need a large-scale
IDMaps deployment to realize an improvement in the metric of
interest, .
5) Distance Map Reduction: In all the simulations reported

so far, the distance maps are built by computing full-mesh
Tracer–Tracer VLs. Fig. 14 shows the results of running the
Transit–AS algorithm to place 100 Tracers on a 1000-node
network generated using the Inet model, with Tracer–Tracer
VLs computed as a full-mesh and as -spanners. For ,
there is no perceptible difference in performance; for ,
the performance is worse. Qualitatively similar results are
observed for topologies generated using the Waxman and Tiers
models, with worse performance for in the Tiers case.
Using a -spanner in place of a full-mesh can significantly

reduce the number of Tracer–Tracer VLs that must be traced,
advertised, and stored. Table III shows that for all the topologies
used in our experiments, the number of VLs used by both 2-
and 10-spanners are on the order of with a small constant
10The number of hosts andASs on the Internet has been growing very fast over

the past decade, but the diameter of the Internet, i.e., the longest path between
two points on the Internet, has stayed roughly the same.

TABLE III
NUMBER OF VLS IN -SPANNERS OF 100 TRACERS

Fig. 15. Mirror selection on 1000-node Waxman network with two and three
Tracers/AP.

multiplier. In contrast, the number of VLs required to maintain
a full-mesh for is 4950 edges. (The theoretical upper
bound on the number of edges in a -spanner is O ).
6) Multiple Tracers per AP: In all our simulations so far,

we have assumed that only a single Tracer traces each AP.
We showed in Section III-C-2 (Fig. 8) that in some cases
having more than one Tracer tracing an AP may result in
better distance estimates. We now present some performance
results from scenarios in which there are two or three Tracers
tracing each AP. On 1000-node networks, we place 100 Tracers
using the Transit–AS algorithm, and compute a full-mesh for
Tracer–Tracer VLs. Using the performance of IDMaps where
only one Tracer traces each AP as the baseline, we compute the
percentage improvement of increasing the number of Tracers
per AP.
Fig. 15 shows that on a 1000-node network generated using

the Waxman model, compared to having only one Tracer per
AP, the probability of having at least a 98% correct answer is
increased by 17% when each AP is traced by two Tracers, and
is increased by 25% when each AP is traced by three Tracers.
We only consider up to three Tracers per AP since currently 85%
of ASs in the Internet have degree of connectivity of at most 3
[30].

V. CONCLUSION

It has become increasingly evident that some kind of distance
map service is necessary for distributed applications in the In-
ternet. However, the question of how to build such a distance
map remains largely unexplored. In this paper, we propose a
global distance measurement infrastructure called IDMaps and
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tackle the question of how it can be placed on the Internet to
collect distance information.
In the context of nearest mirror selection for clients, we

showed that significant improvement over random selection can
be achieved using placement heuristics that do not require a full
knowledge of the underlying topology. In addition, we showed
that IDMaps overhead can be minimized by grouping Internet
addresses into APs to reduce the number of measurements,
the number of Tracers required to provide useful distance
estimations is rather small, and applying -spanner to the
Tracer–Tracer VLs can result in linear measurement overhead
with respect to the number of Tracers in the common case.
Overall, this study has provided positive results to demonstrate
that a useful Internet distance map service can indeed be built
scalably.
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