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Abstract
This paper studies TCP performance in a stationary multi-
hop wireless network using IEEE 802.11 for channel access
control. We first show that given a specific network topol-
ogy and flow patterns, there exists an optimal window size
W ∗ at which TCP achieves the highest throughput via maxi-
mum spatial reuse of the shared wireless channel. However,
TCP grows its window size much larger than W ∗, leading to
throughput reduction. We then explain the TCP throughput
decrease using our observations and analysis of the packet
loss in an overloaded multihop wireless network. We find out
that the network overload is typically first signified by packet
drops due to wireless link-layer contention, rather than buffer
overflow-induced losses observed in the wired Internet. As
the offered load increases, the probability of packet drops due
to link contention also increases, and eventually saturates.
Unfortunately, the link-layer drop probability is insufficient
to keep the TCP window size around W ∗. We model and an-
alyze the link contention behavior, based on which we pro-
pose Link RED that fine-tunes the link-layer packet dropping
probability to stabilize the TCP window size around W ∗. We
further devise Adaptive Pacing to better coordinate channel
access along the packet forwarding path. Our simulations
demonstrate 5% to 30% improvement of TCP throughput us-
ing the proposed two techniques.
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1 Introduction
TCP is the most popular Internet transport protocol that pro-
vides reliable end-to-end data delivery. It adjusts its conges-
tion window size in response to detected packet loss, mainly
due to buffer overflow at the bottleneck link in the wired In-
ternet. As IEEE 802.11 based wireless networking technol-
ogy gains popularity, TCP is very likely to continue to be the
dominant transport protocol in order to reuse the numerous

network applications developed so far. In an 802.11-based
multihop wireless network, the underlying MAC coordinates
the access to the shared wireless channel, and provides the
link abstraction to upper layers such as TCP. In this paper,
we seek to gain understanding on how TCP operates in such
a multihop wireless network.

Two unique characteristics of IEEE 802.11 multihop wire-
less networks may greatly affect TCP performance. First,
contention for the access to the shared wireless channel is
location-dependent. Packets may be dropped due to consis-
tent link-layer contention, resulted from hidden/exposed ter-
minals [8]. Second, improving channel utilization through
spatial reuse, i.e., simultaneous scheduling of transmissions
that do not interfere with each other, is highly desirable. The
window adaptation mechanism of TCP impacts the degree
of spatial reuse. In summary, both location-dependent con-
tention and spatial channel reuse are highly dependent on the
offered load, managed by the TCP protocol. In this paper, we
study the impact of the location-dependent link-layer con-
tention and spatial channel reuse on TCP performance.

We start with several simple network topologies and flow pat-
terns to illustrate the effect of multihop wireless channel on
TCP congestion control and throughput, and have got inter-
esting results from our simulations and experiments. First,
given a specific network topology and flow patterns, there
exists a TCP window size, say W ∗, at which its throughput
is maximized via maximum spatial channel reuse. W ∗ is a
function of the number of hops the TCP flow traverses, but
remains independent of the bandwidth or delay at the “bot-
tleneck” link. Second, current TCP protocol does not oper-
ate around W ∗ but typically grows its average window much
larger, resulting in throughput decrease due to degraded spa-
tial reuse and increased packet loss. We observe 4% to 21%
throughput reduction from the highest throughput in our sim-
ulated scenarios.

Further analysis of the packet loss reveals the reason for the
TCP throughput decrease. In a multihop wireless network,
link-layer contention typically happens before buffer over-
flow. Packet droppings due to link-layer contention offer the
first sign of network overload or congestion. The probabil-



ity of packet dropping due to link contention increases as the
offered load (i.e., TCP window size) increases, and finally
saturates when every intermediate node along the forwarding
path has a non-empty packet queue. As long as each node
in the multihop wireless network allocates a reasonably large
buffer, e.g., 20 packets, buffer overflow is never observed ex-
cept for a few pathological cases. Unfortunately, the gradu-
ally increasing packet dropping probability due to link-layer
contention is insufficient to stabilize the TCP window size
around W ∗. Our modeling of the hidden/exposed terminal
effects shows that before the offered load reaches the opti-
mal operating point, the dropping probability is nearly zero.
As the load exceeds such a point, the packet dropping prob-
ability grows accordingly and becomes non-negligible. The
probability flattens out and saturates if the load further in-
creases.

Our discovery also sheds some light on how to improve TCP
performance over multihop wireless networks. In this pa-
per, we propose two link layer techniques to improve TCP
throughput: a Link RED algorithm to fine-tune the wireless
link’s dropping probability to stabilize the TCP window size
around W ∗, and an adaptive pacing scheme to better coordi-
nate the spatial channel reuse. These simple techniques lead
to 5% to 30% throughput increase compared with the stan-
dard TCP.

The rest of the paper is organized as follows. Section 2
compares with related work. Section 3 reviews link-layer
contention and spatial channel reuse in an IEEE 802.11-
based multihop wireless network. Section 4 presents a thor-
ough study of the relationship between TCP window size and
throughput in several simple topologies and traffic patterns.
Section 5 explains the TCP throughput decrease from the per-
spective of packet loss in multihop wireless networks. Sec-
tion 6 describes and evaluates link RED and adaptive pacing.
We discuss a few related issues in Section 7. Finally Section
8 concludes the paper.

2 Related Work
TCP over wireless cellular networks has been an active re-
search topic. Balakrishnan et al [2] summarized such TCP
optimization techniques. The focus of these TCP designs
over the single-hop wireless link is to make random wireless
channel errors transparent from TCP. If IEEE 802.11 proto-
col is used in such wireless cellular networks, channel-error
induced losses would not be a severe issue since seven link-
layer retransmissions can hide most of such channel errors.
We study TCP performance in a different wireless network
setting with multihop wireless channel.

Holland et al. [3] investigate the effect of mobility-induced
link breakage of wireless ad hoc networks upon TCP perfor-
mance. The focus of their study is on the interaction between
DSR routing dynamics and TCP window adaptation. Since

most packet losses are due to node mobility, congestion con-
trol mechanisms of TCP should not be applied to such loss
events. Studies in [15][17][18][19] mainly address the is-
sue of congestion detection in improving TCP over mobile
ad hoc networks. In particular, [15][17][19] use end-to-end
measurements to detect whether the packet losses are due to
congestion or non-congestion conditions. In [18] the network
conditions are detected by ICMP (destination unreachable)
and ECN messages based on the feedback of the intermediate
nodes. In [20], Sundaresan et al. also uses the intermediate
node’s feedback to decide the sending rate and retransmis-
sions. In this paper, we study the interaction of TCP and
the link layer of a static ad hoc network. We show that even
without mobility induced packet losses, TCP performance is
still sub-optimal. This is because TCP can not detect the op-
timal operating point of the underlying ad hoc network by its
current congestion control schemes.

Gerla et al [6, 7] study the impact of TCP ACK on TCP per-
formance, and the effect of unfairness and capture effect by
the backoff mechanisms in CSMA and FAMA. TCP is ob-
served to have very small throughput when it traverses mul-
tiple wireless hops with a window size larger than 1 packet.
The authors call for the introduction of link-layer ACKs to
help reduce packet drops. Our study shows that even though
link-layer ACKs are implemented in IEEE 802.11, TCP per-
formance still suffers from performance degradation due to
link-layer contentions. Two recent papers [22][21] study the
fairness issue of multiple TCP flows over pure and hybrid ad
hoc networks. Xu et al. [22] propose RED dropping in a lo-
cal network neighborhood based on ideal and busy time slot
measurements. Our work is different in three aspects. First,
our focus is not fairness, but to improve the bandwidth effi-
ciency of TCP by letting TCP detect an operating point that
enables maximum spatial reuse of the underlying ad hoc net-
work. Second, [22] measures the neighborhood contention
level by monitoring the idle and busy time slots. Local ob-
servation of idle slots may not be accurate enough since it
depends on the ongoing traffic statistics. We make use of the
contention drops at the link layer to gauge the neighborhood
congestion level. Due to hidden terminal effects, contention
drops at a local node also reflect traffic load at the neighbor-
hood areas. Finally, our design does not incur the message
exchange overhead of [22].

Using pacing as a method of congestion control in packet ra-
dio networks has been proposed in [23]. However, pacing
in [23] resembles the backoff mechanism which has already
been adopted in IEEE 802.11 protocol. In our paper, pacing
is different with the standard backoff mechanism, and is pro-
posed specifically to reduce the hidden terminal problem.
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Figure 1: Location-dependent contention and spatial channel reuse. 8-hop chain topology. H is a hidden terminal, and C is
an exposed terminal for transmission E→F. For optimal spatial channel reuse and maximum end-to-end throughput between A
and I, three sets of nodes (i.e. {AE}, {BF}, {CG}, and {DH}) transmit alternatively.

3 Link-layer Contention and Spatial
Channel Reuse

We consider a stationary, multihop wireless network using
IEEE 802.11 distributed coordination function (DCF) [1]. A
single wireless channel is shared among all nodes in the net-
work. Only receivers within the transmission range of the
sender can receive the packets. In IEEE 802.11 DCF, each
packet transmission is preceded by a control handshake of
RTS/CTS messages. Upon overhearing the handshake, the
nodes in the neighborhood of either the sender or the re-
ceiver will defer their transmissions, and yield the channel
for subsequent DATA-ACK transmissions. Since we study
a stationary network, we do not consider packet loss due to
routing breakage.

In this paper, we assume that multi-hop contention, i.e., due
to hidden/exposed terminal problem [9], is the main source
for packet losses. Note that packets can also get dropped
due to out-of-band channel errors. In IEEE 802.11 networks,
however, the retransmission mechanism hides most uncor-
related channel noises for non-broadcast traffic. [24] re-
ported that 1-hop unicast packets losses seen by the higher
layers were indeed very low with the link level retransmis-
sion mechanism.

A hidden terminal is a sender in the neighborhood of the re-
ceiver of another on-going transmission, but out of the trans-
mission range of the sender. Because it may not receive the
receiver’s CTS due to various reasons such as collisions, a
hidden terminal may disrupt the on-going transmission by
initiating another transmission. On the other hand, an ex-
posed terminal is a potential receiver in the neighborhood of
the sender of another on-going transmission. It cannot re-
ceive or respond to another sender’s RTS. According to the
IEEE 802.11 protocol, a sender drops the packet after retrans-
mitting DATA four times without receiving an ACK, typi-
cally caused by hidden terminals. Besides, a sender drops
the packet after sending the RTS message seven times with-
out receiving CTS, typically caused by exposed terminals.
We illustrate the hidden/exposed terminal problem in Figure
1. In Figure 1, two adjacent nodes are 200m apart. The trans-
mission range of a node is set to 250m, the carrier sensing
range is 550m, and the interference range is 550m. In this

example, node H is a hidden terminal of the on-going trans-
mission E→F. Node H cannot decode F’s CTS since it is out
of the 250m transmission range. Besides, H cannot sense
E’s DATA transmission since E is out of H’s 550m carrier
sensing range. Therefore, node H may transmit to to another
node, say node I, at any time, disrupting the on-going trans-
mission E→F. If the DATA transmission between E and F is
corrupted four times in a row, node E will drop the packet.
On the other hand, node C is an exposed terminal since it is
within the 550 carrier sensing range of the transmitting node
E. Node C cannot respond to the RTS message from another
node, say B. After seven unsuccessful RTS retries, node B
will drop the packet.

The location-dependence of contention also allows for spatial
channel reuse in a multihop wireless network. Specifically,
any two transmissions that are not interfering with each other
can be scheduled simultaneously. In Figure 1, A→B and
E→F can transmit concurrently, reusing the shared wireless
channel. Spatial channel reuse can greatly improve the net-
work throughput, especially in a large network that spreads a
wide area.

4 TCP Window Size and Throughput
In this section, we examine the relationship between TCP
window size and throughput in multihop wireless networks
using various configurations including chain, grid, cross and
random network topologies. Our analysis and simulations
show that excessive packets in flight (or equivalently, large
TCP congestion window size), can only degrade spatial chan-
nel reuse and decrease TCP throughput. In fact, the through-
put decrease can be as much as 30% in our simulated sce-
narios. We derive the optimal TCP window sizes at which
TCP achieves maximal throughput in simple scenarios. The
simulation results for 7-hop chain topology are also verified
with real experiments.

4.1 Chain topology

We start with the chain topology where packets originate at
the first node and are forwarded to the last node. In gen-
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Figure 2: TCP achieves highest throughput with window size around 3 in a 7-hop chain. Left: throughput of a single TCP with
different packet sizes. Middle: comparisons between ns-2 simulations and testbed experiments with different maximum TCP
window sizes. Single TCP, packet size 1460B. Right: TCP optimal window size in chain topologies of different lengths.

Chain length (hops) 4 7 10 16 48
Queue size deviation 1.45 1.31 1.23 1.10 1.05

Table 1: Deviation of queue lengths. Chain topologies of
different lengths.

eral, the chain topology represents the packet forwarding
path generated by a minimum-hop routing protocol such as
DSR [13] and AODV [14].

In a chain topology, the successive transmissions of even a
single TCP flow interfere with each other as they move down-
stream towards the destination, resulting in link-layer con-
tention and packet drops. Consider the chain in Figure 1 with
settings described in Section 3. It is easy to see that nodes A
and E, spaced 4-hop away, can transmit simultaneously. For
an h-hop chain, the maximum number of simultaneous trans-
missions is upper bounded by h

4 , at which maximum spatial
channel reuse is achieved. Because IEEE 802.11 MAC with
RTS-CTS-DATA-ACK sequence enforces stop-and-wait for
each packet, the pipe size over each hop is 1 packet regardless
of the link bandwidth or delay. The total pipe-size over the
entire packet forwarding path is therefore h

4 . Consequently,
TCP achieves the highest throughput with its window size
being h

4 for a h-hop chain, assuming ideal scheduling and
identical packet size. If the TCP window size is below this
value, it tends to under-utilize the channel; if it is larger, it
does not further increase the channel utilization. In fact, as
we will show next, it reduces TCP throughput.

The above analysis matches our simulations and experi-
ments, where a perfect scheduler is not available. To ob-
tain the maximum TCP throughput given a chain of specific
length, we vary the maximum TCP window size MaxWin at
the sender1 from 1 to 32 packets. At each MaxWin setting,

1This is equivalent to enforcing flow control in TCP, where MaxWin is
the advertised receiver window size.

MaxWin (packet #) 1 2 4 8 16 32
Avg. TCP wnd size 1 2 3.9 7.1 9.2 9.6

Table 2: Average TCP window size w.r.t. different MaxWin’s
in 7-hop chain.

we run a TCP flow for 300 seconds and measure the achieved
throughput. The MaxWin settings at which TCP achieves
the maximum throughputs (i.e., W ∗) are plotted in Figure 2
(Right) for chain topologies of different lengths. The figure
shows that W ∗ and h

4 match reasonably well, particularly
for longer chains (h > 20). For short chains, the simulation
value is one or two packets larger than h

4 . The reason is that
TCP packets in flight do not distribute evenly among nodes.
As the chain becomes longer, the uneven packet distribution
(or equivalently the deviation of queue sizes at intermediate
nodes) tends to become smaller, as shown in Table 1.

The result of W ∗ = h
4 is independent of packet sizes as long

as sizes of successive packets of the TCP flow are identi-
cal. Figure 2 (Left) shows that W ∗ is identical with differ-
ent packet sizes of 576B, 1KB, and 1460B. However, the
throughput achieved by TCP is different due to different
IEEE 802.11 MAC overhead.

If we leave the TCP window size unbounded, we observe
that the throughput decreases compared with the maximum
achievable value. Figure 2 (Left, Middle) shows that the
throughput decrease is about 4% in a 7-hop chain. As the
chain grows longer, the observed throughput decrease can be
as high as 10%. Table 2 shows that for MaxWin unbounded
(bounded to 32), the average TCP sender window size stabi-
lizes at around 9∼10 packets in a 7-hop chain, more than 4
times W ∗ ≈ 2. As we will show in Section 4.2, the through-
put decrease for TCP flows with excessive window sizes is
more significant in complex topologies. In random and grid
topologies the throughput decreases as much as 15% to 21%.
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Figure 3: Complex topologies. Distance between neighboring nodes is 200 meters. Left: cross topology with 13 nodes and 2
TCP flows. Right: 13x13 grid topology with 4, 8, 12 TCP flows.

As a rough check on the above simulations, Figure 2 (Mid-
dle) shows results measured in a testbed. The experiments
were configured to mimic the simulation parameters used in
Figure 2 (Left). We use Lucent ORiNOCO wireless cards,
operating in the ad-hoc mode at 2Mbps. Eight notebooks
form a 7-hop chain network and only two neighboring nodes
are within the transmission range. Manual routing is used.
The average difference between the measured TCP through-
put and the simulated results is less than 10%. More impor-
tantly, the W ∗ of the simulations and experiments match per-
fectly well. It shows that the simulations are accurate enough
to model the reality.

4.2 Complex topologies and flow patterns

We extend our study to scenarios of multiple TCP flows and
more complex topologies including cross, grid and random
topologies. We keep the simulation parameters the same as
that in Section 4.1 unless explicitly specified. In all cases, our
observation shows that there exists a window size for TCP to
achieve its highest throughput, and TCP in general experi-
ences 15% to 21% decrease from the maximum achievable
throughput.

Cross topology In the cross network topology shown in
Figure 3, we run two TCP flows: one from node 0 to node
6 and the other from node 7 to node 12. Table 3 shows that
W ∗ for each flow is 2, but our measured aggregate TCP win-
dow is 12 packets at steady state. 20% throughput decrease
is observed.

Grid topology Figure 3 shows a 13x13 grid topology. We
run 4, 8 and 12 TCP flows, respectively. In each case, half of
the TCP flows go horizontally and the other half go vertically,
spaced evenly. The results are summarized in Table 3. In all
cases, the measure TCP window sizes are significantly larger
than W ∗, with throughput decreases up to 21% in the 12-flow

case.

Random topology We also run extensive simulations with
random network topologies generated by the setdest tool
in ns-2 distribution. We place 200 nodes uniform-randomly
in a rectangular area of 1000m×2500m. There are 20 TCP
flows with their sources and destinations randomly chosen.
In our simulations we still observe the existence of a TCP
window size at which the maximum aggregate throughput is
achieved. TCP throughput suffers up to 15% reduction from
the maximum achievable throughput, as shown in Table 3.

4.3 Summary

All our simulations and analysis confirm that for a given
topology and traffic pattern, there exists a window size W ∗

at which TCP achieves the highest throughput through max-
imum spatial channel reuse. W ∗ is a function of the number
of hops the TCP flow traverses, but remains independent of
the bandwidth or delay at any intermediate node. However, if
we let TCP window MaxWin grow unbounded as in the nor-
mal case, a common observation for all examined topologies
and flow patterns is that TCP throughput decreases by 4% to
21%.

5 Packet Loss for TCP Flows in Mul-
tihop Wireless Networks

This section studies why TCP throughput decreases at win-
dow sizes larger than W ∗ and TCP grows its window size
beyond W ∗. We start with the examination of the causes of
packet loss in multihop wireless networks. Our simulations
show that link-layer contention induced packet drop domi-
nates, while buffer overflow is almost never experienced by
TCP flows in typical multihop wireless networks. Since the
number of contending nodes for the shared channel increases

5



Topology Flow # Maximum Measured Optimal Avg. Measured
Throughput (Kbps) Throughput (Kbps) Win Size (W ∗) Win Size

6-hop Chain 6 298 272 2 22
7-hop Chain 3 255 215 2 16

13-node Cross 2 248 203 4 12
169-node Grid 4 287 241 8 14
169-node Grid 8 957 824 8 19
169-node Grid 12 872 690 8 26

200-node Random 20 1,196 1,015 - -

Table 3: TCP throughput and window size. The data for TCP throughput and window sizes are the aggregation of all flows in
topology.

as the number of in-flight packets increases, a large TCP win-
dow size leads to higher degree of link-layer contention and
more packet drops. Therefore, TCP throughput decreases
once its window size goes beyond W ∗. We finally model
the probability of link-layer contention induced packet drop
to show that it is insufficient to stabilize the TCP window
size at the desired value W ∗. The analysis forms the foun-
dation for potential improvement, to be presented in the next
section.

5.1 Packet loss in multihop wireless networks

In the wired Internet, packet losses are mainly due to buffer
overflows at the bottleneck router. In a stationary IEEE
802.11 multihop wireless networks, packet loss is mainly
caused by either buffer overflows or link-layer contentions
due to hidden/exposed terminals (Section 3)2.

A detailed analysis of our simulations shows that almost all
packet loss is due to link-layer contentions. Packet loss due
to buffer overflow is rare given a reasonable buffer size at
each node, e.g., 20 packets. For example in the chain topol-
ogy of Figure 1, the maximum queue size is 16 packets at
node E, as shown in Table 4. The average queue sizes are
all less than 2 packets. In fact, in a 300-second simulation
run, all 165 TCP packet drops out of the total 12349 trans-
missions are due to link-layer contention. None is caused by
buffer overflows.

We also conducted extensive simulations using different flow
layouts and more complex network topologies including
grid, cross, and random topologies. The simulation results
show that, buffer overflows are rare, and most packet drops
experienced by TCP flows are due to link-layer contentions.
Packet loss in multihop wireless networks is clearly different
from that in the wired Internet. This result implies that TCP
congestion control, designed to adapt to the packet loss due
to buffer overflow in the wired Internet, may not work well in
multihop wireless networks where a different type of packet

2Packet loss due to channel errors will be detected by IEEE 802.11 link-
layer acknowledgment and recovered by retransmissions.

Node ID A B C D E F G H I
Max. Q. Size 9 11 13 14 16 15 12 10 6
Avg. Q. Size 0.4 0.8 1 1.9 1.9 1 0.9 0.7 0.3

Table 4: Queue sizes in packets. No packet drop due to buffer
overflow.

loss dominates.

5.2 TCP window size and link-layer con-
tention level

The level of link-layer contention increases as the number of
nodes that contend for the shared wireless channel increases,
as all possible scenarios of hidden/exposed terminals can
happen (see Section 3). Although the queue length for each
node is small, the link-layer contention and the consequent
packet drop probability will be large as long as a large num-
ber of nodes have backlogged queues. On the other hand, the
larger the TCP window size, the more packets in flight and
the more nodes are backlogged, leading to a higher level of
link-layer contention and packet loss. Figure 4 shows simula-
tions of single TCP or UDP flow over a 7-hop chain. The left
figure plots the link drop probability as a function of the TCP
window size. The figure shows that contention drop probabil-
ity gradually increases from 0% upto 5% as more packets are
injected into the chain. To better understand the general case
we also simulated CBR/UDP flows with various offered load.
As we can see in Figure 4 (Right), there are two knee points
on the curve of offered-load versus dropping-probability. Be-
fore the first knee point, the probability of packet drop due to
link-layer contention is nearly zero; after the second knee
point, the probability saturates at around 10%. The probabil-
ity monotonically increases between those two knee points.

Simulation results with more complex topologies, including
cross, grid and random topology, also confirm that if we mea-
sure the overall contention packet drop probability with re-
spect to the aggregate traffic load level, the curve matches
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Figure 4: Probability for link-layer contention packet drops for TCP and UDP flows. Left: a single TCP flow over a 7-hop chain.
Contention drops experienced by TCP flow w.r.t. window sizes. Right: A single UDP flow over a 7-hop chain. Contention
drops experienced by UDP/CBR flow w.r.t. offered load.

Figure 4 (Right) with small difference in absolute probabil-
ity values.

The two knee points in Figure 4 (Right) have clear physical
meanings. The first one corresponds to the TCP window size
at which the maximum throughput can be achieved through
maximum spatial channel reuse, i.e., W ∗. The second one
corresponds to the maximum contention level when all nodes
are backlogged. TCP window size cannot stay around W ∗,
i.e., the first knee point, since the packet dropping probability
is around zero.

5.3 Probability of link-layer contention in-
duced packet drops

5.3.1 A Model for Hidden Terminal Effect

We now consider a generic ad hoc network setting. A node
is either in the backoff state, or in the process of RTS/CTS
handshake and DATA transmission. Note that the RTS/CTS
handshake does not guarantee an eventual successful DATA
transfer. At the steady state, for a given time slot, we define
the probability that a node u initiates RTS for flow f as CSf ,
and the probability that a subsequent successful DATA trans-
fer for flow f as Bf . Note that they are expected value and
provide a description of the average behavior of flow f in the
steady state.

A successful DATA transfer of flow f requires the sender to
initiate the flow first. That is, the sender has to sense an idle
channel before its RTS initiation. In addition, in order for the
RTS/CTS handshake to be successful, the receiver must not
be hidden by signals from terminals out side of the sender’s
carrier-sensing range. For example, in Figure 1, node D is
the hidden terminal of flow A to B. Let Hf be the steady
state probability that a flow f is hidden by some terminals,
then Bf = (1−Hf ) · CSf .

Therefore, in steady state, we have

Hf = 1−
Bf

CSf

(1)

Without any loss of generality, we define the term Bf

CSf
as

the carrier sensing efficiency of the sender for flow f , which
is just the conditional probability of an eventual successful
DATA transfer of flow f given that f has been initiated. In-
tuitively, the hidden terminal events are caused by the ineffi-
ciency of carrier-sensing at the sender side.

From the Figure 1, a successful DATA transfer requires idle
channel at the areas of both sender’s and receiver’s neighbor-
hood while the RTS initiation only requires idle channel at
the sender side.

The Steady State Contention Drop Probability In order
to relate link layer packet drop with the hidden terminal ef-
fect, we note the fact that in 802.11 protocol the packet is
dropped after r unsuccessful RTS initiations where r is the
MaximumRetryLimit parameter. We consider the dis-
crete Markov model of retrying process in steady state in
Figure 5, where Hf is the long term failure (hidden) prob-
ability for each RTS initiation. The states represent the num-
ber of failed initiations the sender has attempted for a given
flow f . Each transition is triggered by an RTS initiation. For
each initiation, the packet either goes through with probabil-
ity 1−Hf or fails with Hf . We are interested in the dropping
probability pr, the probability at state r.

By considering state 0, we have p0h = (1−Hf ) ·
∑r−1

i=1 pi +
pr, and for every other state, it holds that pi = pi−1 ·Hf =
p0 · h

i i = 1, 2, . . . , r. Based on the unity condition, we
have

pr =
1−Hf

1−Hr+1
f

Hr
f

Since pr is the probability measure based on the number of
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Figure 5: the diagram of the Markov Chain for calculating
the packet drop probability from the hidden probability.

RTS initiations, to convert it into time slots, we note that the
expected time slots for each initiation is 1/CSf . And the
average packet loss probability Lf for a given time slot in
steady state is

Lf = pr · CSf =
1−Hf

1−Hr+1
f

Hr
f · CSf (2)

5.3.2 Loss/Load Properties in Random Topology

We have derived the per-flow packet drop probability. We
now relate it with the network load in a random topology,
in which multiple flows are randomly distributed. Based on
the previous observation of the loss/load curves in Figure 4,
we define the traffic load as number of competing nodes (or
the backlogged nodes) among the network at a given time
instant.

In the following, we first represent CSf and Bf in terms of
network capacity and load from the perspective of the global
spatial reuse. Then we apply them to (1) and (2) to derive
the steady state contention drop probability with respect to
the network capacity and load. We make two assumptions
here. First, We assume that the traffic is distributed within
the network in a purely random fashion. Specifically, for m
backlogged senders in the network, each node has an equal
backlog probability of m

|V | , where |V | denotes the total num-
ber of nodes in the network. Second, we assume that the
nodes are also randomly distributed in the network, i.e., for a
network covering an area of S, the expected space each node
occupies is S/|V |.

At the network level, the carrier sensing capacity,C∗, is de-
fined as the maximum number of concurrent RTS initiations
in the network without collisions; and the data forwarding
capacity, B∗, as the maximum number of concurrent suc-
cessful DATA transmissions. It is easy to see that we always
have C∗ ≥ B∗.

We consider the system in steady state. Given the global
backlog ρ, the average number of backlogged sender is
m = |V |ρ̄, where |V | is total nodes in network, and ρ̄ =
1

|V |

∑|V |
i=1 ρi. Since we assume these senders are evenly

distributed in the network, the expected area covered by

each node is S/m. In steady state, at a given time slot,
in order for all these nodes to initiate with RTS, the min-
imum spacing required is S/C∗. Therefore, on average,
c(m) = bm/d m

C∗
ec nodes among total m senders can ini-

tiate concurrently. Among them, b(m) = bc(m)/d c(m)
B∗
ec

will succeed in concurrent DATA transmissions. Therefore
for each flow f the carrier sensing probability is readily
given CSf (m) = c(m)

m
, and successful data forwarding

probability Bf (m) = b(m)
m

. From equation (1), we have

Hf (m) = 1− b(m)
c(m) for each flow. According to (2), per flow

loss probability is

Lf (m) =
b(m)/m

1− (1− (b(m)/c(m))r+1
·
(

1−
b(m)

c(m)

)r
(3)

In IEEE 802.11 networks, r = 7 for the RTS maximum retry
count.

For all the backlogged flows, the aggregated loss probability
among all a(m) initiated node is given by

L(m) = 1− (1− Lf (m))c(m) (4)

The following three properties characterize the behavior of
contention packet loss with the two threshold values of B∗

and C∗ defined as follows. In the random topology of N
nodes, B∗ denotes the maximum number of nodes that can
transmit their DATA packets concurrently without collision.
At this value, the network achieves highest channel spatial
reuse. Among N nodes, C∗ denotes the maximum number
of nodes that can initiate RTS messages, i.e., they perceive
clear channel through carrier sensing.

First consider the case when the network is underloaded:

Property 5.1 Denote the maximum number of nodes (that
can concurrently transmit DATA in the given topology) as
B∗. When the number of backlogged nodes m is smaller than
B∗, i.e., m < B∗, then packet drop probability Lf (m) ≈ 0.

The basic idea of the proof is as follows. Since m ≤ B∗, on
average all m nodes can transmit simultaneously. Therefore,
b(m) ≈ c(m) ≈ m in steady state. According to (3), the
drop probability over each link is Lf (m) ≈ 0. This means
that, as long as the network is underloaded, the link drop is
negligible.

In the second case when the number of backlogged nodes m
is larger than B∗, i.e., the network is overloaded, we have:

Property 5.2 When the network is overloaded (i.e., the num-
ber of backlogged nodes m is greater than B∗), the link drop
probability Lf (m) increases as m increases.

We still use (3) to see why the above is true. In this case, all
m nodes can successfully initiate an RTS message but only
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Figure 6: Comparison between link drop and RED

B∗ nodes can transmit their DATA without collisions. That
is, b(m) ≈ B∗ but c(m) ≈ m. Therefore, B∗ < m < C∗. It
is easy to see that Pl(m) is an increasing function of m since
dLf (m)

dm
> 0. This shows that link drop probability increases

as the network load (as expressed by m) further increases.

Finally, we look at the third case. As the network load further
increases, the link drop probability starts to saturate:

Property 5.3 Once network is heavily loaded in the sense
that m > C∗, then the link drop probability Lf (m) remains
stable in the saturated state.

In this case, among the m nodes, only C∗ out of c(m) nodes
can initiate RTS, and only B∗ nodes can transmit DATA
packets without collisions. Therefore, c(m) ≈ C∗ and
b(m) ≈ B∗. Then long term Lf (m) remains statistically
flat according to (3).

5.4 Discussions

Why TCP Suffers from Throughput Decrease Now we
use the graceful contention drop behavior to explain why the
standard TCP suffers from throughput decrease described in
Section 4. TCP achieves highest throughput at the window
size W ∗ that maximizes spatial reuse. The analysis and sim-
ulations of Section 5.2 indicate that, the packet drop proba-
bility is close to 0 at window size W ∗. When the TCP win-
dow size grows beyond W ∗, the link drop probability starts
to increase gradually until it stabilizes around a small value
around 5% (Figure 4 Left). Such a small drop probability
is insufficient to keep TCP around W ∗. Instead, the aver-
age window size Wavg is much larger than W ∗. Thus, TCP
flows typically overload the ad hoc network and cause ex-
cessive collisions among competing wireless nodes. Having
too many packets in flight reduces the network’s bandwidth
capacity as much as 30% compared with its best operating
point [12].

Comparison to RED RED is a active queue management
protocol to be deployed in the Internet Gateways [10]. It
drops packet probabilistically according to the queue length
at the local buffer. It is interesting to explicitly compare the

contention packet drop with the RED drop behavior (Fig-
ure 6).

Unlike RED, contention drop is a naturally built-in mecha-
nism and is not specifically tuned for any higher-layer pro-
tocol. It is not useful for TCP in its current form unless
the loss/load curve is appropriately tuned. In particular,
contention drop may happen before the network capacity is
reached, due to the randomness in channel contention; and
the maximum drop probability is only 5%, which is too small
compared with the standard parameters of RED.

However, there exists an important difference that makes
contention packet drop an attractive mechanism in the ad hoc
network. As shown in Figure 6, RED drop probability re-
flects the local queue size, but contention drop probability
reflects the total number of backlogged nodes within the net-
work, which is a better way to indicate the global load level,
a network-wise operating point.

In the next section, we present two simple link-layer de-
signs to make such contention packet drops beneficial to TCP
flows.

6 TCP Performance Improvement
with LRED and Adaptive Pacing

This section describes two link-layer techniques to improve
TCP performance in multihop wireless networks. The Link
RED (LRED) technique shapes the curve of packet loss prob-
ability versus link-layer contention to help TCP stabilizing
its window size around W ∗ for maximum throughput. In
addition, Adaptive Pacing aims at improving spatial chan-
nel reuse through better coordination among contention for
channel access. The combination of these two techniques is
able to improve TCP throughput by as much as 30%.

6.1 Link RED

The analysis of Section 5.2 shows that the IEEE 802.11 in-
herent link-layer packet dropping probability is too small to
stabilize the TCP window size around W ∗. The main idea
behind our Link-layer Random Early Dropping (LRED) is
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to control the TCP window size by tuning up the link-layer
dropping probability according to perceived channel con-
tentions. Similar to the RED algorithm with a linearly in-
creasing drop curve as the queue size exceeds a minimum
value min th, LRED increases its packet dropping proba-
bility when the link-layer contention level, measured by the
retransmission counts, exceeds a minimum threshold.

In LRED, the link layer maintains a moving average of the
number of packet retransmissions. The head-of-line packet is
dropped/marked with a probability based on this average re-
transmission count. At each node, if the average retransmis-
sion count is small, say less than min th, the head-of-line
packets are transmitted as usual. When the average retrans-
mission count becomes larger, the dropping/marking proba-
bility is set as the minimum of the computed dropping prob-
ability and a upper bound max P . The LRED pseudo-code
is shown in Algorithm 1.

LRED integrates naturally with ECN-enabled TCP flows. In-
stead of blindly dropping packets, we can simply mark them
at the link layer, and thus allow ECN-enhanced TCP flows to
adapt their offered load without losing any packets. TCP per-
formance is therefore improved at the cost of a slightly more
complex link-layer design.

To summarize, LRED is a simple mechanism that accom-
plishes three goals. First, by tuning the loss curve, it serves
as congestion signals to elastic flows such as long-term TCP
to detect the proper offered load for the underlaying network.
Second, by dropping packets more aggressively, it enables
TCP to adapt its window size around W ∗ where maximum
spatial channel reuse and minimum channel contention are
achieved. Finally, LRED improves the fairness among mul-
tiple competing flows, since it reduces the channel capturing
effect that is observed in [7].

Algorithm 1 L-RED: LinkLayerSend(Packet p)
Require: avg retry is the average MAC retries for each

packet
1: if avg retry < min th then
2: mark prob← 0
3: pacing ← OFF
4: else
5: mark prob = min{avg retry−min th

max th−min th
, max P}

6: set pacing ON
7: end if
8: mark p with mark prob
9: MacLayerSend(p, pacing)

10: retry = GetMacRetries()
11: avg retry = 7

8avg retry + 1
8retry
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Figure 7: LRED stabilizes TCP window size around the op-
timal value. The Time distribution of instantaneous win-
dow size becomes narrower and sharper compared with TCP
NewReno.

6.2 Adaptive Pacing

In the current IEEE 802.11 protocol, a node is constrained
from contending for the channel by a random backoff period
plus a single packet transmission time that is announced by
its immediate downstream node. However, the exposed ter-
minal problem (see Section 3) still exists due to lack of co-
ordination between nodes that are two hops away from each
other. Adaptive pacing solves this problem without incur-
ring nontrivial modifications to the IEEE 802.11 or a second
wireless channel [8]. The basic idea is to let a node further
back-off an additional packet transmission time when neces-
sary, in addition to its current deferral period (i.e. the ran-
dom backoff, plus one packet transmission time). This extra
backoff interval helps in reducing contention drops caused
by exposed terminals, and extends the range of the link-layer
coordination from one hop to two hops along the packet for-
warding path.

When working together with LRED, adaptive pacing is en-
abled by LRED only when a node finds the average retrans-
mission count be more than min th. The pseudo-code is
shown in Algorithm 2.

Algorithm 2 Adaptive Pacing
Require: extra Backoff = 0

1: if received ACK then
2: random Backoff ← ran backoff(cong win) {DATA

transmission succeeded. Setup the backoff timer}
3: if pacing is ON then
4: extra Backoff = TX Time(DATA) + overhead
5: end if
6: backoff ← random Backoff + extra Backoff
7: start backoff timer
8: end if

10
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Figure 8: Adaptive Pacing increases TCP throughput in a 7-hop chain. Left: Throughput gain with and without adaptive pacing.
Middle: Adaptive pacing reduces link-layer contention induced packet drops. Right: Adaptive pacing slightly reduces RTT.

6.3 Performance Evaluation

In this section, we first evaluate the TCP throughput gain us-
ing LRED and Adaptive Pacing individually. We then apply
both techniques and show the throughput gain and fairness
among multiple TCP NewReno flows in chain, cross, and
grid topologies.

6.3.1 LRED

We first use the 7-hop chain to evaluate whether LRED is
able to stabilize the TCP window around the optimal point
W ∗. We run the simulations where the maximum window
size set as 32 packets, with and without LRED. The time
distribution of different window sizes is shown in Fig 7. As
we can see, with LRED the TCP flow spends most of the time
with window size W ∗ ∼ 3, while the normal TCP grows its
window much larger with an average size around 10 packets.

6.3.2 Adaptive Pacing

We use the same 7-hop chain topology to evaluate the ef-
fectiveness of adaptive pacing in terms of throughput gain,
link-layer contention induced packet drops and TCP round
trip time (RTT). Fig 8 shows the simulation results for TCP
NewReno flows with and without pacing. With adaptive pac-
ing, TCP is able to achieve up to 10% throughput gain at the
window size W ∗. The figure also shows packet drop counts
and indicates that at a given average window size, pacing has
significantly reduced packet drops due to contention and also
slightly reduces RTT as shown by the Figure 8 (Right).

Using adaptive pacing alone can not help TCP window size
stays around W ∗, as shown in the Figure 8 (Left). When
the MaxWin is set to 32, the average window achieved is as
large as 26, even larger than the case where adaptive pacing
is not used (see Table 2 in Section 4). The reason is that adap-
tive pacing reduces the link-layer contention induced packet
drops, further boosting the TCP window size.

TCP NewReno TCP NewReno
w/LL w/LL+LRED+Pacing

flow 1 244 Kbps 166 Kbps
flow 2 0 Kbps 153 Kbps

Aggregate 244 Kbps 319 Kbps
Fairness 0.5 0.9983

Table 5: Throughput and fairness comparison between
NewReno and NewReno+LRED+Pacing in cross topology

6.3.3 LRED+Pacing

Chain topology Figure 9 plots the results for chain topolo-
gies of various lengths, with a single TCP flow and six TCP
flows. In all cases, we observe that LRED+pacing enhanced
link layer is able to increase TCP throughput up to 30%,
while LRED stabilizes TCP window size close to the opti-
mal value. For chains longer than 15 hops, our techniques are
able to achieve a throughput gain of 10%∼30%. The longer
the chain, the better the throughput improvement. This is
because longer chain leaves a larger room for the adaptive
pacing mechanism to optimize spatial channel reuse.

Cross Topology In the 13-node cross network topology
we run two TCP flows as shown in Figure 3 (Left). Table
5 records the throughput and fairness gains for both flows.
The fairness results are computed using the fairness index
(
∑

n

i=1
xi)

2

n·
∑

n

i=1
x2

i

, as defined in [11]. These results show that our

design not only increases aggregate throughput, but also im-
proves fairness of both flows. On the other hand, TCP
NewReno over the unmodified link layer shows large un-
fairness between these two flows. The reason is that IEEE
802.11 favors the flow which captures the wireless channel
around the crossing point, as also observed in [6, 7].
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Figure 9: Performance improvement for TCP NewReno flows in a h-hop chain topology (h = 3, . . . , 48). Left: single flow;
Middle: aggregate throughput of 6 flows; Right: average window size.

TCP NewReno TCP NewReno
w/LL w/LL+LRED+Pacing

flow 1 532 Kbps 85512 Kbps
flow 2 126229 Kbps 90459 Kbps
flow 3 115554 Kbps 70334 Kbps
flow 4 1608 Kbps 47946 Kbps

Aggregate 242923 294251
Fairness 0.51 0.95

Table 7: Throughput and Fairness Comparisons between
NewReno and NewReno+LRED+Pacing. 4 flows in 13×13
Grid.

Grid Topology Finally, we study the grid network topol-
ogy with 2, 4, 8 and 12 flows, as shown in Figure 3 (Right).
Aggregate throughput and fairness results are recorded in ta-
ble 6, while more details for the cases of 4 flows are provided
in table 7. Again, we are able to achieve about 5%∼10%
throughput gain in all cases, while significantly improving
the fairness index.

7 Discussions
This section further discusses three important issues of the
previous study.

Other TCP variants Our analysis in Sections 4 and 5 seem
to imply that TCP Vegas, which gauges the throughput be-
fore increasing its congestion window size, may work better.
However, our experiments show that TCP Vegas and TCP
NewReno perform comparably in short packet forwarding
paths (≤ 6 hops), and TCP Vegas performs 10%∼20% worse
than TCP NewReno in longer packet forwarding paths (≥ 9
hops). The main reason is that TCP Vegas keeps its average
window size too small (e.g., about 3 packets even in a 16-
hop chain). In our simulations we use TCP NewReno, the
best existing TCP variants, to compare with.

Variable packet size In most analysis and simulations pre-
sented in this paper, we assume identical packet size. If
the packet length varies within a flow or among flows, our
simulations show that these results still hold: there still ex-
ists a TCP window size W ∗ (in bytes instead of in packets)
that achieves maximal throughput, and TCP grows its win-
dow size much larger than W ∗ due to insufficient link-layer
packet dropping probabilities.

Revisiting the packet loss behavior during network over-
load In Section 5, we observe that almost all packet losses
are due to link layer contention rather than buffer overflow in
a typical network setting in which each node has a nontriv-
ial buffer size allocated for the TCP flow. In this section, we
further examine this issue. Our interest is on whether buffer
overflow will ever happen at all and under what conditions
buffer overflow may potentially dominate the packet loss.

We start our experiment with a single TCP flow in an 8-hop
chain. The traffic source for TCP is a large file; this emulates
an FTP connection. We run the 300-second TCP connection
multiple times with buffer size of all nodes varying from 2
packets to 19 packets. In the presence of packet drop events,
we examine the detailed ns-2 traces to find out the cause for
packet losses.

Figure 10 plots the number of each packet loss type as a func-
tion of buffer size in each node. It shows a clear transition
point (around buffer size of 10 packets) in the dominance of
the two loss types. The figure shows that the loss almost
switches from buffer drops to link drops if we change the
buffer size from 5 packets to 15 packets. When the buffer size
is very small (smaller than 5 packets), buffer overflows domi-
nate and contention loss is almost negligible; when the buffer
size grows to 15 packets or larger, link-layer contention loss
dominates and buffer drops almost vanish. When the buffer
size is about 10 packets, both loss types contribute roughly
equitable drops. The result is not surprising since the larger
buffer absorbs more TCP incoming packets and reduces the
probability of overflow drops. An interesting observation,
shown in Figure 10, is that even though the buffer size at
each intermediate node has increased to 20 packets, the aver-
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NR throughput NR Fairness LRED+ Aggregate LRED+ Fairness
2 flows 203K bps 0.502 252K bps 0.921
4 flows 241K bps 0.508 294K bps 0.952
8 flows 824K bps 0.524 963K bps 0.527

12 flows 690K bps 0.455 880K bps 0.56

Table 6: Aggregate throughput and fairness comparison between NewReno (NR) and NewReno+LRED+Pacing (LRED+). 2,
4, 8 and 12 flows in 13×13 grid
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The contention loss still dominates the packet losses.

age number of packets in each node buffer is about 1.2 pack-
ets at most. This indicates the average buffer occupancy is
quite low, so is its standard deviation (Figure 10 Middle).
However, the maximal buffer occupancy of all nodes is very
high. This clearly shows that highly bursty packet transmis-
sions do happen though infrequently. Two reasons may cause
the bursty transmissions: TCP mechanism and 802.11 MAC
capture effect. TCP slow-start and the window mechanism
may lead to back-to-back transmissions. MAC capture ef-
fect [6] due to binary exponential backoff also incurs burst
transmissions over a link.

We now examine the case of multiple flows. Our interest is
on the loss behavior when there are a very large number of
TCP flows such that the buffer size (shared by all flows) at
an intermediate node is insufficient to accommodate in-flight
packets from all flows. Setting the shared buffer size to 50
packets at each node, we simulated a number of TCP flows,
ranging from 20 to 200, over an 8-hop chain and measured
the contention/overflow losses (Right of Figure 10). Concur-
rent flows are introduced with the same starting and ending
nodes in the chain topology. Compared with the left figure,
we observed that the buffer overflow losses increase signifi-
cantly. However, contention losses still dominate when less
than 80 concurrent flows are introduced. This is because that
during the period between network saturation (each node has
a queue size at least 1 packet) and the eventual buffer fill-up,
contention losses happen with a fixed probability. If this pe-

riod is sufficiently long, contention packet losses dominate.
As more and more concurrent flows are introduced, such a
buffer buildup period decreases. In addition, the interval be-
tween two overflow events also decreases. From the simula-
tion, the overflow losses become dominant when more than
100 concurrent flows are introduced.

The above simulations show that contention losses happen
before buffer overflow losses in most scenarios. In most
cases, they dominate the packet losses even though multiple
concurrent TCP flows are introduced.

8 Conclusion
Multihop wireless networks hold great promise in pervasive
computing and wireless sensor networks. TCP seems to be
the natural choice for reliable data delivery in such networks.
This paper systematically studies the impact of the multihop,
shared wireless channel on TCP performance. Our results
show that only when the buffer is unrealistically small, buffer
overflow induced packet drops dominate. In most scenarios
packet loss due to link-layer contention dominates. The link-
layer contention drop behaves like a RED gateway in terms
of graceful drops in the presence of network overload. How-
ever, the packet drop provided by link layer is insufficient to
keep TCP operating around the best throughput point. This
motivates us to design a Link RED which compensates the
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dropping probability. Through a combination of the LRED
and the adaptive pacing at the link layer we can achieve a
throughput gain up to 30% for TCP flows, while the TCP
semantics remain unchanged.
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