
DoS & DDoS in Named Data Networking
Paolo Gasti

School of Engineering and Computing Sciences
New York Institute of Technology

Email: pgasti@nyit.edu

Ersin Uzun
Palo Alto Research Center

Email: ersin.uzun@parc.com

Gene Tsudik
School of Information and Computer Sciences

University of California, Irvine
Email: gts@ics.uci.edu

Lixia Zhang
Computer Science Department

University of California, Los Angeles
Email: lixia@cs.ucla.edu

Abstract—With the growing realization that current Internet
protocols are reaching the limits of their senescence, several on-
going research efforts aim to design potential next-generation
Internet architectures. Although they vary in maturity and scope,
in order to avoid past pitfalls, these efforts seek to treat security
and privacy as fundamental requirements. Resilience to Denial-
of-Service (DoS) attacks that plague today’s Internet is a major
issue for any new architecture and deserves full attention.

In this paper, we focus on DoS in Named Data Network-

ing (NDN) – a specific candidate for next-generation Internet
architecture designs. By naming data instead of its locations,
NDN transforms data into a first-class entity and makes itself
an attractive and viable approach to meet the needs for many
current and emerging applications. It also incorporates some
basic security features that mitigate classes of attacks that are
commonly seen today. However, NDN’s resilience to DoS attacks
has not been analyzed to-date. This paper represents a first
step towards assessment and possible mitigation of DoS in NDN.
After identifying and analyzing several new types of attacks, it
investigates their variations, effects and counter-measures. This
paper also sheds some light on the debate about relative virtues
of self-certifying, as opposed to human-readable, names in the
context of content-centric networking.

Keywords: Future Internet Architectures; Content-Centric
Networks; Named Data Networking; Security; Denial-of-
Service.

I. INTRODUCTION

Today’s Internet is a unique and unprecedented global
success story. It serves as a means of disseminating enormous
(and ever-increasing) amounts of digital content. Since its
inception, the volume of data exchanged over the Internet has
witnessed exponential growth. However, core ideas behind the
design of today’s Internet were developed in the 1970’s, when
telephony – a point-to-point conversation between two entities
– was the only successful example of effective global commu-
nication technology. Moreover, original Internet applications
were few in number and modest in terms of bandwidth and
throughput requirements, e.g., store-and-forward email and
remote computer access.

The way people access and utilize the Internet has changed
dramatically since the 1970-s and, today, the Internet has to
continuously accommodate new services and applications as
well as different usage models. To keep pace with changes

and move the Internet into the future, a number of research
efforts to design new Internet architectures have been initiated
in recent years.

Named Data Networking (NDN) [22] is one such effort.
NDN is an on-going research project that aims to evolve it
into an architectural framework for the future Internet. NDN
is also considered an instance of the broader Information-
Centric (ICN) approach to networking. NDN explicitly names
content (data) instead of physical locations (hosts or network
interfaces) and thus transforms content into a first-class entity.
NDN also stipulates that each piece of named content must
be digitally signed by its producer. This allows for decoupling
of trust in content from trust in the entity that might store
and/or disseminate that content. These NDN features facilitate
caching of content to optimize bandwidth use and enable ef-
fective simultaneous utilization of multiple network interfaces.

DoS and DDoS. In recent years, denial of service (DoS)
and distributed denial of service (DDoS) attacks have become
more common and notorious. In the latter, the adversary
exploits a large number of compromised hosts (zombies), that
surgically aim their attacks at specific target(s). DDoS attacks
are generally easy to instantiate and require little technical
sophistication, and they are often very effective and difficult
to mitigate [2]. (Hereafter, we use the term DoS to indicate
both DoS and DDoS attacks.)

We believe that any new Internet architecture should (1)
be resilient to existing DoS attacks, or at least limit their
effectiveness, (2) anticipate new attacks that take advantage
of its idiosyncrasies, and (3) incorporate basic defenses in its
design.

To the best of our knowledge, there has been no systematic
assessment of how NDN fares with respect to DoS attacks.
We believe that such assessment is both timely and important.
This work tries to address these issues by analyzing the impact
of current DoS attacks on NDN, identifying new attacks
that rely on NDN features, and proposing countermeasures.
We emphasize that this paper should not be viewed as a
comprehensive treatment of DoS in NDN. Instead, it represents
a first step towards identifying DoS attacks, assessing their
impact and securing NDN against them.



Anticipated Contributions. As mentioned above, our main
goal is to identify potential DoS attacks against NDN. By
better understanding the nature and effects of these attacks, we
can begin to develop feasible and effective countermeasures.
Anticipated contributions are as follows:

• We discuss why DoS attacks effective in the current IP-
based Internet are largely ineffective against NDN.

• We identify two new types of NDN-specific DoS attacks:
interest flooding, and content/cache poisoning.

• We analyze the impact of several flavors of both attack
types and propose a set of potential counter-measures.

Organization: The rest of the paper is structured as follows:
Section II overviews NDN. We discuss how NDN copes with
existing DoS/DDoS attacks in Section III, and examine new
– NDN-specific – attacks in Sections IV and V. Section VI
summarizes related work. Finally, we conclude in Section VII.

II. NDN OVERVIEW

NDN [22], [16] is a network architecture based on
named content. A content name is composed of one or
more variable-length components. Component boundaries are
explicitly delimited by “/”. For example, the name of
CNN news content for May 20, 2012 might look like:
/ndn/cnn/news/2012May20. Large pieces of content can be
split into fragments with predictable names. Since NDN’s main
abstraction is content, there is no explicit notion of “hosts”,
albeit, their existence is assumed.

Communication in NDN adheres to the pull model: A
consumer requests content by sending an interest packet. If
an entity (a router or a host) can “satisfy” a given interest,
it returns the corresponding content packet. Interest and con-
tent are the only two types of packets in NDN. A content
packet with name X is never forwarded anywhere unless it is
requested by an interest for name X.

NDN routers include the following components:
• Content Store (CS), used for content caching and re-

trieval;
• Forwarding Interest Base (FIB), that contains a table of

name prefixes and corresponding outgoing interfaces;
• Pending Interest Table (PIT), a table containing currently

unsatisfied interests and corresponding incoming inter-
faces;

When a router receives an interest for name X and there are
no currently pending interests for X in its PIT, it forwards
the interest to the next hop, according to its FIB.1 For each
forwarded interest, a router stores some amount of state infor-
mation, including the name in the interest and the interface on
which it arrived.

Otherwise, if an interest for X arrives while there is already
an entry for X in the PIT, the router collapses the incoming

1The FIB of an NDN router is similar to that of an IP router, except that
it associates name prefixes (rather than IP prefixes) to outgoing interfaces.
Also, for a given name prefix a router’s FIB may contain multiple interfaces;
the NDN routers’ strategy module makes decisions on how to forward
interests according to the FIB and additional external information, such as
link congestion.

interest (and any subsequent interests for X), storing only the
interface on which it was received. When content is eventually
returned, the router looks up its PIT. If a PIT entry matching
the content name is found, the router forwards the content
out on all interfaces appearing in such entry. Additionally, it
flushes the corresponding PIT entry. If no matching PIT entry
is found, then the content is dropped.

Note that, content always follows, in reverse, the path rep-
resented by PIT entries in NDN routers. No other information
is needed to deliver content. In particular, an interest does
not carry a “source address”. Any NDN router can provide
content caching via its CS. Thus, content might be fetched
from any number of in-network router caches, rather than from
its original producer. As a result, unlike IP packets, an NDN
interest does not include a “destination address”.

NDN deals with content authenticity and integrity by mak-
ing public key signatures mandatory for all content. A signa-
ture binds content with its name, and provides integrity, origin
authentication and correctness no matter how, when or from
where it is retrieved. NDN does not mandate any particular
certification infrastructure, relegating trust management to
individual applications.

Content objects are named data packets. (We use the terms
content object and data packet interchangeably.) Fields of a
content object include [5]:

• Signature: public key signature (e.g., RSA or EC-
DSA) computed over the entire content packet, including
its name.

• Keylocator: references the key needed to verify the
content signature. This field can contain one of the
following: verification (public) key; certificate containing
verification key; or NDN name referencing verification
key.

• PublisherPublicKeyDigest: hash of the content
producer’s public key.

In addition to the name of requested content, an interest
carries several fields [6]. In this context, only the following
are relevant:

• PublisherPublicKeyDigest: optional field con-
taining the hash of the producer’s public key for the
requested content.

• Exclude: optional field specifying components that
should not appear in the name of content returned in
response to this interest.

• AnswerOriginKind: specifies whether the requested
content could be obtained from some routers or must be
generated by the producer.

• Scope: limits the number of hops an interest can prop-
agate. Scope 0 and 1 limit propagation to the originating
host; Scope 2 limits propagation to the first-hop NDN
router, etc.

III. NDN AND CURRENT DOS ATTACKS

We now examine some popular types of DoS attacks that
work against current TCP/IP-based Internet and assess their
putative effects on NDN.

2



Bandwidth Depletion. In this common DDoS attack,
adversary-controlled zombies flood their victims with IP pack-
ets in order to saturate the victims network or server resources.
The usual goal is to make the victims unreachable or disable
their services. Normally, such attacks are carried out via TCP,
UDP or ICMP and rely on sending a stream of packets to the
victim at maximum data rate.2 Similar attacks can be mounted
against NDN by directing a large number of zombies to request
existing content from a certain victim. However, it is easy to
see that the effectiveness of this attack would be limited. Once
requested content is initially pulled from its producer, it is
cached at intervening NDN routers and subsequent interests
retrieve it from these routers’ caches. Therefore, the network
itself would limit the number of interests that reach the victim.

Reflection Attacks. Instead of letting zombies flood the
victims directly, reflection attacks involve three parties: the
adversary, the victim host, and a set of secondary victims
(reflectors). The goal is to use reflectors to overwhelm the
victim with traffic. The adversary creates numerous forged
IP packets with the source address set to the address of the
intended victim. It then sends these packets to the reflectors.
Responses to all such packets are routed to the victim. These
attacks require some form of amplification: the amount of
content sent by the adversary must be significantly smaller
than that received by the victim.

NDN is resilient to reflections attacks due to the symmetric
nature of the path taken by each interest and the corresponding
content: the latter must follow, in reverse, the path estab-
lished by the preceding interest. Although an NDN router
may broadcast an incoming interest on some or all of its
interfaces, even under the improbable case where each NDN
hop broadcasts the interest, the maximum number of content
copies a consumer can receive is bounded by the number
of its interfaces. Consequently, the only effective reflection-
style attack requires the adversary to be on the same physical
network as the intended victim.

Black-Holing by Prefix Hijacking. In a prefix hijack-
ing [3] attack, a misconfigured, compromised or malicious
autonomous system (AS) advertises invalid routes in order to
motivate other ASes to forward their traffic to it. This can
result in so-called “black-holing” whereby all traffic sent to
the malicious AS is simply discarded. This attack is effective
in IP networks, since, once routing information is polluted, it is
difficult for routers to detect, and recover from, the problem.
While countermeasures have been proposed (e.g., [19]) this
remains a serious threat to the current Internet.

An NDN network has built-in resiliency against prefix hi-
jacking. First, all routing updates are signed and can be verified
like all other content packets [14], minimizing prefix hijacking
risk except in case of compromised routers. Furthermore, NDN
routers have access to strictly more information than their IP

2TCP-based attacks also exploit the connection-based nature of the protocol:
each packet sent by zombies tries to open a new connection, which, in turn,
requires the victim to create and store corresponding state, thus saturating its
resources.

counterparts and can use such information to detect anomalies
in content retrieval process. Since each content follows the
same path as the interest, the number of unsatisfied (expired)
interests can be used to determine whether a particular prefix
has been black-holed. In addition, NDN routers maintain
statistics about performance of each interface with respect
to a particular prefix. Loop detection and elimination allows
routers to explore topological redundancy through multipath
forwarding, enabling NDN routers to try alternative paths as
a reaction to perceived attacks.

A. Towards New Attacks

Despite ineffectiveness or greatly reduced impact of today’s
DoS attacks on NDN, variations of aforementioned attacks
might be quite effective against NDN.

Recall that an NDN router has two key components that cur-
rent Internet routers do not have: (1) A Pending Interest Table
(PIT) which keeps state to guide content to the requesters, and
(2) A Content Store that caches content. Each of them can be
subject to malicious attack. One could attempt to deplete PIT
entries by Interest Flooding, and to fill the cache with poisoned
content. In contrast to current DoS attacks that target end-
hosts, Interest Flooding and Content/Cache Poisoning could
potentially disrupt content delivery by attacking routers. These
new attack types target specific new features of NDN and
warrant an in-depth investigation.

IV. INTEREST FLOODING

The adversary can aim at the PIT state in NDN routers
to mount an effective DoS attack, which we term interest
flooding. In this attack, we assume that the adversary uses
a large set of zombies to generate a large number of closely-
spaced interest packets, aiming to overflow PIT’s in routers,
preventing them from handling legitimate interests, and/or to
swamp the specific content producer(s). Since an NDN interest
packet does not carry a source address and is not secured
(e.g., not signed) by design, it is not immediately clear how
to determine attack origins and take countermeasures.

We can identify three types of interest flooding attacks based
on the type of content requested: (1) existing or static, (2)
dynamically-generated, and (3) non-existent. While attacks (1)
and (3) are mostly aimed at the network infrastructure, (2) can
affect both network and content producers.

Similar to bandwidth depletion attacks discussed in the
previous section, the impact of type (1) attacks is quite
limited since in-network content caching provides a built-in
countermeasure. Suppose that there are several zombies, each
with independent path to the targeted producer. After the initial
“wave” of interests from these zombies, content settles in all
intervening routers’ caches. Subsequent interests for the same
content do not propagate to the producer(s) since they are

3



satisfied via cached copies3.
With type (2) attacks, benefits of in-network content caching

are lost. Since requested content is dynamic, all interests
are routed to content producer(s), thus consuming bandwidth
and router PIT state. Also, if generating dynamic content is
expensive – signing content is a good example of a relatively
expensive per-packet operation – content producers might
waste significant computational resources. The direct outcome
of this attack type is that the producer may get overloaded with
malicious interests, and unable to handle requests from other
consumers. The impact on routers varies with their distance
from the targeted content producer: the closer a router is to
the producer, the greater the effect on its PIT.

Type (3) attacks involve zombies issuing distinct and unsat-
isfiable interests for non-existent content. Such interests cannot
be collapsed by routers, and are routed to the targeted content
producers. The latter can quickly ignore such interests without
incurring significant overhead. However, these interests will
linger and take up space in routers PIT until they eventually
expire. We consider routers to be primary intended victims of
this attack type. Given an valid name prefix /prefix, there are
several efficient ways for the adversary to construct multitudes
of unsatisfiable interests (that are not easily detectable by
routers):

1) Set the name in the interest to: /prefix/nonce, where
the suffix nonce is a random value. Such interests will be
forwarded all the way to the producer and never satisfied.

2) Set the PublisherPublicKeyDigest field to a ran-
dom value. Since no public key would match this value,
the interest will remain unsatisfied.

3) Set the interest Exclude filter to exclude all existing
content starting with /prefix. Such an interest cannot
be satisfied since it simultaneously requests and excludes
the same content.

A. Tentative Countermeasures

The ease of interest flooding attacks is partly due to lack of
authentication of interests. One simple fix might be to require
interests to be signed. However, this would immediately raise
privacy concerns, as discussed in [9], and would also introduce
a new avenue for DoS due to computational overhead of
signature verification. On the other hand, we believe that
potential problems and DoS attacks due to interest flooding can
be addressed without requiring source authentication. Because
NDN routers are stateful and can learn much more information
about carried traffic than their current IP counterparts. below
we discuss two potential countermeasures.

Router Statistics. NDN routers can easily keep track of
unsatisfied (expired) interests and use this information to limit
the following:

3Filling caches with arbitrary data requested by the adversary can itself be
considered an attack – see, e.g., cache poisoning attack in [29]. In this paper,
we do not consider such attacks, since content injected by the adversary is
never delivered to consumers who do not request it, nor legitimate content
is denied to consumers. To prevents bogus content from filling up caches
requires e a good cache management scheme, a topic being actively pursued.

• # of pending interests per outgoing interface: NDN keeps
flow balance between interests and content. For each
interest sent upstream, at most one content satisfying that
interest can flow downstream. Based on that property,
each router can compute the maximum number of pend-
ing interests per outgoing interface that the downstream
connection can satisfy before they time out. Thus, a router
should never send more interests than an interface can
satisfy, based on average content package size, timeout
for interests and bandwidth-delay product for the corre-
sponding link.

• # of interests per incoming interface: Using the same
flow balance principle, a router can easily detect when
a downstream peer is sending too many interests that
cannot be satisfied due to the physical limitations of the
downstream link.

• # of pending interests per namespace: When a certain
prefix is under attack, intervening routers can easily detect
out-of-proportion numbers of unsatisfied interests in their
PIT for that prefix. Thus, routers can limit the total
number of pending interests for that prefix and throttle
incoming interface(s) which has sent too many unsatisfied
interests for that same prefix.

It seems challenging to combine the above strategies into one
algorithm and choose appropriate parameters for maximum
effectiveness against attacks and minimum impairment of
legitimate traffic. However our initial investigation has shown
strong evidence that one can indeed utilize the per packet
state built into each NDN router to enable effective DDoS
mitigation [1].

Push-back Mechanisms. A push-back mechanism allows
routers to isolate attack source(s). When a router suspects
an on-going attack for a particular namespace (e.g., when
it reaches its PIT quota for that namespace on a given
interface), it throttles any new interests for that namespace and
reports this action to routers connected on that interface. These
routers, in turn, can propagate such information downstream
towards offending interfaces, while also limiting the rate of
forwarded interests for the namespace under attack. The goal
is to push an attack all the way back to its source(s), or at
least to a location where it is detectable.

V. CONTENT/CACHE POISONING

We now shift focus to DoS attacks that target content. In
this context, the adversary’s goal is to cause routers to forward
and cache corrupted or fake content, consequently preventing
consumers from retrieving legitimate content. We say that a
content is corrupted if its signature is invalid. Whereas, a
content is fake if it has a valid signature, however, generated
with a wrong (private) key for the name under which it is
published.

As mentioned in Section II, each NDN content is signed.
Consumers are expected to perform signature verification on
all received content. Also, any NDN router can opt to perform
signature verification for any content it forwards and caches.
Upon receiving and identifying a corrupted or fake content,

4



a consumer can request a different copy of the eponymous
content using the Exclude field in the interest.

In theory, content signatures provide an effective means for
detecting content poisoning attacks, since “bad” content can
be easily identified and discarded within the network, well
before reaching consumers. However, in practice, NDN routers
face two challenges. The first one is signature verification
overhead. Our experiments show that routers with multiple
Gigabit-speed (or faster) interfaces would need an unrealistic
amount of computing power to verify packets at wire rate.

The second challenge is trust management, i.e., obtaining
the right key to verify a content signature. Although each con-
tent includes a reference to its signature verification (public)
key, a trust management architecture is needed in order for
the routers to determine if a public key is appropriate for
a specific piece of content. This creates a tension between
flexibility (applications can adopt arbitrary trust models for
their content) and security – any NDN router must be able to,
if it chooses, verify any content’s signature.

Attack Variants. The potential impracticality of NDN routers
verifying all signatures on all content opens the door for con-
tent poisoning attacks. Although one cannot “push” poisoned
content without a prior interest requesting that content, we can
identify two attacks variants:

1) The adversary is aware of current (pending) interests for
particular content, e.g., because it controls some NDN
routers. Compromised routers that receive interests for
that content simply inject (satisfy interests with) poisoned
content, which may then be cached by other intervening
routers.

2) The adversary anticipates interests in particular content,
e.g., a major emerging news-story or about-to-be-released
patch for a popular operating system. We also assume that
the name of the corresponding content is predictable. The
adversary, via numerous distributed zombies, issues many
near-simultaneous “legitimate” interests for that content.
Next, a compromised host or router (that receives one or
more such interests) replies with poisoned content. Then,
caches of routers (that processed preceding interests)
become populated with poisoned content. Subsequent
interests for the same content will return a cached version
of the same poisoned content.

While these attack variants require different adversarial capa-
bilities, their impact on the network is almost identical. For
this reason, we concentrate on countermeasures that address
the effects of both.

A. Tentative Countermeasures

First we focus on establishing a strong binding between
an interest and a corresponding content. We introduce two
constructions, based on standard NDN features, and analyze
their benefits and drawbacks. Then, we propose further coun-
termeasures based on heuristics, inter-router communication
and consumer feedback.

Self-Certifying Interest and Content

Self-certifying naming [10] (SCN) allows parties to verify
the association between a name and a corresponding content
without relying on auxiliary information, such as Public Key
Certificates and a PKI. This could make SCN an effective
countermeasure against content poisoning attacks [12]. There
are a few well-known approaches in the literature for imple-
menting SCN. The two most popular ones are geared for
static [11] and dynamic content [10], respectively. In the
former, an object name is computed as the hash of its content.
In the latter, an object name is constructed as: H(pk) : L
where H(pk) is the hash of the producer’s public key pk
and L is a human-readable label. Users are not expected
to handle self-certifying names directly. Instead, a secure
indirection mechanism is needed to map human-meaningful
to self-certifying names.

NDN uses hierarchical Human-Readable Naming (HRN).
Such names are designed to be user-friendly, i.e., allow con-
sumers to anticipate, guess and remember names of content
they wish to retrieve. As discussed in [25], HRN offers a
number of advantages over SCN. Unfortunately, human read-
ability precludes a strong (i.e., cryptographic) binding between
a name and a corresponding object. In order to determine
whether a human-readable name is appropriate for an object,
input from a trust management system is required.

We now consider whether it is possible to integrate the
functionalities of SCN into NDN without changing the latter’s
naming structure. To this end, we introduce “Self-Certifying
Interests/Content” (SCIC), a mechanism that allows routers
to efficiently and securely determine whether a given content
is the “correct answer” for a particular interest. We describe
two variants of SCIC: one for static (S-SCIC) and another for
dynamic (D-SCIC) content.

Static Content. One component automatically appended to the
name of each NDN content is a cryptographic hash computed
over its data, name (up to the hash itself) and the signature.
A consumer requesting content by name can elect to use this
last hash component in an NDN interest. NDN routers can
easily and efficiently determine whether a returned content
corresponds to its requested name with low overhead. In fact,
routers in the current NDN prototype always verify content
hashes.

This technique, which we refer to as S-SCIC, prevents the
adversary from serving corrupted or fake content in response
to an interest: the hash of the wrong content cannot match
the one expressed by the consumer. However it is based on
the assumption that the consumer somehow knows the hash
of the desired content ahead of time. One way to obtain the
hash is to link multiple contents together. For example, let
CO1, . . . , COm be the collection of contents corresponding to
a large file. COi includes (in its payload) the hash of COi+1.
If the hash of CO1 can be obtained beforehand, all COi-
s can be retrieved securely. The problem is thus reduced to
discovering the hash of the initial fragment CO1.

S-SCIC imposes restrictions on inter-content dependencies.

5



In order for content A to link to content B (A ! B), the latter
must be created and named first. This makes it impossible for
contents to be linked in a cycle, e.g., A ! B ! C ! A.
Consequently, it is unclear how to support current Web appli-
cations that often involve loops in content linkage. Also, this
technique is unsuitable for dynamic content since a consumer
has no means of foretelling the hash of a content that does
not exist at the time of request, e.g., if the desired content is
the result of a Web search.

Clearly, a consumer cannot be expected to anticipate, guess,
remember or recognize the hash of the content she is about
to request. This translates into a classical chicken-and-egg
problem. The usual SCN solution is to rely on a trusted
infrastructure for mapping human-readable to self-certifying
names, akin to what DNS does today. Next, we discuss how
to address this issue without requiring such infrastructures.

Dynamic Content. As discussed in Section II, an interest
can optionally include the PublisherPublicKeyDigest
field that contains the hash of the public key of the content
producer. A consumer can specify the public key that it
associates with a desired content name: when this field is
present in an interest, each intervening NDN router must
make sure that the corresponding content references the same
public key. We refer to this technique D-SCIC. Unlike S-SCIC,
content that uses D-SCIC can include arbitrary references to
other contents, including cyclic links or links to dynamically
generated content.

D-SCIC prevents the adversary from injecting fake content
in response to an interest. However, corrupted content may still
be returned as long as it references the appropriate producer’s
public key. This is, again, because NDN routers are not
mandated to verify content signatures. However we believe
the collaborative verification approach discussed below can
effectively mitigate corrupted content.

We believe that a combination of S-SCIC and D-SCIC offers
a flexible, trust-model-independent approach for mitigating
NDN content poisoning. To the best of our knowledge, no
current SCN-based system allows naming content using both
“static” and “dynamic” self-certifying names.

Collaborative Verification Techniques

Probabilistic Disjoint Verification. Signature verification
load can be evenly distributed among a set of routers belonging
to the same organization. Let r1, . . . , rn be NDN routers in the
same AS,4 and let hCO be the least significant 32 bits of the
hash of content CO. Router ri verifies CO if hCO ⌘ i mod n.
Assuming that hCO is distributed uniformly between 0 and
2

32 � 1, all routers need to verify roughly the same number
of contents.

Unfortunately, the adversary can counter-act this strategy
by generating contents that are only verified by one router: it
picks an arbitrary value x 2 [1, n], creates a random content
and injects it into the network only if h mod n = x. To

4Routers r1, . . . , rn may belong to different ASs, as long as there is mutual
trust between such routers

prevent this attack, the hash function used to generate h can be
replaced with a keyed hash function (e.g., HMAC), as follows:
All routers in the same AS share a secret key k. Let hk

CO be
the 32 least significant bits of HMACk(H(CO)). Router ri
verifies CO if hk

CO mod n = i. Since HMACk(·) behaves
like a pseudorandom function, the adversary can succeed with
the aforementioned attack only if it learns k.

Neighbor Verification Feedback. By having a large number
of routers verifying contents and cooperating, cryptographic
operations can be applied less frequently, without lowering
the network’s resistance to content poisoning attacks.

Each router can verify its cached contents probabilistically
and independently. When a router determines that a given
content is corrupted, it issues a special warning interest on
all its interfaces. A warning references /warning/CO, where
/warning/ corresponds to a special reserved namespace and
CO represents the full name (including the hash component) of
the corrupted content. The scope field of a warning interest
is set to 2, i.e., this interest type is not forwarded past one
NDN hop.

When a router receives a warning interest, it checks whether
its cache contains the referenced content. If not, the router
discards the warning. Otherwise it verifies the content with
some probability p that might depend on its current work-
load. If signature verification fails, the router issues its own
warning to its neighbors. Otherwise, further warnings from the
same interface are ignored for a pre-defined period. To prevent
the adversary from injecting fraudulent warnings, every pair
of adjacent routers could share a symmetric key and use it to
authenticate warnings.

Consumer Feedback. Recall that consumers verify all content
signatures. Consumer feedback can be implemented simi-
larly to Neighbor Verification Feedback discussed above, i.e.,
through specially scoped interests. However, allowing con-
sumers to provide feedback prompts a few new challenges:
(1) there may be no pairwise trust relationship between a
router and consumers, especially for routers at public access
points such as coffee shops or airports; (2) consumers are more
likely to be compromised than routers; and (3) it might not be
possible to determine which consumer issued a false warning.

One strategy could be based on a probabilistic trust value
T 2 [0, 1] for each content in a router’s cache where the
trust value is calculated from explicit consumer feedback.
T = 1 indicates that the corresponding content has been
verified, while T ⇡ 0 indicates that it should be selected for
verification with probability proportional to 1� T , or deleted
if the cache becomes full. A new content is assigned T = 0.5.
This value increases every time the content is forwarded, and
decreases whenever the router receives negative feedback from
a consumer. If/when edge routers are not overloaded, an edge
router may also verify feedbacks from consumers.

Yet another strategy to aggregate consumer feedback could
be doing it implicitly. The expected behavior for consumers
receiving corrupted or fake content is to express a new interest
that excludes the already received unsatisfactory content using

6



the exclude field on interests. Routers could monitor what is
frequently excluded in consumers interests and rank objects
in their CS based on that information. If an interest could be
satisfied by more than one object, a router could serve the
higher ranked (less excluded) object to satisfy that interest.
Cache replacement and selection algorithms for signature
verification could also take these rankings into account.

VI. RELATED WORK

Architectures related to Content-Centric Networking include
the Data-Oriented Network Architecture (DONA) [18] and
TRIAD. DONA is based on “flat” self-certifying names,
computed as the cryptographic hash of the producer’s public
key and a (possibly) human-readable label, which is not cryp-
tographically bound to the content. New content is published
(i.e., registered) with a tree of trusted resolution handlers to
enable retrieval. Resolution handlers maintain a forwarding
table that provides next-hop information for pieces of content
in the network. As such, DONA does not support dynamically
generated content.

Similar to NDN, TRIAD [8] names content using human-
readable, location-independent names. It maps names to avail-
able replicas of data using an integrated directory. It then
forwards requests until a copy of the data is found. The data
location is returned to the client, who retrieves it using stan-
dard HTTP. TRIAD relies on trusted directories to authenticate
content lookups (but not content itself).

NDN caching performance optimization has been recently
investigated with respect to various metrics, including energy
impact [24], [20]. To the best of our knowledge, Xie et
al. [29] first addressed cache robustness in NDN by introduc-
ing CacheShield, a mechanism that helps routers to prevent
caching unpopular content, maximizing the use of cache for
popular data.

There is a plethora of previous work on DoS attacks on
the current Internet infrastructure. Current literature addresses
both attacks and countermeasures on the routing infrastruc-
ture [15], packet flooding [17], reflection attacks [23] and
SYN flooding attacks [28]. Proposed counter-measures are
based on various strategies and heuristics, including: anomaly
detection [4], ingress/egress filtering [27], IP trace back [21],
[26], ISP collaborative defenses [7] and user-collaborative
defenses [13].

VII. SUMMARY AND FUTURE WORK

In this paper, we performed an initial analysis of NDN’s
resilience to DoS attacks. We started by a brief introduction to
the proposed NDN architecture, followed by an examination of
the common attacks in today’s Internet. The NDN architecture
fundamentally changes network delivery from today’s “push-
ing to destinations” to “delivering upon requests”, rendering
the existing DoS attacks ineffective in an NDN network.

Based on the key components in an NDN router, we
identified two new types of attacks that can impact an NDN
network: interest flooding and cache/content poisoning, and
discussed effects and potential countermeasures.

Clearly, this paper represents only the first step towards
mitigation of DoS in the context of NDN. Much more work is
needed to evaluate the effectiveness of proposed countermea-
sures. In particular, extensive simulation- and testbed-based
experiments must be conducted in order to determine optimal
parameters for the instantiations of our countermeasures.

REFERENCES

[1] A. Afanasyev, P. Mahadevan, I. Moiseenko, E. Uzun, and L. Zhang. In-
terest flooding attack and countermeasures in Named Data Networking.
In IFIP Networking 2013, May 2013.

[2] L. Andersson, E. Davies, and L. Zhang. Report from the IAB workshop
on Unwanted Traffic March 9-10, 2006. RFC 4948, Aug. 2007.

[3] H. Ballani, P. Francis, and X. Zhang. A Study of Prefix Hijacking and
Interception in the Internet. In SIGCOMM 2007. ACM, 2007.

[4] G. Carl, G. Kesidis, R. Brooks, and S. Rai. Denial-of-service attack-
detection techniques. IEEE Internet Computing, 10(1), jan 2006.

[5] CCNx Content Object. http://www.ccnx.org/releases/latest/doc/
technical/ContentObject.html.

[6] CCNx Interests Message. http://www.ccnx.org/releases/latest/doc/
technical/InterestMessage.html.

[7] Y. Chen, K. Hwang, and W. Ku. Collaborative detection of ddos attacks
over multiple network domains. IEEE Trans. Parallel Distrib. Syst.,
18(12), 2007.

[8] D. Cheriton and M. Gritter. Triad: A new next-generation internet
architecture.

[9] S. DiBenedetto, P. Gasti, G. Tsudik, and E. Uzun. ANDaNA: Anony-
mous named data networking application. In NDSS, 2012.

[10] D. M. Eres, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Separating
key management from file system security. In In Proc. SOSP, 1999.

[11] K. Fu, M. F. Kaashoek, and D. Mazieres. Fast and secure distributed
read-only file system. In ACM Transactions on Computer Systems, 2000.

[12] A. Ghodsi, T. Koponen, J. Rajahalme, P. Sarolahti, and S. Shenker.
Naming in content-oriented architectures. In ICN, New York, NY, USA,
2011. ACM.

[13] C. Gkantsidis and P. Rodriguez. Cooperative security for network coding
file distribution. In INFOCOM, 2006.

[14] A. K. M. M. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Wang, and
L. Zhang. Nlsr: Named-data link state routing protocol. In SIGCOMM
2013 ICN Workshop, 2013.

[15] J. Ioannidis and S. Bellovin. Implementing pushback: Router-based
defense against ddos attacks. In NDSS, 2002.

[16] V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs, and
R. Braynard. Networking named content. In CoNext 2009, 2009.

[17] J. Jun, H. Oh, and S. Kim. Ddos flooding attack detection through a
step-by-step investigation. IEEE International Conference on Networked
Embedded Systems for Enterprise Applications, 2011.

[18] T. Koponen, M. Chawla, B. Chun, A. Ermolinskiy, K. Kim, S. Shenker,
and I. Stoica. A data-oriented (and beyond) network architecture. ACM
SIGCOMM Computer Communication Review, 2007.

[19] M. Lad, D. Massey, D. Pei, Y. Wu, B. Zhang, and L. Zhang. Phas: a
prefix hijack alert system. USENIX Security, August 2006.

[20] U. Lee, I. Rimac, and V. Hilt. Greening the internet with content-centric
networking. In e-Energy, 2010.

[21] L. Lu, M. Chan, and E. Chang. A general model of probabilistic packet
marking for ip traceback. In ASIACCS, 2008.

[22] Named data networking project (NDN). http://named-data.net.
[23] V. Paxson. An analysis of using reflectors for distributed denial-of-

service attacks. SIGCOMM Comput. Commun. Rev., July 2001.
[24] E. Rosensweig, J. Kurose, and D. Towsley. Approximate models for

general cache networks. In INFOCOM, 2010.
[25] D. Smetters and V. Jacobson. Securing network content. PARC, 2009.
[26] R. Stone. Centertrack: an ip overlay network for tracking dos floods. In

USENIX ’00, Berkeley, CA, USA, 2000. USENIX Association.
[27] U. Tupakula and V. Varadharajan. A practical method to counteract

denial of service attacks. In ACSC ’03. Australian Computer Society,
Inc., 2003.

[28] H. Wang, D. Zhang, and K. Shin. Detecting syn flooding attacks. In In
Proceedings of the IEEE Infocom. IEEE, 2002.

[29] M. Xie, I. Widjaja, and H. Wang. Enhancing cache robustness for
content-centric networks. In In Proceedings of the IEEE Infocom, 2012.

7


