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Abstract

Due to the Internet’s sheer size, complexity, and various
routing policies, it is difficult if not impossible to locate the
causes of large volumes of BGP update messages that oc-
cur from time to time. To provide dependable global data
delivery we need diagnostic tools that can pinpoint the ex-
act connectivity changes. In this paper we describe an al-
gorithm, called MVSChange, that can pin down the ori-
gin of routing changes due to any single link failure or link
restoration. Using a simplified model of BGP, called Sim-
ple Path Vector Protocol (SPVP), and a graph model of
the Internet, MVVSChange takes as input the SPVP update
messages collected from multiple vantage points and accu-
rately locates the link that initiated the routing changes. We
provide theoretical proof for the the correctness of the de-
sign.

Fault Tolerant Algorithms, Fault Diagnosis, Routing and
Graph Theory

1. Introduction

Diagnosis tools are essential in monitoring global Inter-
net routing infrastructure for dependable packet delivery.
The Internet is divided into a large number of Autonomous
Systems (AS) and the Border Gateway Protocol (BGP) [15]
is used to exchange reachability information between these
Autonomous Systems (AS); a new BGP update message
is generated whenever a border router’s reachability to any
destination prefix is changed. Although the BGP specifica-
tion is relatively simple, understanding the the global rout-
ing dynamics has proven to be great challenge. Due to the
Internet’s sheer size, complexity, and various routing poli-
cies, it is difficult if not impossible to identify the causes

behind large volumes of BGP update messages that occur
from time to time in today’s Internet.

Most Autonomous Systems monitor their own local data
and some even provide snapshots to the public. In the last
few years, a number of passive BGP monitoring/vantage
sites, such as RIPE [16] and RouteViews [14], have been
established to collect BGP update data from BGP routers
residing in multiple ASes. The resulting BGP log data is
potentially useful for diagnosis purpose. However without
a set of effective tools, the large volume of raw data ob-
scures the actual routing changes. For instance, in April of
2003, the data collection points at RouteViews logged over
10 gigabytes of unprocessed data from over 30 routers in
different geographic locations. An ad-hoc combination of
intuition, experience, and informal analysis is often used
to speculate the causes of large swings in BGP updates. In
addition to the challenge of scale, the underlying Internet
topology is not known precisely and the monitoring points
provide views from only a limited set of geographic loca-
tions. In such an environment, ad-hoc techniques are lim-
ited by the expertise of the administrator and it is not easy
to identify the underlying events that cause BGP changes.
With the increased importance of fault tolerance and sur-
vivability, the ability to infer the cause of routing changes
would immensely help in diagnosing the failures and esti-
mating the impact. To provide dependable global data de-
livery, we need analysis tools that can help us understand
the BGP system and pinpoint the exact cause of connectiv-
ity changes.

In this paper we present a formal approach for analyzing
routing data to identify the origin of routing changes. Using
a simplified model of BGP, called Simple Path Vector Pro-
tocol (SPVP), and a graph model of the Internet, we present
the MVSChange algorithm set. Note that even a single link
failure or link addition can result in large number of BGP
path changes, but finding this failure without knowledge



of the underlying topology can be a challenge. As a first
step toward designing a formal set of algorithms for under-
standing Internet route changes, we focus on identifying
the single link failure or addition that caused an observed
set of changes. Our approach takes snapshots of routing
tables collected from multiple vantage points, at two dif-
ferent time instances, and without knowing the underlying
topology, locates the link that initiated the routing changes,
as precisely as possible. We provide theoretical proof con-
firming the correctness of our design. While previous work
has been done in BGP event analysis, the lack of formal al-
gorithms that can automatically take route data as inputand
output results with verifiable properties, has remained an
open challenge. This work is a step in the direction of for-
mal algorithms which combine views from multiple van-
tages points to identify possible causes in the underlying
network connectivity.

The paper is organized as follows. Section 2 explains
the current BGP data collection methodology and abstracts
the practical problem into an analytic model. Section 3 then
takes the view from a single monitoring point and identifies
one possible set of link changes that could explain the rout-
ing dynamics observed from that site. Section 4 shows how
this possible set of failures is used to prove whether a sin-
gle link failure or single link addition could have triggered
the changes. If a single link change could have triggered the
change, we identify all possible failure or addition scenar-
ios that could have triggered the observed changes. Section
5 builds on the single viewpoint faults to combine views
from different monitoring points to present a global con-
sistent explanation of the routing event. Finally section 6
reviews related work and Section 7 concludes the paper.

2. BGP and Routing M odel Description

BGP is a path vector routing protocol used to ex-
change reachability information between Autonomous
Systems. BGP routers in neighboring Autonomous Sys-
tems exchange routing updates. A BGP updates lists the
path of Autonomous Systems, “AS;, ASs, ASs3...AS,”,
used to reach the destination prefix. Update messages are
transmitted reliably using TCP and once the initial rout-
ing table has been exchanged, further updates are sent only
if a route changes. Thus in principle each update mes-
sage should convey new route information and should be
triggered by some underlying event such as a link fail-
ure, link addition, or policy change.

Projects such as University of Oregon’s Route Views
[14] and RIPE [16] collect BGP updates from a number of
Autonomous Systems. The monitoring points set up peer-
ing sessions with collaborating routers and passively col-
lect all the updates generated by the routers. To the router
being monitored, the monitoring point appears to be sim-
ply another BGP peer router. The monitoring point logs
update data and does not advertise any paths to other ASs.
Figure 1 shows an example where AS7018 and AS 1239

are being monitored by a single monitoring point. All up-
dates received over the peering session between 7018 and
the monitoring point are collected and written to a BGP
log. The updates reported to the monitoring point provide
a complete view of all Internet prefixes reachable from AS
7018 and the path information in the updates provides a
glimpse into AS 7018’s view of the Internet topology. Sim-
ilarly a path announcements from AS1239 are also logged.

2.1. Formal Routing M odel

We model the Internet as a simple directed connected
graph G = (V,E), where V. = Vp UVy and E =
EpUEN. Vp represents the set of destinations and roughly
corresponds to Internet prefixes. The nodes in Vv are not
considered destinations in network G, and roughly corre-
spond to the Internet ASes. Nodes in V are connected by
linksin En and each edge in E has the form (a, b) where
a,b € Vy. The destinations are attached to the nodes in
Vn through edges in Ep and each edge in Ep has the form
[d,n] whered € Vp andn € V. We assume that each des-
tination d attaches to at least one node in Vy and some des-
tinations may attach to multiple nodes in Viy, i.e. some des-
tinations may be multi-homed.

We model the BGP routing protocol as a Simple Path
Vector Protocol (SPVP). SPVP is a single path routing
protocol, in which each node advertises only its best path
to neighboring nodes. A path from node v to destination
d is a sequence of nodes Path,(d) = (vgvg_1 . ..vod)
where vy = v, (v;,v;—1) € Ey forall 0 < i < k, and
(vo,d) € Ep . After receiving and storing a route learned
from one of its neighbors, node v selects its best path to
destination d according to some routing policy (i.e. rank-
ing function). After the initial path exchanges, further up-
dates are sent only if a node’s best path changes (i.e. there
are no periodic route announcements).

We assume that links can fail and new links may be
added to the network. If a link fails, the nodes adjacent to
the link detect the failure and all destinations using the link
must switch to alternate path (or declare the destination un-
reachable). Similarly, the addition of a link is detected by
the adjacent nodes and as a result, destinations may switch
to a new shorter path. The link failures and link additions
are not directly reported to any central database or monitor-
ing site. However, by observing the path changes reported
by some nodes in Vi, one may be able to estimate the num-
ber of changes, locations of the changes, and how the SPVVP
protocols behaves as a result of the changes.

Let Vas C Vi denote the set of monitored nodes. At
any time, we are able to obtain the routing tables from these
monitored nodes, just as in real BGP data. More precisely,
for each node v € Vi, we are given the shortest path tree
rooted v. Just as the Internet topology is not known, we also

1 Provided that AS 7018 is configured to send full routing tables to the
monitoring point.
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assume the topology of graph G = (V, E) is not known by
the monitoring process. Given only the shortest path trees
from time ¢ and ¢;, we would like to explain the cause of
any observed routing changes.

2.2. Distinctions Between BGP Monitoring and
Our Mode

The general problem of understanding BGP behavior
based on observed updates is an open challenge. As a first
step, we have made a few simplifying assumptions in our
formal model.

e We model the edge between two nodes in Vy isa sin-
gle link Ex and we assume this link is either avail-
able or has failed. But in actual BGP operations, the
link between two AS can be many physical connec-
tions. For example, networks of large ISPs are con-
nected at many places (packets can be exchanged at
any of these connection points) and only some of these
many physical connections are likely to fail at once.

e \We model an AS as a node in Vi and assume each
node has one “best” path. In practice, a large AS node
is not a single atomic entity and different contiguous
portions of the AS, may select and advertise different
best paths.

e \We assume a shortest path routing policy. The BGP
routing protocol allows arbitrary best path selection
policies, but some policies can lead to persistent route
oscillation [10]. Although our SPVVP model can work
with any routing policy, this paper considers only a
shortest-path policy, which has been proven to con-
verge [9].

Despite these simplifications, the formal model still
presents an interesting challenge. The techniques used to
find faults in our formal model can be applied to the ac-
tual BGP monitoring data, taking the above assumptions
into consideration when reviewing the results.

3. Identifying Faults Using a Single Vantage
Point

We first consider only the view from a single monitor-
ing point, M, and provide an algorithm that gives a pos-

sible explanation for the routing changes observed at M.
More formally, we are given two shortest path trees rooted
at M: Ty = (Vo, Eg) is the shortest path tree at time ¢
and Ty = (Vi, Ey) is the shortest path tree at time ¢;.
Both T, and T} were computed in some unspecified graph
G = (V,E) and if Top # T4, some link(s) in G = (V, E)
must have failed (or recovered). Our objective to identify
some scenario of failed (and/or recovered) links that ex-
plain the change from Tj to 7. Toward this end, we present
an algorithm that assigns labels to each edge and identi-
fies one possible scenario for the route change event. We
later show how the output of Algorithm 1 can be easily ex-
tended to identify every possible single-event scenario and
we show how to use the view from multiple monitoring
points to identify, as precisely as possible, the failed (or re-
covered) link.

Algorithm FindChange() takes tree To = (Vo, Eo)
and Ty = (V4, E;) asinputand labels each edge in EqU Ey
as either unchanged, vanished, or appeared. A vanished
link is present in Ty, but not present in 73. This can oc-
cur due the failure of the link or the link may vanish as a
consequence of some other change. We distinguish the ac-
tual failed edges from the other vanished edges by labeling
failed edges as failed. Similarly, edges that recovered or
whose additions caused route changes are marked added.
Note that edges marked appeared may not have changed
state (from down to up), but simply became part of the
shortest path tree as a consequence of some other event.

Conceptually, the algorithm is relatively simple. To
identify a link failure, the algorithm combines Ty and T}
and then starts by calculating a shortest path tree, Tt.; in
this combined graph. Note that if only a link failure has oc-
curred, T,y = Tp and the algorithm progressively trans-
forms Tt,; by removing links that are absent in 77. The
failed links are those whose removal changes Tt.; and we
adjust Tt,; after each change. Similarly in the case of a
link recovery, T,qq = T1 is transformed to get Tp, to iden-
tify the restored link. We are not given whether a link
failure or link recovery (or both) have occurred, but we ob-
serve that the two steps can be run in parallel as shown in
Algorithm 1.

To maintain T¢,; and Thqq, We define a function called
SPT(V, E). In our model, the edges are unweighted and
this function can be implemented to run in linear time



O(|E|) as a Breadth First Search with appropriate tie-
breaking. One important property of the shortest path tree
is that leaf nodes can only be nodes from Vp (destination
set), because in real life the monitoring point gets paths
only to prefixes and not to network nodes. Thus some nodes
of Vv (and even from Vp) might disappear over time,
hence in general V, # V; (recall V; = node appearing

Algorithm 1: FindChange(To, T1)
Input: To = (Vo, Eo) : The SPT from M at to ;
T, = (V4, E1) : The SPT from M at ¢4;
Output: Marked edges: unchanged, vanished,
failed, added;
LetV =VoUV1, Eaqqa = Bt = E = Eg U Ey;
Let Tfail = Tadd = SPT(V’ E);
for each e € E in BFS order do
ifee EoN E; then
| e =unchanged,;

elseif e € Ey then

[* e has vanished from M’s SPT due to either
the failure of e itself or some other change in
G *I,

e = vanished;

if e € Te then

e = failed;
Egi1 = Erail — e;
Ttair = SPT(V, Egat);

eseif e € E; then

[* e has appeared in M’s SPT due to either
the recovery of e itself or some other change
in G */,

e = appeared;

if e € Taqq then

e = added;
Eq.qa = Eaqqa — €

Todda = SPT(V, Eqaq);

3.1. Example

Figure 3 provides an example showing the execution
of the algorithm. Figure 3-a, shows Tjg, the shortest path
tree at time tq. Three prefixes, P1, P2, and P3 are adver-
tised from AS-4, AS-6 and AS-5 (respectively). Figure 3-
b shows T7, the shortest path tree at time ¢;. Note that the
path to prefix P3 has not changed, but an event has changed
the shortest paths from M to prefixes P1 and P2. The al-
gorithm will label each edge as unchanged, vanished, or
appeared and will select one edge as the cause.

The algorithm first combines the two trees To and T3
to obtain the graph shown in Figure 4-a and computes a
new shortest path tree in this combined graph. Following a
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Figure 4. Initial Graph G with E = Ey+ E; and
Initial Teayp = Taqa ON G

a breadth first search on edges, each edge is tested and la-
beled accordingly. Edge (M, 1) appears in both graphs and
is labeled unchanged. Edge (1, 2) appears only in Ty and is
labeled as vanished. Furthermore, edge (1, 2) is in the SPT
Tt and thus edge (1,2) is marked as a failed link and a
new SPT Tt.; is computed after excluding edge (1,2), as
shown in Figure 5-b. Each of the additional edges are tested
in BFS order and are either present in both trees and la-
beled as unchanged or not present in T, (Or Thaq) and la-
beled as vanished or appeared. Note that for edges (5, 4)
and (5, 6), since they are present in Ty, their membership
has to be checked in T,qq and not T,;. The resulting la-
bels are shown in Figure 6, where F' denotes failed, A de-
notes appeared, V' denotes vanished, and U denotes un-
changed.

In this example, the algorithm identified link (1,2) as
failed link. All other links did not change state, though they
moved into or out of the shortest path tree as a consequence
of this single failure. While this scenario is a feasible ex-
planation for the change observed at M, it is not the only
possible explanation. The failure of only link (2,4) could
have also caused the change from T} to 73. In addition, a
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Figure 5. Eg,; after removal of (1,2) and re-
sulting Ty

Figure 6. Final labeled graph

variety of multi-failure/recovery events could have caused
the change, such as the recovery of link (4,5) combined
with failure of links (4, 6) and link (2,4). Any one of these
events is a plausible explanation and the exact cause can-
not be determined from only T, and T} . Since we consider
edges in BFS order, our algorithm selects the edge closest
to the vantage point as failed. We first show the algorithm
always produces some feasible explanation and then show
how we can easily extend this feasible solution to identify
all single-fault explanations.

3.2. Correctness

While no algorithm could produce a unique solution
given only this limited information, it is clear the algo-
rithm will always provide an feasible explanation for any
input Ty and T7.

Let Eto, E*t be the set of links available at time ¢g, ¢; re-
spectively in the graph. At a monitoring point M, let Ty, Ty
be to Shortest Path Trees rooted at M, i.e. let Ty (Vo, Fo) =
SPT(V,E), Ty(V1,E;) = SPT(V,E%). Let E = EqU
E;.

We first claim that the algorithm 1 produces a correct
explanation of the change. This can be formalized as fol-

lows.

Theorem 1 (Correctnessof FindChange). Given Ty, T4,
suppose algorithm FindChange() labels set FF C FEqy as
failed and R C E; as added, i.e. the explanation produced
is: Et* = Ey + E; — Rand Et* = Eto — F + R. Then
this explanation is correct, i.e. Ty = SPT(V,Eq + E; —
R), T, = SPT(V,Ey + E, — F).

We will need following simple claim in this proof.

Claim 1.1. T,qq does not use any edge labeled appeared
(it can use edges of E; — Ey that are not labeled at the time
T.aq is constructed).

Proof. We shall show this by induction on the iterations
ofthe f or | oop. Initially, before the f or | oop begins,
the statement is true since no edges are labeled. Suppose
the statement is true upto (i — 1)th iteration and now we are
considering the sth iteration. The only way T,4q Changes is
that we label edge e = (u,v) as added and delete it from
E,4q. Suppose for contradiction that edge f = (z,y) la-
beled appeared now enters Typqq.

Since the f or | oop considers the edges in the BFS
order over Fq + E1, and f was considered before e, we
know that z cannot be in the subtree rooted at v (in the
tree Toqq)- In a shortest path tree, deleting an edge can
only change paths to nodes in the subtree rooted at that
edge. Thus if y is not in the subtree rooted at v, path to y
does not change and hence f = (z,y) cannot be added.
Let us consider then the case when y is there in the sub-
tree rooted at v. If y = v, then both f,e are in Eq, S0 y
has two parents {z,«} and that is not possible in a tree,
therefore y # v. Hence d(M,y) > d(M,v), and be-
cause f was considered before e, d(M,u) > d(M, z), i.e.
d(M,v) = d(M,u) +1 > d(M,z) + 1, i.e. d(M,y) >
d(M, z) + 1. But in shortest path calculation, for any edge
(z,y), d(M,y) < d(M,z) + 1. Hence this is a contradic-
tion.

Thus Toqq Will not use any edges labeled appeared af-
ter the recomputation in the ith iteration of the f or | oop,
and now the proof follows. [end claim] O

Proof of Theorem 1. We will prove that T, =
SPT(V,Ey, + E; — R), the proof for T; is simi-
lar.

In the algorithm 1, we label all edges in E; — Ey (the
lastel se i f block) as either appeared or added. We ini-
tialized Thqq = SPT(Ey + E1). Since we keep deleting
edges that are labeled added, at the end of the algorithm,
Taaa = SPT(Eo + E1 — R). Thus it is sufficient to prove
that at the end of the algorithm, Toqq = Tp. But if two
trees have the same sets of edges, the arrangement of edges
is also same. Hence we will only show that the set of edges
used in T,qq is exactly Ej.

To see this, note that all the edges of F; — E are labeled
appeared or added by the end of the algorithm. The edges
labeled added (R) have already been deleted from Ef,;; and
so they cannot be in T,44. And by claim 1.1, edges labeled



appeared are not used in T,4q4 at any time. Hence at the end
of algorithm, T,qq can use only edges from Eq, in fact it
will use all the edges of E as they are never deleted from
Ega1. O

4. Dealing with Single-Fault Scenarios

Although there may be many possible explanations for
the routing changes observed by M, we first seek the sim-
plest possible explanation. In the best case, a large number
of route changes can be caused by a single link failure or re-
covery. In the remainder of the paper, we call the failure or
recovery of a single link as a single-event explanation. We
have shown that algorithm FindChange() finds one ex-
planation. In this section, we show that the algorithm in fact
always finds a single-event explanation, if such a explana-
tion exists. We then show how, given this one single-event
explanation, we can easily list all possible single-event ex-
planations.

More formally, given two shortest path trees T, =
(Vo, Eo), T1 = (V1, Eq), we define an explanation for the
change in trees as two sets of edges (F, R) where F'is the
set of failed edges and R is the set of recovered edges. In
other words, Top = SPT(V, E) and Ty = SPT(V,E™)
where Bt = Eto — '+ R.

Theorem 2 (Solution-Space Structure Theorem). Sup-
pose Ef* = Eto — e (i.e. a single link failure). Then any
other single event explanation of Ty, — 77 change must
have R = () (i.e. any other single event explanation is also
a link failure).

Proof. Thereisachange fromT,toT; onlyife € Ey—Fj;.
We already given one explanation: Ete = By + E;, Et* =
Eto—e,ie. Ty = SPT(V,Ey+ E,), Ty = SPT(V,Ey +
El - 6).

If some other single event explanation has R # 0 then
F=0and|R| =1,say R = {f}, forsome f € E; — Ey.
Thus Ty, = SPT(V, Et°) and Ty = SPT(V, Et + f) for
suitably chosen Eto. Thus Ey C Ef°,and E; C Eto+f,s0
Ey + E; C E* + f. Now Shortest Path Tree over Eto + f
uses only edges from Eq + E1, so SPT(V,E® + f) =
SPT(V,Ey + E1). In this equation, the latter quantity
by our pre-ordained explanation is Ty, while the former
is explained as T;. Hence we arrive at the contradiction,
To = T:. Therefore we must have R = 0. O

Now we show that in the single link failure case, algo-
rithm FindChange() in fact outputs an explanation with
|F| = 1and R = 0. It is possible that F' may include an
edge other than the actual failed link, but it is important to
note that | F/| = 1.

Theorem 3 (Optimality of FindChange). Suppose
Et = Eto — ¢ (single link failure). Then FindChange()
labels exactly one edge as failed, and no edge as added.

Proof. From theorem 2 about admissible explana-
tions and the correctness proof in theorem 1, algo-
rithm FindChange() will never mark any edge as added.
Thus it remains now to show only the first part of the the-
orem, i.e. FindChange() labels exactly one edge as
failed.

Let e = (u,v) be the actual failed edge. Then
Path™ (v) changes. On this path, let  be the node clos-
est to v such that Path™® (x) does not change and let (z, y)
be the edge on Path™o(z — v). We start with Tt = T
and we consider edges in the BFS order of Ey + E;
(Shortest Path Tree = Breadth First Search Tree for un-
weighted graphs). Thus we find (z,y) to be the first edge
such that (z,y) € Eg — E1, (z,y) € Ttan and we mark it
failed. By deleting (z, y) we will change paths of only the
nodes in the subtree rooted at y (that includes nodes u, v).
When we recompute Tty = SPT(Ey + E1 — (z,v)),
call it 7', we claim that this tree uses edges from E; only
so that all other edges of Ey — E; will be marked van-
ished and not failed.

If x = u,y = v, we have identified the correct fault
and we are done. Otherwise the only reason Pathe(3)
changes for i € Path™ (y —s u) because of (u,v) fail-
ure is that there is a destination node p € Vp such that
Path®(p) is along PathT® (v) and there is no other des-
tination ¢ € Vp such that Path™°(q) uses node 4 but not
edge (u,v). Hence in 71, all these nodes must be absent.
This is true also when we delete only (z,y) and so in T,
all these nodes (and hence the edges) are absent. In other
words, deleting (z, y) has the same effect as deleting (u, v),
ie.

SPT(V,E0+E1—($,y)) = SPT(V,E0+E1—€) = Tl.

Now since new Tt,;; is same as 77, it does not have any
edges from Eq — E1, so it will not mark anymore edges as
failed, i.e. the algorithm marks exactly one edge as failed.

O

In the case of single link recovery, results analogous to
theorems 2 and 3 can be proved along the same line of rea-
soning. Combining this with theorem 1, we have proved
correctness and optimality of algorithm FindChange() in
the case of single event explanations.

Thus in order to determine if a single-fault event could
explain the changes at monitoring point M, we simply run
algorithm FindChange() and count the number of links
labeled failed or added. If there is more than one link in this
set, the change could not have been caused by any single-
fault event. If there is exactly one such link, then we have a
single-fault explanation. Furthermore, if the link is failed,
then all single-event explanations involve only one failed
link. Similarly, if the link is added, then all single-event
explanations involve only one recovered link.



4.1. ldentifying All Possible Single-Faults

Given a single plausible failure (recovery) identified us-
ing FindChange(), we now show how to easily identify
all possible single faults. Recall the example in Figures 3—
6 identified link (1,2) as the only failed link. Link (2,4)
could also be selected as the only failed link, but the fail-
ure of only link (4, 6) would not explain the change in route
to prefix P1. As the previous theorem shows, links (5,4)
and (5,6) are marked appeared, but their recovery alone
could not explain the changes in the route to either P1 or
P2. Thus the only possible single fault events in the exam-
ple are the failure of link (1, 2) or the failure of link (2, 4).

At the conclusion of FindChange(), every edge is la-
beled as either unchanged, vanished, or appeared and one
edge is labeled either failed or added. FindPath() starts
with this edge and moves down the tree until all edges that
could have failed are marked failed (or in the case of single
recovery, all edges that could have recovered are marked
added). FindPath() returns the entire set of links that
constitute this path. The failure of any of these links alone
would explain the path changes from Ty to T;.

Algorithm 2: FindPath(Ty, T1)
Input: To(Eo), T1(E4): SPT's from a single View
Output: P: A Path of candidate edges for failure

Let e = (u,z) be the only edge marked failed in
FindChange(Ty, T1);

Initialize P = {e};

Letp = z;

if tag(e) == vanished then

while p has exactly one outgoing edge (p, q) €
Ey— E; do

\; Add (p, q) to P;

Set tag(p, q) = failed;
Setp=g¢;

elseif tag(e) == appeared then
while p has exactly one outgoing edge (p, q) €
E, — E, do
Add (p, q) to P;
\; Set tag(p, ¢) = added;
Setp=g¢;

return P;

5. Combining Views from Multiple Monitor-
ing Points

Having dealt with route change explanations from sin-
gle view point, we now focus on the problem of combin-
ing the views from multiple vantage points to better iden-
tity the single fault scenario. The main objective is to derive
a globally accepted link or set of links, each of whose fail-
ure (addition) alone, could explain the change in routes be-

tween times to to ;. Even if all monitoring points offer
a single fault explanation, some conflict resolution prob-
lems remain. In the previous steps, a monitoring point as-
signed a label to each edge visible from that monitoring
point and different monitoring points may have assigned
conflicting labels to an edge. Combining views primarily
requires some form reconciling these differences.

Note that it is possible to have a single fault explanation
from one monitoring point, yet have only multiple fault ex-
planations from the combined view. In this case, the com-
bined view perspective proves a single fault could not ex-
plain the changes observed globally. For example, it may
be the case that monitoring point M; identified link (a, b)
the only failed link, but monitoring point M identified link
(z,y) as the only failed link. This can easily occur since
link (a,b) may have never appeared in the view from M,
and similarly (z,y) never appeared in the view from Mj.

Algorithm MV S Fault() details the procedure for find-
ing a globally consistent single fault (or single addition)
explanation. The first part of the algorithm involves find-
ing the set of links common to possible failed (added) links
from all the vantage points in the case of a single failure.
The second part involves updating the edge labels of the
algorithm and uses a procedure updateLabel() to achieve
this. The algorithm returns the empty set if a single fault
explanation is not possible in the combined view.

Algorithm 3: MVSFault(M)
Input: Set of SPTs at time ¢, and ¢; from vantage
points in M
Output: Causes: A set of single-change failed (re-
covered) links
Let Causes = 0;
fori=1,...,M do
P =FindPath(SPT}S., SPT}.);
I* a few M;s may not be affect by this failure,
ignore them */
if P # (then
if Causes == () then
| Initialize Causes = P,

ese
| Causes = Causes N P,

for each edge e € M; do
if conflict(e, G) then
| updateLabel(G, e);

return Causes;

If at every step, P == (), then no monitoring point de-
tected any change in routes and the failed (added) edge set
is empty. If many monitoring points detected changes, then
the actual failed link is present in paths P from each of the
monitoring points who observed a change. Thus taking the
intersection of these paths will highlight one or more links.
The intersection cannot be empty if only a single fault ex-



planation exists. The algorithm outputs a set of links de-
noted as Causes and each link in this set is a possible sin-
gle failure explanation. Note that even with the view from
multiple monitoring points, our algorithm may still identity
several possible links whose failure could have caused the
change. In this case, the actual failed link belongs to the set
Causes, but given the limited views, we cannot pin-point
the exact failure. The other task achieved by MVSCauses()
is to re-label the graph edges to achieve a more accurate la-
bel for each edge as views from different vantage points are
added.

5.1. Relabeling of Edges

When combining views, edge labels assigned for an in-
dividual vantage point, may not be valid when we add an-
other view. For example, an edge e labeled as vanished
from one point M3, could be labeled unchanged from an-
other point. We address this by maintaining a global la-
beled graph, that contains edge labels based on already re-
solved views from vantage points. For every view added to
this global labeled graph, we relabel the conflicting edges.
The following rules follow from our labeling scheme, when
adding a view to the global graph.

1. Anunchanged edge would always remain unchanged.

2. Any failed or vanished edge creating a conflict (with
an unchanged, appeared, or added edge) is re-labeled
unchanged. Note that from a point M, an edge can be
labeled vanished, only when it is present in Ty, and
not present in T3. This edge can cause a conflict only
when it is present in T3, viewed from another point,
and thus this edge can only be labeled unchanged. A
failed edge can never be relabeled added or appeared

3. An added or appeared edge creating a conflict (with
an unchanged, vanished, or failed) has to be rela-
beled unchanged. An added link can never be rela-
beled failed or vanished

Figure 7 shows the possible state transitions while com-
bining views. Procedure UpdateLabel() works on the rules
in this state transition diagram. The states in this diagram
are the current labels associated with the global graph. The
labels on the edges are the labels associated with the view
from M, that is being added. The transition from vanished
to failed can only occur in FindPath().

Figure 8 shows how the entire process of combining
views and edge relabeling works with an example. Fig-
ure 8-a shows the view from M7, based on the example in
Figure 4. For clarity, the SPTs at times tq and ¢; are indi-
cated by dashed and solid lines respectively. Similarly, the
view from M- is presented in 8-b. Executing FindPath()
on these two graphs generates Figures 8-c and 8-d. Find-
Path() also produces a path containing the possible single
link failure candidates, shown in figures 8-f and 8-g for M,
and M- respectively. The intersection of these two paths
(as calculated by MV S Flault) results in the failed link as

Appeared

U/A/AD

U/V

FindPath() Unchanged FindPath()

U/A/IAD UIVIF

State of edge in Global Graph

—Y = Stteof edgeinview Mi added
U = Unchanged

A = Appeared AD = Added

V = Vanished F = Failed

Figure 7. State Transition Diagram for la-
beled edges

(2,4). The graph for M; initially forms the global graph,
and the edge relabeling is done by updating the labels in
the global graph from 8-c to 8-e. Note how the labels for
(1,3) and (3,5) from M>, did not have any impact on the
corresponding labels of global graph which were already
unchanged. However, (1, 2) and (4, 5) in the global graph
were relabled unchanged. Thus, we see how we can com-
bine views to identify the single-change links that could ex-
plain the route changes.

6. Reated Work

This paper presents a first step towards an analytical sys-
tem for detecting faults at the BGP level. Previous work has
studied the impact of various stress events on BGP routing,
including studies of Code-Red [1] and SQL Slammer [3],
as well as infrastructure failures. While some of the previ-
ous work was able to provide explanations for these events,
the explanations relied on human insight along with exten-
sive data processing. Code-Red worm and its impact on
BGP routes was first presented in [2], who reported abnor-
malities in BGP behavior during the worm attack. [19] re-
ported the presence of monitoring artifacts in the code-red
data and provided a second look at the event. According
to the study in [19], the worm had a large impact on some
edge networks, and weaknesses in BGP’s design and im-
plementation substantially amplified the impact. The im-
pact of SQL Slammer worm on BGP routing was also stud-
ied in [12] and efforts for visualizing BGP updates to get a
sense of the location of change has been done in [11]. The
approachin [11] is geared towards summarizing large scale
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Figure 8. Example of Combining Views from Two Vantage Points

changes to understand events like major ISP failures. Work
in [18] is directed at visually capturing the BGP routing
information, and contains guidelines for gaining insights.
However, formal algorithms to address the BGP dynamics
are lacking in previous studies.

Other studies have used BGP route data to statically in-
fer the Internet’s underlying AS level topology. [7], [8]
and [4] used AS path information from BGP routing ta-
bles to map and derive characteristics of the Internet inter-
domain topology. [5] further examined the relationships be-
tween ASes using AS path information and classified AS
relationships into three classes: customer-provider, peering
and sibling, based on the observation that each AS path
contains first a sequence of customer-provider and sibling
edges, then one or zero peer-peer edge, and finally a se-

quence of provider-customer and sibling edges. Subrama-
nian et. al. [17] also inferred inter-AS relationship, but their
approach is based on the consistency among multiple rout-
ing tables. These studies have led to a better understanding
of the structure of the Internet topology and the commer-
cial relationship between ASes. However, each uses snap-
shots of the Internet and tells us little about dynamics. The
results cannot be trivially applied to pin point failures.
Algorithm 1 FindChange can also be viewed as deter-
mining tree-edit distance when the operations allowed are
delete and insert and trees are restricted to be Shortest Path
Trees. But in general finding how to convert one tree into
the other is NP-hard and many have considered approxi-
mate solutions [6]. While it is enough for us to compute
SPT everytime a change occurs, many efficient algorithms



exist that dynamically update Shortest Paths Trees, see
for example [13]. Their average case complexity is O(log
n) for each update, and can be used for graphs involving
weighted edges, to reduce the complexity of SPT.

7. Conclusions and Future Work

In order to build diagnostic tools for the global rout-
ing infrastructure, this paper developed an algorithmic
set, called MVSChange, to identify the origin of rout-
ing changes caused by a single link. Utilizing the infor-
mation carried in a path vector routing protocol and col-
lected from multiple vantage points, MVSChange builds
graphs of snapshots of the network routing connectiv-
ity over time, and applies basic graph theory approaches
to pin down the exact location of the link change. Along
with the theoretical proof, our preliminary simulation ex-
periments have also confirmed the correctness of the
design.

We believe that MVSChange represents an important
first step towards applying formal methods to inter-domain
routing diagnosis. Our plan for future work includes ex-
tending MVSChange to cover increasingly more complex
failure cases, such as node failure and multiple simultane-
ous failures. We also plan to incorporate considerations of
routing policies in order to make MVSChange more appli-
cable to Internet deployment.
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