
J Comb Optim (2006) 12:5–16

DOI 10.1007/s10878-006-8901-3

Minimum failure explanations for path
vector routing changes∗

Mohit Lad · Dan Massey · Adam Meyerson ·
Akash Nanavati · Lixia Zhang

Published online: 27 June 2006
C© Springer Science + Business Media, LLC 2006

Abstract Path vector protocols in routing networks convey entire path information to each

destination. When links fail, affected paths are replaced by new paths, and by observing the

entire path information, one might hope to infer the failed links that caused these changes.

However, inferring the exact topological changes behind observed routing changes may not

be possible due to limited information, and the same changes may be explained by more

than one set of candidate failures. In this paper, using a simple path vector routing model,

we present the problem of finding the candidate set with minimum number of failures to

explain observed route changes. We call this problem the minimum e-set problem and present

algorithms for solving it optimally for certain cases. We also show that the minimum e-set

problem is NP-complete in the general case.

∗This material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA)
under Contract No N66001-04-1-8926 and by National Science Fundation(NSF) under Contract No
ANI-0221453. Any opinions, findings and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the DARPA or NSF. Part of the work was
done when Akash Nanavati was at DA-IICT, India

M. Lad (�) · A. Meyerson · L. Zhang
Computer Science Department, University of California, Los Angeles, CA 90095, USA
e-mail: mohit@cs.ucla.edu

A. Meyerson
e-mail: awm@cs.ucla.edu

L. Zhang
e-mail: lixia@cs.ucla.edu

D. Massey
Computer Science Department, Colorado State University, Fort Collins, CO 80523, USA
e-mail: massey@cs.colostate.edu

A. Nanavati
Google Inc., Mountain View, CA 94043, USA
e-mail: akash@google.com

Springer

6 J Comb Optim (2006) 12:5–16

1

2

4 5

3

1

4 5

3

a. Initial tree T0 from node 1 b. Final Tree T1 from node 1

Fig. 1 Possible e-sets are {(1, 2)} and {(2, 4), (2, 5), (2, 6)}

1. Introduction

Path vector routing protocols convey complete path information to reach a destination node.

These protocols can adapt dynamically to topological changes like link failures but usually

do not convey any explicit notification of which links failed. Without any explicit failure

notification, one can only hope to infer failed links based on the complete path information

before and after failures. For example, assume a node 1 can reach a destination node 4 using

the the path 1 → 2 → 4. Now due to some link failure, this path changes to 1 → 2 → 3 → 4.

One can see that link (2, 4) must have failed to cause A to switch to path 1 → 2 → 3 → 4.

However, if the path to C changes from 1 → 2 → 4 to 1 → 3 → 4, one cannot tell whether the

link that failed was (1, 2) or (2, 4). In cases where more than one failure scenario can explain

the observed routing changes, simply analyzing the path to a single destination is not enough.

Even after looking at how paths to all destinations are affected, one might face multiple

failures scenarios. For example, assume that the path to destination 5 also changes from

1 → 2 → 5 to 1 → 3 → 5 at the same time as the path to destination 4 changes from

1 → 2 → 4 to 1 → 3 → 4 as shown in Figure 1. Given this information of path changes to

destinations 4 and 5, many candidate link failure scenarios are possible, some of which are a)

failure of link (1, 2), b) failures of links (2, 4) and (2, 5) and c) failures of links (1, 2), (2, 4)

and (2, 5). We call each of these scenarios as an explanation set or e-set. Even in this simple

case with one source and two destinations, we have many e-sets and cannot say for sure which

one is the cause. In situations where multiple failure scenarios are possible, the minimum

failure e-set problem involves identifying the minimum number of link failures that can

explain the observed route changes. Identifying minimum number of failed edges can give

us a lower bound on the number of failures causing route changes. For example, in Figure 1,

we can say for sure that at least one edge must have failed. In addition, if all links have the

same failure probability, then one can see that the failure of link (1, 2), i.e. the minimum

e-set, is also the most likely solution.

In this work, we formalize the minimum e-set problem and show the problem is NP-

complete in the general case. We discuss conditions under which the minimum e-set can be

optimally found and present simple algorithms for these cases. The remainder of the paper is

organized as follows. Section 2 explains the routing and failure model used and formalizes a

tree version of the minimum e-set problem. Section 3 presents an algorithm for the optimally

solving the minimum e-set problem with tree inputs. Section 4 extends the problem of finding

minimum failures with arbitrary graph inputs and presents a greedy algorithm to optimally

solve the case where each node is a destination. This section also proves the general case of

minimum e-set is NP-complete. Finally, Section 5 contains related work and discussion, and

Section 6 concludes the paper.

Springer

J Comb Optim (2006) 12:5–16 7

2. Model and problem definition

We now provide details about the network and routing model used in this paper. We also

formally define the problem of minimum e-set in this section.

2.1. Network and routing model

We model the network as a simple directed connected graph G = (V, E), where V = VD ∪
VN and E = ED ∪ EN . VD represents the set of destinations and the nodes in VN are transit

nodes. We are only interested in routes to VD . Nodes in VN are connected by links in EN and

each edge in EN has the form (a, b) where a, b ∈ VN . The destinations are attached to the

nodes in VN through edges in ED and each edge in ED has the form [d, n] where d ∈ VD and

n ∈ VN . In all figures, nodes in VD (destinations) are represented by the presence of small

solid rectangles while nodes in VN (transit nodes) do not have these solid rectangles. For

example, in Figure 1, nodes 4, 5 and 3 belong to VD , while nodes 1, 2 belong to VN .

We use a Simple Path Vector Protocol (SPVP) (Griffin and Wilfong, 2000). In SPVP each

node advertises only its best path to reach the destinations. A path from node v to destination

d is a sequence of all the nodes vi ∈ V used in that path. After receiving and storing a route

learned from its neighbors, node v selects its best path to destination d according to some

routing policy.

The routing policy could be any policy that maintains the tree property. In other words, the

routing table containing routes to all destinations at any stage can be graphically represented

in the form of a tree. Thus, at any node u, there has to be only one path to any other node v,

even if v is a used as a transit node to reach some other destination. In the remainder of the

paper, when we refer to ‘best’ path, we mean a path that is deemed best given the routing

policy. We abstract out the notion of ‘best’ path and separate it from its physical interpretation.

For illustration purposes, we use the shortest path routing policy where a node picks the path

with the lowest number of hops as its best path. In case of a tie for more than one paths

with the lowest number of hops, the node picks the path from the neighbor with the lowest

numeric ID. While the shortest path policy is used for illustration purposes, our algorithms

and proofs in the Section 3 work with any policy that can maintain the tree property.

2.2. Failure model

We allow any number of links to fail in the network. All links in the network have the same

failure probability. If a link fails, the nodes adjacent to the link detect the failure and all nodes

using the link must switch to an alternate path (or declare the destination unreachable). The

link failures are not directly reported to any central database or monitoring site. However,

a node whose path is affected by this failure, will see a new path implying that something

went wrong on the initial tree. Different link failures may impact different observation points

and hence we are concerned with the minimum failures as seen from a particular observation

point only. Link failures are atomic, which means if a link fails, no node can use it. We look

at route changes observed from a node to infer failed links. The route changes seen must

have happened only due to link failures and cannot happen due to the addition of new links.

2.3. Input requirements

We do not make any assumption about the the topology of the entire graph being known to

any single node in the graph. We define an observation point as a node for which we can see

the complete routing table at any time. The input we have constitutes of two routing table

Springer

8 J Comb Optim (2006) 12:5–16

snapshots. We assume that the initial as well as final routing tables reflect the steady state tables

after the routes for all the nodes in the network have converged. In other words, there are no

more routing updates propagating in the network at the time of the two routing table snapshots.

2.4. The minimum e-set problem: Tree version

We now formalize the problem of finding minimum failures given routing tree changes. At an

observation point M , let T0 and T1 indicate the routing trees used by node M at two different

times t0 and t1 respectively.

Let RouteCompute(M, G) be a black box routine that computes the best path routing tree

from M given an input graph G. Our goal is to determine a plausible set of links F ⊆ T0 − T1,

that may have failed. We define such a set of plausible failures as an e-set. If many such e-sets

are possible, we are interested in the set with minimum number of failures, or the minimum

e-set. Formally,

RouteCompute(M, T0 ∪ T1) = T0 (1)

A set of links is called explanation set (e-set) iff:

RouteCompute(M, (T0 ∪ T1) − F) = T1 (2)

Note, we do not have information about the complete graph, but we can combine T0 and

T1 to give us some information about the graph. Recall, Figure 1 shows routing trees T0 and

T1 used by node 1. In this example, the routing policy used by the nodes is shortest path

routing policy. It can be seen that RouteCompute(1, (T0 ∪ T1) − {(1, 2)}) = T1 and hence

(1, 2) is an e-set. Similarly {(2, 4), (2, 5)} is also an e-set. Our goal is to find the minimum

e-set from the observed changes.

Minimum e-set problem: Given two routing trees T0 and T1 from a node M , and a known

routing policy, find the minimum F , such that RouteCompute(M, (T0 ∪ T1) − F) = T1.

3. Minimum e-set for tree inputs

In this section, we present a heuristic to solve the tree version of the minimum e-set problem

optimally. The results in this section apply to any routing policy that always produces a tree.

This heuristic uses the notion of nearest-descendant defined below. For any node u in

T0 ∩ T1, where M is the root of the trees, call node v a nearest-descendant of u if

1. v ∈ T0 and u is closer to M than v in T0

2. v is also in T1 or v ∈ VD , where VD is set of destinations and

3. for any x in T0 on the path from u to v, x /∈ T1

To find the nearest-descendant pairs, we use Algorithm 1. The nearest-descendant algo-

rithm uses depth first search (DFS) over T0 to find the nearest descendants of a node u ∈ T0.

Along any DFS path from u, if a node v is present in T1, then no descendant of v needs to be

explored, and v is the nearest descendant of u. Figure 2 shows trees T0 and T1 observed from

node 1. Node 1 has three children 2, 3 and 6. Node 2 is not present in T1 nor is a destination,

hence 2 cannot be a nearest descendent of 1. Recursing from node 2, we can find 4 and

5 to be in T1, and thus are nearest descendants of 2 and hence of 1. Similarly, 3 is also a

nearest descendant of 1. Finally, notice that 8 is not in T1. This is possible if there is no valid

path to reach 8 in T1. But, since 8 is a destination, it is also a nearest-descendant of node 1.

Summarizing, node 1 has 4 nearest descendants in 3, 4, 5 and 8. Among, the other nodes, 2

has nearest descendants 4 and 5, while nodes 3, 4 and 5 do not have any nearest descendants.

Springer

J Comb Optim (2006) 12:5–16 9

Once, we find the set of all (u, v) pairs, such that v is a nearest-descendant of u, we use

Algorithm 2 to compute the minimum e-set. For each (u, v) pair, we check if T1 would still

be the computed tree if edges on the path (u, v) are added to T1. For example, consider the

pair (1, 8) with path 1 → 6 → 8, we have

RouteCompute(1, T1 ∪ path(1, 8)) 	= T1

Thus, we fail the first link on the path 1 → 6 → 8. Similarly, edge (1, 2) is marked failed

for path between (1, 4) as well as (1, 5). On the other hand consider nearest descendent pair

(2, 4). For this pair we have,

RouteCompute(1, T1 ∪ path(2, 4)) = T1

and hence we do not fail any edge on this nearest descendant pair. After considering all the

(u, v) pairs, the minimum e-set in this case is {(1, 2), (1, 6)}. We now prove correctness and

optimality for Algorithm 2.

1

2

4 5

3

a. Initial tree T0 from node 1 b. Final Tree T1 from node 1

6

8

1

4 5

3

7

Fig. 2 Example for nearest
descendent and minimum e-set
from Algorithm 2

Springer

10 J Comb Optim (2006) 12:5–16

Lemma 1. The set of edges F thus determined comprises an e-set.

Proof: We prove this theorem using shortest path routing, but the proof can easily apply

to other tree based routing policies. Assume the contrapositive, in other words, when these

edges fail the resulting tree T f on (T0 ∪ T1) − F is not the final tree T1. It follows that there’s

some (a, b) in T1 such that a shorter path exists in T f . Since we do not fail edges of T1,

the path (a, b) can only be shorter. Let (a, b) be such a pair whose real shortest path in

T0 + T1 − F is as short as possible. Suppose the shortest path between (a, b) includes some

node x in T1. Then we must have either (a, x) or (x, b) closer in T0 + T1 − F than they are

in T1, thus contradicting the definition of (a, b). It follows that the path between (a, b) does

not include any other vertices of T1, and therefore travels entirely though T0. In particular,

(a, b) are nodes of T0 (and T1) and the path between them does not contain any nodes of T1,

so one is a nearest-descendant of the other. It follows that we would have included an edge

on the (a, b) path in F . �

Theorem 1. The e-set F thus determined is minimum.

Proof: Consider all pairs (u, v) where v is a nearest-descendant of u. We know that we must

delete some edge on the path (u, v) in T0, otherwise T1 could not be a shortest path tree. Note

that if v is a nearest-descendant of u, then v cannot also be a nearest-descendant of u′ for any

u′ not equal to u. We can therefore imagine chopping the trees into edge-disjoint subtrees,

where each subtree consists of a node in both T0 and T1 along with its nearest-descendants

and the paths to them. For each subtree, we consider breaking it up into further edge-disjoint

subtrees via the edges from the root (u). For each edge outgoing from u, if we cut that edge

then any algorithm must cut one of the edges in the relevant subtree. Since all subtrees are

disjoint, it follows that any algorithm must cut at least as many edges as ours cuts. �

4. Minimum e-set for general graphs

So far, we discussed how to optimally solve the minimum e-set problem with the nearest-

descendent approach. In Section 3, we restricted the input to a node to be the routing trees from

that node before and after the failures. However, nodes might have additional information

about the underlying topology besides its routing tree. One source of information is the routes

received from other nodes. For example, lets assume a node A receives a route B → C → D
to reach the destination D from neighbor B. Node A also receives the route F → D to

reach destination D from neighbor F. Assume node A selects route F → D via neighbor F

(assuming shortest path), and does not use B to reach any other destination. Even though

links B → C and C → D may not be in A’s routing table, it knows these two links are up,

else B would have sent a new route to reach D. To account for this extra information that a

node might have, we generalize the problem to find minimum e-set when the inputs before

and after failures can be general graphs instead of a trees.

4.1. Problem definition: Graph version

At an observation point M , let T0 and T1 indicate the routing trees used by node M at

two different times t0 and t1 respectively. In addition, let G0 and G1 indicate the set of links

known to be up at t0 and t1 respectively. The set G0 could be just T0, but can contain additional

arbitrary edge information, and T0 ⊆ G0. Similarly, T1 ⊆ G1. We have,

RouteCompute(M, G0 ∪ G1) = T0 (3)

Springer

J Comb Optim (2006) 12:5–16 11

A set of links is called explanation set (e-set) iff:

RouteCompute(M, (G0 ∪ G1) − F) = T1 (4)

Minimum e-set problem: Given two graphs G0 and G1 from a node M containing routing

table links as well as other links, and a known routing policy, find the minimal set of edges F ,

such that RouteCompute(M, (G0 ∪ G1) − F) = T1, where T1 represents the routing table

RouteCompute(M, G1).

While, we show the general case of this problem is NP-complete, a special case of this

problem with graph inputs can be solved optimally if each node is a destination.

4.2. The case of no purely transit nodes, VN = φ or V = VD

We present a greedy Algorithm 3 calledgreedy Fault() to find optimal solution for the case

where each node is a destination, or equivalently there are no transit nodes. This algorithm

removes one edge at a time with edges ordered in breadth first order.

Figure 3 provides an example showing the output of the greedy algorithm on a simple

graph. For this example, we assume the shortest path routing policy with lowest ID tie-

breaking. In this example, each node is a destination. Figure 3a and Figure 3b represent the

initial and final graphs. Note, the link (2, 3) is not in T0 but is present as additional information

in the initial graph G0. In contrast the final graph G1 does not contain any new information

and hence is the same as T1. At each stage, we superimpose the tree edges shown by directed

edges over edges in the graph. After removal of link (1, 2) from G, the link (3, 2) is now on

the tree from node 1 as shown in Figure 3d. It can be seen that link (3, 2) is not in the final

tree and without its failure, the path cannot change to use link (9, 2). Hence, (3, 2) is failed

next to result in the final tree T1.

We define ‘sufficient’ failure set as the links whose failure is enough to change the tree

from T0 to T1, and ‘necessary’ failure set as the links which must fail in order to change the

tree from T0 to T1. With each node as a destination our algorithm will always output sufficient

as well as necessary failures.

Theorem 2. Let F be the set of edges returned by the algorithm greedy-
Fault(M, G0, G1). Then if VN = φ, F is both necessary and sufficient set of edges to
explain the change from T0 to T1.

Springer

12 J Comb Optim (2006) 12:5–16

1

2

4 5 6

3

1

2

4 5 6

3

a. G0 = T0 + edge (2,3) b. G1 = Final Tree T1

c. G=G0+G1

d. Remove link (1,2)

Link in tree from node 1

Link removed by greedy

9 9

1

2

4 5 6

39

1

2

4 5 6

39
F

e. Remove link (2,3) to
give T1

1

2

4 5 6

39
F

F

edge in the graph

Fig. 3 greedy Fault() with each node as a destination

Proof: To show that F is sufficient, we will show that T f = T1 when the algorithm

terminates. In the for loop, we remove edges only from G0 − G1. Thus at the end,

T f =RouteCompute(M, G ′) where G1 ⊆ G ′. Also, the for loop removes edges from

T f that are in G0 − G1. Thus at the end, T f does not include any edges from G0 − G1. Thus

T f = RouteCompute(M, G ′) =RouteCompute(M, G1) = T1.

Now to show that F is necessary, let F ′ by any set of edges such that RouteCompute
((G0 ∪ G1) − F ′) = T1. We will show that F ⊆ F ′, by induction on the iteration of the

for loop. Suppose by induction, at the end of the i-th iteration, e1, . . . , ei are the edges

selected by the algorithm, and by induction, F ′ includes these edges. We will show that F ′

must include ei+1 = (u, v) selected by the algorithm in the (i + 1)-st iteration. Note that the

algorithm chooses the first edge in the BFS order of T f from M that is not in G1. Consider

the path P from M to u in T f . All edges of P are available at time t1 (they are in G1, so the

algorithm did not select them). Hence if (u, v) did not fail during [t0, t1], and since v ∈ VD ,

T1 would include (u, v). It follows that any e-set F ′ must also include (u, v) in order to be a

valid explanation-set. �

4.3. The case of purely transit nodes, VN 	= φ

The Algorithm 3 from the previous section does not produce an optimal solution if the network

contains purely transit nodes. Consider Figure 4 as an example where we see routes from

Springer

J Comb Optim (2006) 12:5–16 13

a. G0=Initial Tree T0 + {(2,3),(3,5)}

1

2

4

8

3

5

1

3

5

8

b. G1=Final Tree T1

1

2

4

8

3

5

F

F

e. Mark (1,2) and (3,4) as failed

Fig. 4 Example showing greedy not optimal in general case

node 1 to a single destination node 8, and nodes 2, 3, 4, 5 are just transit nodes. Parts 4a and

4b show the initial and final graphs. The edges with arrows represent the routing table, while

the others represent information about edges through other means. We assume the network

uses shortest path routing with lowest ID tie breaking for this example. The greedy Algorithm

3 would first mark edge (1, 2) failed, which would shift the route to 1 → 3 → 4 → 8, since

4 has a lower ID than 5 and both the path via 4 and 5 are of length 3. The greedy algorithm

would then mark edge (3, 4) failed resulting in the final tree. But clearly in this case, the e-set

of {(4, 8)} can explain the above change and is also minimal. We now prove that this general

version is NP-complete.

To show that finding minimum e-set in the general case is NP-complete, we will consider

a restriction of it, Directed Path Change (DPC), and prove it is NP-complete. In DPC, we

restrict the number of destinations to one, so that each routing graph is a single path. But we

allow arbitrary G0 and G1. Since DPC involves change of a single path instead of multiple

paths in our general problem, it is thus a subset of the general case and proving hardness for

DPC will imply hardness for the general problem of multiple destinations. We use shortest

path policy for this proof.

4.3.1. Directed path change (DPC)

Given directed graphs G0, G1, two special nodes s, t , and an integer k ≥ 0, let Pi denote

the minimum hop s → t path in Gi such that P0 is also the minimum hop s → t path in

G0 + G1. Does there exist a set of edges F ⊆ G0 − G1 such that |F | ≤ k and P1 is also a

minimum hop s → t path in G0 + G1 − F?

We reduce following problem, UMC, proven to be NP-complete by Dahlhause et al.

(1992).

4.3.2. Undirected multiway cut (UMC)

Given an undirected graph G three special nodes x, y, z and an integer k ≥ 0, is there a set

of edges F , |F | ≤ k such that in G − F , x, y, z are disconnected from each other?

4.3.3. Reduction

Given an instance of UMC(G, x, y, z, k), we create a new directed graph G ′ as follows. The

vertices of G ′ are the vertices of G plus many additional vertices. The edges of G ′ are defined

Springer

14 J Comb Optim (2006) 12:5–16

as follows: for every (undirected) edge (u, v) of G, we put following gadget:1 put two new

vertices w1, w2 (new for each different edge) and add edges (u → w1), (w2 → u), (v →
w1), (w2 → v) and (w1 → w2). Now any path in G that goes u → v, can be simulated in G ′

as u → w1 → w2 → v and any path in G that goes v → u can be simulated in G ′ as v →
w1 → w2 → u. We also add two special vertices s, t in G ′ and add edges (s → x), (z → t).
Let n denote the number of vertices in G. Take two long paths Q1, Q2 of length D
 4n
consisting of new vertices, where Q1 is x → y and Q2 is y → z. Let P0 be the minimum

hop path s → t in G ′ and let P1 be an s → t path by following s → x
Q1→ y

Q2→ z → t . This

(G0 = G ′, G1 = P1, s, t, P0, P1, k) is our instance of DPC.

We shall show that there exists a UMC solution F iff it is also a DPC solution. Let F be

a solution to UMC instance (G, x, y, z, k). Let F ′ be the set of edges in G ′ where for each

edge (u, v) in F , we put the corresponding edge (w1, w2) in F ′. If we remove F ′ and P1 from

G0 = G ′, then x, y, z are disconnected. So the minimum hop s → t path in G0 − F ′ is P1,

and hence F ′ is a solution to DPC (G0 = G ′, G1 = P1, s, t, P0, P1, k).

Conversely, let F ′ be a solution to (G0 = G ′, G1 = P1, s, t, P0, P1, k). For all the edges

picked up from a single (u, v) gadget, we can replace them by (w1, w2) and get a new solution

F ′′, |F ′′| ≤ |F ′|. We claim that G ′ − F ′′ − P1 has x, y, z disconnected. If there was a path

between any pair, say Q : z → y, then by symmetry2 there is also a path Q̄ : y → z. Now

any y → z path in G ′ − F ′′ − P1 has a corresponding path in G of length at most n − 1, and

by our gadget the pathlength multiplies by 3 in G ′, so |Q| = |Q̄| ≤ 3(n − 1). Then the path

s → x
Q1→ y

Q̄→ z → t is available in G ′ − F ′′, and is of length at most 1 + D + 3(n − 1) + 1

which is less than the length of P1 = 2 + 2D (recall D
 4n). This contradicts the claim

that minimum hop path in G ′ − F ′′ is P1. Therefore F ′′ disconnects x, y, z and by choosing

corresponding (u, v) edges, we get F , |F | ≤ k, such that deleting F disconnects x, y, z in

G.

Thus we have shown,

Lemma 2. DPC is NP-hard.

Since DPC is a special case of finding minimum e-set, and given any candidate solution

e-set, it is can clearly be verified in polynomial time, we get,

Theorem 3. Finding minimum e-set is NP-complete.

5. Related work

The problem of isolating faults has been discussed in the context of multicast trees in Reddy

et al. (2000). In their approach, session watchers are used to identify faulty segments of mul-

ticast trees based on whether the tree changed at the common ancestor or not. Their technique

localizes the faults to a particular section of the multicast tree. Active probing techniques

using a Time to Live (TTL) based approach for delay monitoring and fault identification was

proposed by Bejerano and Rastogi (2003) To check if a link (u, v) has failed, a monitoring

station sends probe messages for the same destination v, but with different TTL values, and

1 This gadget is also used by Garg et al. (2004).
2 If the original path traverses v → w1 → w2 → u, then we reverse it to u → w1 → w2 → v since our gadget
has all these edges.

Springer

J Comb Optim (2006) 12:5–16 15

makes the inference based on reply. Wang and Schwartz (1993) proposes a scheme to produce

a ranked list of most probable failed links. These most likely faulty links then have to be

tested to see which ones have failed.

In path vector routing, the single fault case is analyzed in Lad et al. (2004) which combines

the views from multiple observation points to increase accuracy. Various works have looked

at identifying the root causes of Internet routing changes. Using the publicly available data of

route changes to identify root cause is the focus of work in Wu et al. (2005); FeldMann et al.

(2004); Chang et al. (2003). Each of these works uses some heuristics to relate changes across

different destinations and identify the problem areas. Though these works have talked about

identification of failures, to the best of our knowledge there is no prior work on identifying

minimum failures.

On a related front, (Kleinberg et al., 2004) talks about the problem of placement of

monitoring points to best detect failures. A similar problem is also discussed in Bejerano and

Rastogi (2003), where they show computing the minimal number of monitoring stations is

NP-hard, and present an approximation algorithm.

Finally, another way to view the cause of changes is tree-edit distance when the opera-

tions allowed are delete and insert and trees are restricted to be Shortest Path Trees. But in

general finding how to convert one tree into the other is NP-hard and many have considered

approximate solutions (Garofalakis and Kumar, 2003).

6. Conclusions

In this paper, we discussed the problem of finding minimum number of failures that can

explain observed routing changes. We considered two variants of the problem, one with tree

inputs and the other with graph inputs. We presented the nearest-descendent algorithm to

optimally solve the tree version. We showed this problem is NP-complete in the general

case where the input information represent arbitrary graphs and we may have additional

information about arbitrary edges. We proved that the special case where there are no purely

transit nodes can be solved optimally. An obvious future work is to find an approximation

algorithm. We also plan to extend the current work by combining route changes from multiple

nodes and finding the minimum e-set on this combined view.

References

Griffin T, Wilfong GT (2000) A safe path vector protocol. In: INFOCOM (2):490–499
Dahlhause E, Johnson DS, Papadimitriou CH, Seymore PD, Yannakakis, M (1992) The complexity of multiway

cuts. In: 24th Annual ACM Symposium on Theory of Computing.
Garg N, Vazirani V, Yannakakis M (2004) Multiway cuts in node weighted graphs. In: Journal of Algorithms

49–61
Reddy A, Govindan R, Estrin D (2000) Fault isolation in multicast trees. In: SIGCOMM 29–40
Bejerano Y, Rastogi R (2003) Robust Monitoring of Link Delays and Faults in IP Networks. In: INFOCOMM
Wang C, Schwartz M (1993) Identification of Faulty Links in Dynamic-Routed Networks. IEEE Journal on

Selected Areas in Communication 11
Lad M, Nanavati A, Massey D, Zhang L (2004) An Algorithmic Approach to Identifying Link Failures. In:

10th Pacific Rim International Symposium on Dependable Computing (PRDC).
Wu J, Mao ZM, Rexford J (2005) Finding a needle in a haystack: Pinpointing significant BGP routing changes

in an IP network. In: Proceedings of 2nd symposium on Networked Systems Design and Implementation
(NSDI).

FeldMann A, Maennel O, Mao ZM, Berger A, Maggs B (2004) Locating Internet routing instabilities. In:
Proceedings of Sigcomm

Springer

16 J Comb Optim (2006) 12:5–16

Chang D, Govindan R, Hiedemann J (2003) The temporal and topological characterestics of BGP path changes.
In: ICNP.

Kleinberg J, Sandler M, Slivkins A (2004) Network Failure Detection and Graph Connectivity. Proc. 15th
ACM-SIAM Symposium on Discrete Algorithms

Garofalakis M, Kumar A (2003) Correlating xml data streams using tree-edit distance embeddings. In: Pro-
ceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, ACM Press 143–154

Springer

