
Inferring the Origin of Routing Changes using Link
Weights

Mohit Lad∗, Ricardo Oliveira∗, Dan Massey†, and Lixia Zhang∗

∗Computer Science Department, University of California, Los Angeles CA 90095
Email: {mohit,rveloso,lixia}@cs.ucla.edu

†Computer Science Department, Colorado State University, Fort Collins, CO 80523
Email: massey@cs.colostate.edu

Abstract— The global Internet routing infrastructure is a large
and complex distributed system where routing changes occur
constantly. Our objective in this paper is to develop a simple
and effective inference solution that can identify the AS or
inter-AS link failures that trigger large scale routing changes
in near realtime. We achieve this goal through a novel approach
based on link weights. We measure the weight of each inter-AS
link by the number of routes carried over that link, and keep
track of its expected value and variance. We then correlate the
weight changes of adjacent links and use a min-cut heuristic
to find candidates for the origin of change. This work makes
three contributions. First, we keep track of link weights rather
than the routes of individual prefixes and thus our analysis is
based on an aggregate view. Second, we use expected value and
mean deviation of the link weights to identify routing events
and distinguish route changes caused by failures from those
by recoveries. Finally we use a min-cut heuristic based on the
classification of routing events to accurately identify the AS
or inter-AS link most likely responsible for the observed route
changes. We verified our design using BGP data collected from
operational Internet. Our efficient and accurate routing diagnosis
solution can greatly help us gain better understanding of the
dynamics in the operational Internet.

I. INTRODUCTION

The global Internet routing infrastructure is a large and
complex system. Although the inter-domain routing protocol,
BGP, seems simple by its specification, its behavior can be
very complex in this fully distributed and highly dynamic en-
vironment where tens of thousands of routers interact through
BGP message exchanges. Yet it is crucially important, both
practically and theoretically, to be able to identify the origins
of routing changes. This ability enables network operators to
quickly locate the sources of significant routing events, and
enables researchers to gain further understanding of the routing
protocol’s reactions to those events. In this paper, we present
a technique to efficiently detect significant events and identify
the Autonomous Systems (ASes) or inter-AS links that caused
the events.

We begin by considering the view from an arbitrary vantage
point in the Internet, a BGP router in an ISP or enterprise
network. One can hope to diagnose events by observing the
stream of BGP updates received by the router. The paths to
some prefixes change, some other prefixes become unreach-
able, and perhaps some new prefixes also appear. Given the
sheer scale and dense connectivity of the global Internet,

a typical BGP router receives a constant stream of update
messages. For example, one BGP router monitored by the
Oregon RouteViews received over 15 million routing updates
during January 2007. Furthermore, the dense connectivity
and routing policies lead to the fact that routers in different
locations have different views regarding the routes and route
changes to individual prefixes. These two factors suggest that
previous approaches to the origin inference by tracking route
changes to specific prefixes (e.g. the work in [4]) would require
routing data collected from a large number of vantage points
and thus incur a heavy load of data processing. To develop a
simple and effective inference solution, we must start from a
different point.

We design a new inference scheme using the abstract
measures of link weight and weight changes developed in our
previous work, the Link-Rank tool [9]. Link-Rank extracts the
total number of routes carried over each inter-AS link in the In-
ternet topology, called link weight, and measures the changes
in the number of routes on each link to capture aggregate
routing changes. This provides a concise representation of the
view from a particular BGP router. We further leverage our
previous observations that, among multiple alternative paths
to a given destination, the most preferred path is used most of
the time [12]. As a direct corollary from this observation, each
AS link is expected to have a stable weight, and deviations
from this expected value can serve as indications of significant
routing changes.

Once a significant deviation is detected, our objective is
to identify the origin of this deviation. Given the view from
a single router, we can use a min-cut heuristic to identify
the most likely faulty AS node or AS-AS link, enabling an
isolated BGP router with only its own update stream to identify
significant events and infer the origin of these events. By
correlating changes observed from different monitors, we can
achieve a very high degree of accuracy identifying the AS node
or AS-AS link responsible for triggering the event. This can all
be done in near real-time and provides useful tool for network
operations and for understanding BGP protocol behavior in the
aggregate. We validated our heuristic by accurately identifying
session problems reported by Abilene with its peers. Our
evaluation on events where problem area is adjacent to the
origin AS shows that we could achieve an accuracy of close

to 95%. On applying our heuristic over one month of BGP
data, we found various interesting routing instabilities, some
recurring again and again, clearly highlighting the need to be
able to identify origin of changes on a regular basis.

The remainder of the paper is organized as follows. Sec-
tion II provides background on Internet routing, BGP data
collection, and our LinkRank approach of assigning weights.
Section III presents our scheme for identifying events and
Section IV describes the min-cut heuristic. Section V validates
our scheme and presents the results of using our approach on
BGP data from the Internet. Section VI discusses some open
issues. Section VII presents related work and Section VIII
concludes the paper.

II. BACKGROUND

A. Internet Routing and BGP

The Internet consists of a large number of networks called
autonomous systems (AS). Each AS is assigned an AS num-
ber and contains one or multiple destination networks. Each
destination network is represented by an IP address prefix.
For example, the prefix 131.179.96.0/24 represents a network
at UCLA and is part of AS 52 (UCLA’s AS number). As of
July 2007, the Internet consists of over 25,000 autonomous
systems and over 220,000 prefixes.

Border Gateway Protocol (BGP) [13] is the de-facto routing
protocol used between autonomous systems in the Internet
today. BGP is a path vector protocol and routing information
in BGP is propagated by the sending BGP update messages. A
BGP update message contains information about the destina-
tion prefix and the AS path used to reach that prefix. Figure 1
shows how BGP updates propagate routing information in the
Internet. In this figure, AS 22 owns a prefix P1 and sends a
BGP update message {P1 : 22} to its neighbor AS 33. AS
22 is said to be the origin AS for prefix P1. On receiving
this update, AS 33 now prepends its own AS number to the
received path and sends the BGP update {P1 : 33, 22} to its
neighbors, AS 44 and AS 55. Note, AS 44 receives two paths
to reach P1 and it chooses one of them as the primary path
based on its routing policies.

In Figure 1, a router in AS 44 is attached to a collection
box that receives and logs BGP updates. The collection box
could be some private log system setup by AS 44 or could
be a public log of BGP updates such as those provided by
RouteViews [11] and RIPE [15]. In the figure, router R in AS
44 serves as our observation point and the update data provides
a view from operational router R in AS 44. An observation
point is always a specific router and different routers in the
same AS may provide different views. But if there is only one
router R being monitored in an AS A, we refer to view from
router R in AS A as simply the view from AS A.

B. Inferring origin of routing changes

The origin of a routing change is the AS that first sends out
an update message indicating a change in BGP route. This
change then propagates through the Internet and is observed
at different BGP routers. The origin can also be defined as

AS 22

AS 33

AS 44

AS 55

Collection
box

P1

P1: 22

P1: 33 22

P1: 44 33 22

P1:
33

 22

Monitored
Router

P1
: 5

5
33

 2
2

Fig. 1. Internet routing and BGP monitoring

an AS-AS link if the reason the update was sent was due to
an issue with that particular link. For example, suppose the
link between AS 44 and AS 33 failed in Figure 1. Depending
on how quickly and efficiently BGP converges, our collection
point may receive a few updates. Eventually our collection
point will receive a BGP update reporting the new path to
P1 as {P1 : 44, 55, 33, 22}. The origin of this change is the
link between AS 44 and AS 33. The problem of inferring
origin of change involves examining the observed BGP route
changes and inferring the AS that sent originated the BGP
route change.

However our objective is not to investigate every single AS
path change. Internet routing is very dynamic and routes are
constantly changing with a typical observation point logging
over 15 million updates in a month. In this work, we focus
on aggregate routing changes that stand out from day to day
activity. To aggregate changes together and identify events, we
begin with some of our previous work from the Link-Rank
representation and visualization toolset.

C. Link-Rank graphs

Link-Rank graphs are used to visualize routing events in-
volving multiple prefixes. Link-Rank takes as input the updates
received from an observation point (BGP router) and uses the
AS path information in updates to construct that observation
point’s view of the logical AS connectivity. In particular, Link-
Rank assigns a weight to each logical AS-AS link that reflects
the number of BGP routes carried over that link. Due to
differences in BGP polices, the same link can have a different
weight when viewed from different observation points. Unless
otherwise specified, in the rest of the paper, link weight is
tied to a specific observation point. Each update from the
observation point may report some change in path for some
prefixes and thus may change the link weight for one or
more logical links. Overall, an observation point can provide a
logical topology where each link in the topology has a weight
that reflects the number of prefixes carried on the link and
each update potentially changes the weights.

These changes can be captured using a rank change graph
such as the one shown in Figure 2. The figure shows an
event observed from a router in AS 11686. Red edges (with

Fig. 2. Example of a Link-Rank graph from AS 11686

negative weights) indicate that a link has lost of routes and the
weight equals the number of routes lost, while green edges
indicate a gain of routes (and thus gain of weight) on that
link. Arrow direction indicates how traffic would flow from
the observation point to the destinations with the observation
point colored blue. This simple Link-Rank graph shows the
main link weight changes involved in a routing event. In
this case, the origin of the event was a problem on the link
between 11686 and 3561. Link-Rank is meant to be a tool
to aid network operators understand changes and relies on
user insight in making inferences about event. Systematically
identifying events and finding their origin is non-trivial and is
the focus of this paper.

While Link-Rank graphs and concepts provide an aggre-
gated view of routing from an observation point, the link
weights are in constant flux. BGP routing is dynamic and there
are constant changes going on in the Internet. These changes
result in changes in link weights. However, there is reason to
believe one could establish a normal value for a given logical
link. Prior work in understanding BGP dynamics indicated that
majority of routes in the Internet do not change frequently, and
majority of the routing changes can be narrowed down to a
small percentage of prefixes [14], [6]. Furthermore, our pre-
vious measurements showed that among multiple alternative
paths to a given destination, the most preferred path is used
most of the time [12]. The combined results from the above
observations lead to the expectation that the number of routes
carried over most AS-AS link could be captured as some sort
of an expected normal value.

III. EVENT DETECTION

In this section, we explain how we characterize link weights
and identify routing events. Our first objective is to identify
the expected value of a link over a period of time. In addition
to this expected value, we are also interested in knowing how
stable the link weight is over a period of time. Using these
two values we try to identify events by looking for irregular
behavior.

We sample the link weight every T time units and define an
exponential moving average of link weight to get the expected
Weight. The expected weight w̄t(l) at time t takes into account
the past history of the link weight as well as present and is

computed as

w̄t(l) = (1− α) · w̄t−1(l) + α · wt(l)

where wt(l) is the current weight of the link l, and α
decides how much importance is assigned to the current value
compared to the past values.

It is not enough to just capture the expected weight and one
also needs to take into account the typical variance of this link.
This variance will be an important factor in identifying events.
Figure 3(a) shows the instantaneous weight of link 7018-1239
as seen from a BGP router in AS 7018. Note that the Y-range
in this graph starts from 23,600. We can see a few spikes
in the instantaneous weight as well as some longer lasting
changes (plateaus). Our approach is to characterize how much
link weights fluctuate and look for deviations that exceed some
normal value. We capture this deviation using mean deviation
δt(l) = |w̄t(l)−wt(l)|, where w̄t(l) is the expected weight of
link l, and wt(l) is the current observed weight of the link.
To take into account the history of deviation, we define an
exponential moving average of the mean deviation as

δ̄t(l) = (1− β) · δ̄t−1(l) + β · |w̄t(l)− wt(l)|

Our objective in assigning values to the sampling interval T ,
α and β is to get an expected behavior that is not influenced by
very short lived changes (especially convergence events), while
at the same time being able to adapt to longer lasting changes
quickly enough. We want the value of T to be greater than
the convergence time, which has been found to be 2 minutes
on average [12] and sometimes be as long as 5 minutes.
Based on this, we conservatively set the sampling interval
T = 10 minutes. We wanted the expected weight to be resilient
against short lived changes in weights due to failures. We
picked a few random links from the set of heavy weight links,
medium weight links and low weight links. We plotted the
instantaneous samples for all these links over a 10 day period.
We then plotted the expected weight w̄t(l) for different values
of α ranging from 0.1 to 0.9. From our observations, α = 0.1
provided a close approximation of the link weights while not
being affected by the short lived spikes. Figure 3(b) shows the
expected weight for (7018,1239) with α = 0.1, and we can
see that the curve closely follows the instantaneous values
except for the short lived spikes. Following similar studies for
deviation, we picked β = 0.25. With an accurate knowledge
of mean failure and recovery times, one may be able to better
tune the value of α and β.

A. Link Events

We define a link event as a significant deviation from the
expected weight of a link. The mean deviation δ̄t(l) provides
an estimate of how much a link weight fluctuates. We define
a change as significant when the weight of a link changes
by more than twice the expected mean deviation. In other
words, we associate the start of the event as the time when
the current weight changes by more 2∗ δ̄t(l). At this point, we
need to identify the end of the event when the link stabilizes
again. We mark the end of the event by using a fixed timeout

 23600

 23800

 24000

 24200

 24400

 24600

 24800

 25000

 0 50 100 150 200 250 300 350 400 450

In
st

an
an

eo
us

 W
ei

gh
t

Sample ID

Link 7018-1239

(a) Instantaneous Link Weight

 23600

 23800

 24000

 24200

 24400

 24600

 24800

 25000

 0 50 100 150 200 250 300 350 400 450

E
xp

ec
te

d
W

ei
gh

t

Sample ID

alpha=0.1

(b) Expected Weight

Fig. 3. Example showing choice of α = 0.1

of t = 3 minutes, being slightly more conservative than the
average convergence time for events of around 2 minutes [12].
When viewing all links together, an event starts when any link
changes by more than the deviation range, and ends t = 3
minutes later. At the end of the event, we have two weights
for each link, the weight before and after the event.

Note it is possible that links with very small weights (e.g.
w̄t(l) = 5) can result in a link event even when 1 route
changes. To account for this, we log all link weight changes
and filter out very small weight changes (e.g < 25 routes).
Also due to our choice of fixed timeout of t = 3 minutes, it
is possible for a single big event (e.g. 50,000 route changes)
to be broken into more than one event. In Figure 4 shows
the number of events identified by different observation points
from RouteViews’ Oregon collector for the month of January
2007.

Note that our scheme is very different from previous ap-
proaches on event detection that work with update clustering.
Update messages can result from a variety of causes and not
all of them affect data delivery. Our approach abstracts out the
AS path changes using the aggregate measure of link weights.
The reader must keep in mind that cases where one observes

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 5 10 15 20 25 30 35 40 45

N
um

be
r o

f e
ve

nt
s

(J
an

 2
00

7)

Observation Point ID

Fig. 4. Events in January 2007

significantly large amount of updates being generated by a very
small set of prefixes could be missed by our scheme. Further
note that our current scheme defines aggregate in terms of
a simple count of number of routes, and one might view a
smaller number of important prefixes being affected as more
significant than a larger set of affected prefixes seeing lesser
traffic. Nevertheless, we feel that this scheme is well suited
for identifying large scale routing changes.

IV. THE INFERENCE SCHEME

We now present our heuristic to identify the origin of routing
events. We first present an overview of our approach and then
go into the details.

A. Overview of approach

After we apply the event identification scheme described in
Section III, we get a set of routing events. Each event contains
the time of the event, the set of links along with the weight
of the link at the end of the event, and the change in weight.
An event may be a failure event where a bunch of preferred
routes are lost, or may be a recovery where previously lost
preferred routes are available again. If the event is a failure
then the origin of change is contained in the set of links that
have lost routes, while if its a recovery event, then the origin
of change is contained in the set of links that gained routes. At
the first stage we do not make any classification of the event
as a failure or recovery and identify origin of change for both
possibilities.

For the set of edges that lost routes, we correlate the changes
across different links involved and construct a flow graph
called fault graph with an artificial source S and an artificial
sink T . The idea behind constructing a fault graph is that
any cut (set of edges) disconnecting S and T represents a
possible explanation for origin of change. Further, if each edge
were equally likely to fail, a cut involving the least number
of edges, or min-cut is most likely to be the origin of the
change. By augmenting the fault graph with information from
other available observation points, we argue that the min-cut
on the fault graph is the most likely explanation. We repeat

weight tracking
& event

identification
BGP

updates

construct
fault graph
recovery

Candidate
set

reduction

+ve
changes origin of

change

construct
fault graph

failure

-ve changes

min-cut edges

min-cut

edges

Fig. 5. Main steps in inference

the procedure of constructing a fault graph and finding the
min-cut for the set of edges that gained routes as well. Finally,
given two possible explanations, one with edges that lost routes
and one with edges that gained routes, we use information
about expected weights and variance to understand which
explanation is more likely. Figure 5 shows the main steps in
our process.

B. Fault graph

We now go into details of the construction of a fault graph.
For each event, we construct two graphs, one is the loss graph
involving all links that lost weight, and the other is the gain
graph involving all links that gained weight. At this stage
we do not know whether the event is a failure or a recovery
and there is greater benefit in adding information from other
monitoring points first. Algorithm 1 details the construction of
a fault graph for positive and negative weight edges for each
event.

Algorithm 1: Fault-Graph(E)
Construct Gst as union of all negative (or positive) edges
in E;
Assign w(e) = 1 for all e ∈ E;
/* Find nodes with no incoming changes */
for each node n such that (x, n) /∈ E for any x do

add edge (s, n) to Gst with w(s, n) =∞ ;

/* Find nodes with no outgoing changes */
for each node n such that (n, x) /∈ E for any x do

add edge (n, t) to Gst with w(n, t) =∞ ;

The main idea in constructing the fault graph is to connect
the source node S to all the nodes that have only outgoing
edges, and the sink node T to all the nodes that have only
incoming changes. Figure 6 shows a fault graph constructed
from a single observation point for an event that occured
on March 9, 2007 at 18:05. One can see here that node
11537 is not connected to either S or T , since it has both
incoming and outgoing edges. In reality, our implementation
takes into account the total incoming weight change and the
total outgoing weight change in making a decision on whether
a node connects to S or T . For example, if some node B has
total incoming change of -500 i.e. w(A,B) = −500 but an
outgoing change of only -10, i.e. w(B,C) = −10, then the
sink of the flow has to be at node B, due to the discrepancy in
the incoming and outgoing changes. The enclosed table shows

S

11686 19782

2018

11537

T

Link Weight Expected Change Dev

11686-19782 12387 12342 -135 21
19782-11537 8495 8658 -135 23
11537-2018 0 137 -137 0

S

11686 19151

2018

5713

T

a. Negative weight change

b. Positive weight change

Link Weight Expected Change Dev

11686-19151 16484 18346 135 3356
19151-5713 243 120 129 0
5713-2018 136 0 136 0

Fig. 6. A fault graph from single observation point

the link weights and changes for the three links included in the
fault graph. In the fault graph, any of the three edges could be
cut to obtain a possible explanation, but generally, as you go
farther away from the source S, the edge weight decreases, and
with comparable change on a single path, we try to remove an
edge as far away from S as possible. In Figure 6, a min-cut on
each graph results in two edges 11537-2018 and 5713-2018
as possible candidates

C. Augmenting fault graph with views from additional obser-
vation points

One may have access to events generated from other obser-
vation points in addition to their own BGP data. In practice,
one can achieve this by processing events from a few peers
of public data collectors like RouteViews and RIPE RIS. We
are interested in adding information from other observation
points to aid the inference from our primary observation point.
Specifically, we build on the fault graph from the primary
observation point in Algorithm 1.

We first identify links from other observation points that
are common to the fault graph from the primary point. We
then identify the links that connect to and from these common
links and add these set of links to the fault graph. Finally, we
connect nodes that have only outgoing edges to S and nodes
that have only incoming edges to T . Algorithm 2 presents the
details.

Figure 7(a) shows the fault graph for an event observed
from AS 2914. Here, the min-cut results in edge 2914-3549
as the possible origin of change. Now, adding information
from 2 other monitoring points as in Algorithm 2 results
in the fault graph in Figure 7(b), and one can see that the

S

2914

3549

3216

8732

T

Cut

Link Weight Change

2914-3549 5870 -172
3549-3216 0 -61
3549-8732 0 -85

(a) Min-cut on fault graph from 2914 identifies incorrect edge

S

2914

3549

3216

8732

T
5511

4637
Cut

(b) Adding information from other observation points to fault
graph increases accuracy

Fig. 7. Augmenting a fault graph with additional information

Algorithm 2: Augmenting the fault graph
Input: Gst: The fault graph from primary observation

point for time t
Output: G′st: Augmented fault graph for time t
for each monitor Mi do

for event in time interval (t− δ, t+ δ) do
for edge (a, b) common to Gst and Ei do

Ei=edges connecting to and from (a, b);
addToGraph(Gst, Ei);

edges 3549-3216 and 3549-8732 are now identified as the
origin of the change. Adding more observation points further
strengthens this explanation. By observing the weights of the
edges involved, it seems most likely that this is the correct
explanation.

D. Candidate set reduction

In this final stage, we infer whether the change was a failure
or a recovery based on the candidate sets we have and end up
with either the positive change candidate set or the negative
change candidate set as the most likely root cause.

1) Using link state information: We define the following
states a link (l) can be based on its current weight w(l),
expected weight w̄(l) and deviation δ(l).

1) Normal: when w(l) is within w̄(l)± 2 ∗ δ(l)
2) Loss: when w(l) < w̄(l)− 2 ∗ δ(l)
3) Gain: when w(l) > w̄(l) + 2 ∗ δ(l)

Normal Loss

Gain

fail

recover

fail-other

recover-other

ga
in-
los
s

los
s-g
ain

Fig. 8. State transition diagram

The state transitions between these states are shown in
Figure 8. When a link fails, its weight drops and as a result
it transitions from normal state to loss state, defined as fail.
At the same time, the affected routes would take an alternate
path and the weight for such a link on the alternate path will
increase, thus moving it from normal state to gain state. We
define this transition of state from normal to gain as a fail-
other. This increase in rank however will not be due to its own
recovery, but due to some other failure that results in routes
using the link as an alternative. Similarly, transition from loss
to normal and gain to normal can be classified as recover and
recover-other.

Figure 8 also shows transitions between states of loss and
gain. Such transitions (called loss-gain and gain-loss) are not
frequent, but are difficult to classify and hence we do not
associate them with recovery or failure. While we find a vast
majority of the transitions to occur between normal and loss,
and normal and gain states, a more detailed study needs to be
done in understanding conflicting cases in order to make the
best use of the knowledge of expected link weights. From the
example in Figure 6, using the states defined in Figure 8, we
classify the edge 11537-2018 as fail, and the edge 5713-2018
as fail other. Thus, the origin lies on the link 11537-2018, and
actually the correct explanation was verified by logs obtained
from AS 11537 confirming a BGP session failure with AS
2018 at that exact time.

E. Identifying node problems

Even though our scheme uses link weights to capture
changes, we can also identify potential node problems where
the origin is an AS instead of particular links. This can happen
due to i-BGP problems within an AS causing instability or
due to a BGP router connected to multiple ASes going down.
To identify potential node problems, we first rank each node
by the number of edges adjacent to it in the set of links
from candidate set. The nodes with high rank (e.g. lots of
adjacent edges in candidate set) are likely candidates for node
problems. In our analysis, we found a few cases where a lot
of links adjacent to a particular node were identified as origins
of change.

V. EVALUATION

In this section we discuss how we validate the results from
our scheme. A fundamental challenge in the validation of a
scheme to infer origin of changes is the dearth of publicly

S

7660 22238

201811537 T

11686

Cut

19782

Fig. 9. BGP peer TENET (AS 2018) of Abilene (AS 11537) was unreachable.
Event observed from primary view of AS 11686.

available documentation of BGP session or router failures. We
perform two kinds of validation, one using publicly available
information of outages from Abilene, and the other using BGP
updates to identify a class of events where the origin of the
event is almost surely adjacent to the AS announcing the
prefix.

A. Validation using Abilene Data

The Abilene network in United States is a high-performance
backbone network created by the Internet2 community. Abi-
lene maintains a publicly accessible mailing list and archive
containing descriptions of problems inside Abilene, outages,
as well as BGP session problems with its peers. A typical
peer unavailable message describes which BGP router inside
Abilene lost connectivity to which AS, and the start and end
time of the outage. However, most of Abilene’s peering with
an AS occurs through multiple physical locations, e.g. Abilene
peers with KreoNet through Chicago as well as Seattle. Hence,
when one of the BGP sessions, (say the Chicago peering with
KreoNet) goes down, the affected AS (KreoNet) can still be
reached using other internal BGP routers (KreoNet through
Seattle). In such cases, Abilene may not announce an AS path
change to its neighbors, and hence such events cannot be used
for our validation. Using peering maps available from Abilene,
we identified BGP peers of Abilene that connected at exactly
one location and carried more than 25 prefixes, big enough to
generate a link weight disturbance. If such a peering session
were to go down, then Abilene would have to send an AS
path change to its neighbors and this event could be seen at
other observation points. We extracted events related to these
peers over a 3 month period from January 1, 2007 to March
31, 2007. We found a total of 7 BGP peering session failures
in this period from Abilene’s email archives. Out of these
events, 6 of them caused link weight disturbances observed at
one or more observation points in our data, and all 6 of them
were identified by our heuristic. Figure 6 on page 5 presents
the fault graph from one of these 6 cases that was used for
validation. Adding one additional view from AS 7660 gives
the fault graph with weight losses shown in Figure 9. Our
heuristic puts the min-cut at edge {11537,2018}. From the
mailing list message, Abilene’s peer TENET (AS 2018) lost
connectivity to the Abilene network (AS 11537) at that time,
as accurately identified by our scheme.

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45

N
um

be
r o

f e
ve

nt
s

Observation Point ID

Affecting >50 prefixes
Affecting >75 prefixes

Affecting >100 prefixes

Fig. 10. Number of origin-adjacent events affecting each observation point

B. Validation using Origin-adjacent events

Prior works in inference of origin of change [4] validate
results using BGP beacons. However, we do not use BGP
beacons for validation since beacon events are per prefix and
hence are not suited for our link weight based scheme which
is tailored for larger scale disturbances. Instead, we identify
large scale events where a set of prefixes originated by the
same AS were unreachable as observed from a majority of
observation points. Given the topological mesh-ness, the most
likely reason for unreachability from diverse set of observation
points is that the problem lies on or directly adjacent to the AS
originating the prefixes. We call such events origin-adjacent
events.

1) Collecting origin-adjacent events: To collect a set of
origin-adjacent events, we used the clustering based event
classification scheme [12] based on initial and final paths for
each prefix. In particular, we were interested in the events
classified by [12] as Tdown events where a prefix is un-
reachable from multiple observation points. We extended this
scheme and further correlated the Tdown events across different
prefixes using a fixed sliding window of 30 minutes. All
events happening in the same time window affecting prefixes
originated by the same origin AS were aggregated into a single
event. We further removed those events that were affecting
less than 50 prefixes, and from the remaining events, we only
considered those that were observed by more than 50% of
the monitors. We applied this classification scheme on the
BGP data collected from RouteViews Oregon collector over
the month of January 2007 to give us the set of origin-adjacent
events. Note, that different observation points might observe
slightly different events but any event must have been observed
by at least 50% of the observation points. Figure 10 shows
the number of events involving different minimum number of
prefixes for each observation point 1.

2) Applying link weight based min-cut heuristic: To apply
our scheme, we identified events based on our link weight

1We removed two observation points that saw a very small number of
events.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45

A
cc

ur
ac

y
P

er
ce

nt
ag

e

Observation Point ID

Single View
Multiple Views

Fig. 11. Accuracy of Fsingle and Fmult for origin events involving more
than 50 prefixes

based event identification scheme described in Section III.
We then constructed a fault graph for each observation point
individually using Algorithm 1. The min-cut on this fault
graph, called Fsingle, indicated the likely origin of change
taking into account only the primary observation point. We
then augmented the fault graph with the view from the other
observation points as in Algorithm 2. The min-cut on this fault
graph, called Fmult, indicated the likely origin of change by
augmenting information from other observation points to the
primary observation point.

3) Results: Figure 11 shows the percentage of prefix origin-
events-50 accurately identified by each observation point using
its primary view only, i.e. Fsingle, as well as with infor-
mation from other views, i.e. Fmult. The accuracy of event
detection using just the primary view varies over the different
observation points. However, we can see that the accuracy for
all observation points is consistently above 90% for Fmult

shown in Figure 11. To understand why accuracy for some
monitors was low when using just the primary view, consider
the example fault graph constructed in Figure 12. This fault
graph was constructed as viewed from monitor AS 2493, and
included withdrawn prefixes from AS 14117 and AS 306
around the same time. As can be seen, the first hop in the
withdrawn path (i.e. 2493-3602) is common to these unrelated
events, and this hop is returned by the min-cut scheme as
the problem link, instead of the two links 6762-14117 and
575-306. However, when information from other monitors
is added to this fault graph, other diverse paths force the
cut on the last hop links, thus resulting in more accurate
inference. Similarly high accuracy was also obtained with
multiple monitors for prefix events involving more than 75 and
100 prefixes respectively. This shows that adding information
from other observation points does help in increasing the
accuracy of identifying the cause of the change.

C. Application to BGP data

We applied our scheme to BGP data over the month
of January 2007. For each observation point, we used the
additional views from the other points in diagnosing its own
events. In particular, we analyzed the events seen by AS 2914

2493

14117

6762

812

3602

S

T

1239

6453

209

721

575

306Min-cut

Problem
link

Problem
link

Fig. 12. Example showing why accuracy may be low with only primary
view

Fig. 13. Repeated instability involving AS 2072 as viewed from AS 2914.

in detail and present some results here. From the 5000 plus
events seen by this monitor during this period, we observed
that about 25% of the links are responsible for over 75% of
the events. We examined the top 10 links most active links
and found that most of the top links are links adjacent to AS
2914 or involving big ISPs. Interestingly, the top two most
active links were 2200-2072 and 13049-2072. These links
were two hops away from AS 2914, yet were responsible
for over 400 events each. Figure 13 shows the Link-Rank
representation for one such event involving these two links.
In this particular case, as viewed from AS 2914, routes were
lost along 2200-2072 and gained along 13049-2072. Over the
one month period, many such events were observed where
routes repeatedly switched between the two paths shown,
indicating the existence of link instabilities over long periods
of time. Clearly, cases like these can be avoided if detected
immediately, instead of recurring over extended periods of
time. Next we present another interesting large scale event
we discovered using our scheme.

1) Case Study: The case study we present involved lots
of routing changes from AS 2914 starting on Jan 31, 2007
around 7:00 GMT and lasting for about an hour. During this
period, our heuristic identified a lot of links adjacent to AS
2914 as origins of observed routing change. To understand the
event better, we present the Link-Rank graph summarizing the
major links involved in Figure 14. As an example, the link
between AS 2914 and AS 3257 (towards the top right) lost
2790 routes and had a final weight of 0. One can see from
the Figure 14, that a lot of peers of AS 2914 lost all their
routes. After discussing this event with a network operator at
AS 2914, we found out that during that period, AS 2914 was

Fig. 14. Case study: Routing changes seen from AS 2914

providing temporary restoration for regional ISPs affected by
the underwater cable cut due to the earthquakes off the coast of
Taiwan. One of the downstream customers of AS 2914 in turn
was providing temporary transit to a very large network and
hence announced lots of prefixes to AS 2914. As a result, the
max prefix filters of peers of AS 2914 were tripped causing the
BGP peering sessions to go down. These session failures were
accurately identified by our heuristic as origins of changes .

In this section we showed that our inference scheme can
effectively identify the origin of large scale routing changes.
We are currently working on applying our scheme to longer
period of one year to get a better understanding of where
problems occur repeatedly. In Section VI we look at our
scheme at a higher level and discuss some potential limitations
for inferring the origin of event.

VI. DISCUSSION

In this section we examine our scheme at a higher level,
discuss limitations of our inference technique and identify
open issues that deserve further attention. Contrasting with
the previous approach to origin inference by identifying the
shared link or node among a large number of routes that failed
at the same time, our link weight based approach does not
require per-route information. Link weight changes reflect an
aggregate measure of route changes, they not only bring an
essential saving in the data processing but also help improve
the inference accuracy in case of limited data, for example
when only data from a single router is available. 2

As the saying goes, every coin has two sides. While the
use of link weights and weight changes makes the origin
inference much faster, it can also introduce potential inference

2Unfortunately, due to the unavailability of the data set used in [4], we
are unable to quantitatively compare the processing saving and accuracy
improvement of our scheme with the results presented in [4].

errors due to the lack of information about individual routes.
One possibility is that some unrelated routing events may
result in a link receiving both positive and negative weight
changes simultaneously, and the combined results might lead
to a negligible magnitude of changes, or even mask off the
weight changes entirely. Another possibility concerns corre-
lating observed link weight changes from different vantage
points, there exists a non-zero probability that these changes
could be due to simultaneous but different routing events, and
again the lack of information about specific routes makes our
scheme unable to tell whether that is, or is not, the case.

Nevertheless, our BGP routing measurement efforts over
the last several years give us high confidence that the opera-
tional Internet exhibits strong system characteristics, which we
can leverage to identify whether simultaneous routing events
occurred. The expected weight and variance of the AS links
represent such a system characteristic which we explored in
our design. Given most routes are longer than one AS hop,
the correlation of the weights and weight changes of adjacent
links is another characteristic that we are yet to gain a full
understanding, especially in cases where the affected links by
different routing events partially overlap. As part of our future
work, we expect to gain and utilize this understand to detect
simultaneous routing events.

VII. RELATED WORK

Previous work in identifying source of BGP routing
changes can be broadly sorted into three categories: automated
analysis[7], [4], [3], [18], [2], [16], [19], [5], [17], visualization
and human interaction based approaches [1], [9], and theoret-
ical schemes in model settings[10].

In one of the seminal works about network instability,
Labovitz et. al.[8] identified several causes of routing in-
stabilities in the Internet, without however diagnosing their
topological origin. Later efforts [3], [2], [4], [18] analyzed
BGP updates and performed aggregation along three dimen-
sions: time, monitors and prefixes, achieving a final output
in the form of candidate sets of instability origins. Our Min-
cut scheme does a similar aggregation, except that we use
link weight aggregates and focus on analyzing the BGP logs
from the viewpoint of a specific monitor, augmented by
some views of other monitors. [7] used a different approach,
since it identified layers of links with shared risk and used
membership information to isolate with accuracy failures in
the optical hardware of a network backbone. Feldmann et
al.[4] proposed a root cause inference system that aggregates
BGP updates according to time, monitors and prefixes (by
this order) and uses a greedy heuristic to identify the origin of
change. Other class of works such as [16], [19], [5] diagnosed
routing changes using anomaly detection techniques. Roughan
et. al.[16] used an EWMA(exponential weighted moving aver-
age) technique in BGP data, and decomposition/Holt-Winters
methods in SNMP data, showing that by increasing the number
of monitors, the number of false alarms is also decreased.
[19] used PCA (principal component analysis) techniques to
correlate different updates into clusters, each cluster being

a set of prefixes or ASes which are affected by the same
event. In similar flavor, Huang et. al.[5] used PCA to detect
anomalies inside Abilene network using multiple Abilene BGP
views and routers’ configurations as input. Teixeira et. al.[17]
describe a framework to detect the cause of a routing change
using a coordinated diagnostic mechanism among several
ISPs, requiring a special server in each ISP that replies to
diagnose queries from other domains. In contrast, our scheme
only requires the view from the own ISP and publicly available
views from other ISPs that might be involved in the event.

On the visualization front, Link-Rank[9] is a visualization
tool that can show routing changes in the form of links that
lost and gained routes. Link-Rank graphs are ideally suited
for illustration in analyzing the cause of the event, since
one can see both the initial paths as well as the final paths.
BGPlay[1] is another visualization tool that shows how routes
from various monitors to a single prefix change. BGPlay uses
animation to show path changes, and is very useful for single
prefix routing diagnostics, where one can visually identify
common points of convergence or routes.

Lad et al.[10] uses a simple model of Internet routing
with shortest path policies and present a greedy algorithm to
identify the root cause link. In their model, since each node
knows the preferred route for every node in the network, and
hence identifying the origin is easier in their case than that in
actual BGP routing.

VIII. CONCLUSION

Due to the sheer size of the global routing infrastructure
as well as its dense connectivity and the resulting complex
interactions among the large number of interconnected net-
works, inferring the origin of global routing changes presents
a great research challenge. In this paper we developed a
novel inference algorithm for origin identification of routing
changes. Our solution builds upon two previous results. The
first one is the link weight model developed by the Link-
Rank tool. The measure of link weight changes enables us
to effectively infer the origin of routing changes using data
collected from a single monitor, and to execute efficiently
in a near real time manner. We also demonstrated that the
accuracy of our scheme can be significantly improved by using
data collected from a dozen or so monitors. The second one
is the observation that, among multiple alternative paths to
a given destination, the most preferred path is used most of
the time. This observation translates directly to the corollary
that each AS link should have a stable expected weight, and
the deviations from this expected value would be due to
transient routing changes. We verified this conjecture using
BGP log data and used this concept of expected weight to
detect significant routing events, and to distinguish routing
changes caused by failures and recoveries, respectively.

Our results show that the use of link weights and changes
can be a promising direction towards routing problem di-
agnosis in large scale networks. We plan to incorporate the
implementation of our inference algorithm into the Link-Rank

tool release and apply it to monitor BGP routing changes in
real time.

ACKNOWLEDGEMENTS

The authors would like to thank The National Science
Foundation(NSF) (contract No ANI-0221453) and Cisco URP
for funding this work. The authors would especially like to
thank Bruce Davie for his insightful comments on this work.
The authors are grateful to the anonymous reviewers for their
detailed comments on how to improve the paper. The authors
would like to thank Yiyi Huang and Nick Feamster for sharing
their experience with the Abilene data. Finally, the authors
would like to thank Eric Osterweil, Jerry Cheng and Starsky
Wong for their comments and suggestions.

REFERENCES

[1] Giuseppe Di Battista, Federico Mariani, Maurizio Patrignani, and Maur-
izio Pizzonia. BGPlay: A system for visualizing the interdomain routing
evolution. In Graph Drawing, volume 2912 of Lecture Notes Computer
Science, pages 295–306, 2003.

[2] M. Caesar, L. Subramanian, and R. Katz. Root cause analysis of Internet
routing dynamics. Technical Report UCB/CSD-04-1302, U.C. Berkeley,
november 2003.

[3] D. Chang, R. Govindan, and J. Hiedemann. The temporal and topolog-
ical characterestics of BGP path changes. In ICNP, november 2003.

[4] A. FeldMann, Olaf Maennel, Z. Morley Mao, A. Berger, and B. Maggs.
Locating Internet routing instabilities. In Proceedings of Sigcomm,
September 2004.

[5] Y. Huang, N. Feamster, A. Lakhina, and J. Xu. Detecting Network Dis-
ruptions with Network-Wide Analysis . In Proc. of ACM SIGMETRICS,
2007.

[6] Geoff Huston. 2005 – A BGP Year in Review. APNIC 21, March 2006.
[7] Ramana Rao Kompella, Jennifer Yates, Albert Greenberg, and Alex

Snoeren. IP fault localization via risk modeling. In Proceedings of
Second ACM/USENIX Symposium on Networked Systems Design and
Implementation, 2005.

[8] C. Labovitz, G. R. Malan, and F. Jahanian. Origins of internet routing
instability. In Proceedings of the IEEE INFOCOM ’99, pages 218–26,
New York, NY, 1999.

[9] Mohit Lad, Daniel Massey, and Lixia Zhang. Visualizing Internet routing
changes. In IEEE Transactions on visualization and Computer Graphics,
special issue on visual analytics, to appear, 2006.

[10] Mohit Lad, Akash Nanavati, Dan Massey, and Lixia Zhang. An
Algorithmic Approach to Identifying Link Failures. In 10th Pacific Rim
International Symposium on Dependable Computing (PRDC), 2004.

[11] University of Oregon. RouteViews Routing Table Archive.
[12] Ricardo Oliviera, Beichuan Zhang, Dan Pei, Rafit Itzak-Ratzin, and Lixia

Zhang. Quantifying path exploration in the Internet. In Proceedings of
Internet Measurement Conference, to appear, 2006.

[13] Y. Rekhter and T. Li. A Border Gateway Protocol (BGP-4). Request
for Comment (RFC): 1771, 1995.

[14] Jennifer Rexford, Jia Wang, Zhen Xiao, and Yin Zhang. BGP routing
stability of popular destinations. In Proceedings of the ACM SIGCOMM
Internet Measurement Workshop 2002, 2002.

[15] RIPE. Routing Information Service Project.
[16] Matthew Roughan, Timothy G. Griffin, Z. Morley Mao, Albert Green-

berg, and Brian Freeman. Forwarding anamolies and improving their
detection using multiple data sources. In SIGCOMM Workshop: Network
Troubleshooting, 2004.

[17] Renata Teixeira and Jennifer Rexford. A measurement framework for
pin-pointing routing changes. In Proceedings of the ACM SIGCOMM
workshop on Network troubleshooting, 2004.

[18] Jian Wu, Z. Morley Mao, and Jennifer Rexford. Finding a needle in a
haystack: Pinpointing significant BGP routing changes in an IP network.
In Proceedings of 2nd symposium on Networked Systems Design and
Implementation (NSDI), 2005.

[19] Kuai Xu, Jaideep Chandrashekar, and Zhi-Li Zhang. A First Step
Towards Understanding Inter-domain Routing. In Proc. of ACM SIG-
COMM Workshop on Mining Network Data, 2005.

