
Local Error Recovery in SRM :Comparison of Two ApproachesChing-Gung Liu, Deborah Estrin, Scott Shenker and Lixia ZhangAbstract| SRM is a framework for reliable multicast de-livery. In order to maximize the collaboration among thegroup members in error recovery, both retransmission re-quests and replies are multicast to the entire group. WhileSRM e�ectively uses random timers to suppress duplicaterequests and replies, the global nature of the request andreplies means that every packet loss results in at least onerequest and reply message sent to the entire group.To further improve the scalability of SRM, one must lo-calize the scope of error recovery tra�c. In this paper wepresent two approaches to local recovery: hop-based scopecontrol and use of local recovery groups. The �rst approachuses hop count to limit the distribution of requests andreplies, whereas the second approach con�nes error recov-ery tra�c using separately-addressed local recovery groups.The local recovery groups and hop count settings are au-tomatically created and dynamically adjusted based on ob-served loss patterns. We use simulation experiments to ex-amine the performance of both approaches.1 IntroductionScalable Reliable Multicast (SRM) [1, 2] is a frameworkfor reliable multicast delivery; it guarantees data deliv-ery to all members in a multicast session [3]. The mecha-nisms needed to achieve this reliability can be decomposedinto two parts: session message exchange and receiver-initiated error recovery. Members periodically exchangesession messages to report current group state (e.g., thehighest received sequence number from each source, so thatlosses can be detected) and to determine the propagationdelays between each pair of members. 1 The error re-covery mechanism is receiver-initiated and NAK-based [4];receivers are responsible for detecting data losses and re-questing retransmissions. These retransmission requests,and the resulting replies, are multicast to the entire group.Ching-Gung Liu is with the Fujitsu Laboratories of America, Inc. (e-mail: charley@
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ect the position orpolicy of the U.S. government.1Although the delay from a member and the delay to a member may bedi�erent, SRM assumes the path between a pair of members are symmet-ric; thus each member determines its one-way delay to another member bytaking half of its measured round-trip delay. This symmetry assumptionshould cause no performance penalty even when the paths are asymmet-ric, because the delay between members is mainly used to di�erentiatemembers in setting their retransmission timers.

Members use propagation delays to schedule their requestand reply timers; each member detecting a loss waits for arandom time period before sending the retransmission re-quest, and similarly each member receiving a retransmis-sion request waits for a random time period before sendingthe reply. 2 When members receive a retransmission re-quest (or, respectively, a reply message) while waiting tosend one of their own, they cancel their scheduled trans-mission. This enables SRM to suppress duplicate requestsand replies, and thus avoid the request and reply messageimplosion problem [5].However, each packet loss will result in at least one re-quest and one reply message being sent to the entire mul-ticast group. This limits the scalability of SRM as networkand group size increases [6, 7]. As suggested in [2], thepremise of this paper is that the error recovery mechanismshould isolate error recovery tra�c to the required scope.In this paper, we present two di�erent mechanisms to lo-calize the scope of error recovery tra�c. The hop-scopederror recovery mechanism uses hop count to limit the dis-tance that request and reply messages can travel. In con-trast, the group-scoped error recovery mechanism con�nesthe propagation of error recovery tra�c by distributing itto subsets of the group using separate multicast addresses.Simulation results of these mechanisms suggest that theyboth reduce error recovery tra�c without introducing sig-ni�cant overhead. 3Note that local recovery is a performance optimization,thus the mechanisms do not have to achieve the optimal orprecise degree of locality; the more local the recovery, theless recovery tra�c overhead there is. In both mechanismsthat we propose here, a member may occasionally sendits requests and replies to an inappropriate scope. Whilesuch \mistakes" have a slight impact on the performanceof SRM (in terms of the volume of error recovery tra�c),they have no impact on its correctness, since all data lossesare eventually recovered.The paper is organized as follows: Sections 2 and 3 de-scribe the hop-scoped error recovery and the group-scopederror recovery mechanisms, respectively. Section 4 presentsthe simulation models and analyzes the simulation results,and Section 5 reviews related work. We conclude in Section6 with a short summary.2SRM assumes most or all session members, not only the data source,save all the application data. If some members do not save the datarequested, they simply do not participate in the error recovery process.3The discussion of localizing session messages is outside the scope ofthis paper. More information can be found in [8, 9].1



2 Hop-Scoped Error RecoveryThe simplest way to control the scope of requests andreplies is to limit the number of hops they travel. 4 Wewish to use the minimum hop counts possible in requestsand replies. To minimize the hop limit for request mes-sages, our design takes the approach that a member p's re-quest extends just far enough to reach some other memberq who is closer to the source. If the loss occurred betweenq and p, then q will be able to retransmit the lost packet.If the loss occurred elsewhere so that q missed the packetas well, then we only need to make sure that q will senda request further up towards the source. All that mattersis that at least one request makes it across the lossy link(i.e., link where the loss occurs), and it is likely that thisrequest comes from the closest member behind the lossylink since each member's request timer is set proportionalto the measured delay from the source.In the original SRM design a request is used to suppressduplicate requests as well as to ask for repair. While lim-iting the hop count of the request message limits the over-head it generates, it also diminishes its ability to suppressother members from sending the same requests. Fortu-nately, the request hop count in our mechanism, generallyspeaking, is relatively small compared to the distance (interms of the number of hops) to the source. Thus the re-quest overhead per loss is acceptable even though multiplerequests for retransmitting the same data are generated.Moreover, because request timers are based on the propa-gation delay from the source, a member far behind the lossylink may receive a reply before sending its own request.While we greatly limit the scope of requests, we requirethat a reply have su�cient scope to reach all members whoshare the same loss. Since a replier does not know wherea packet is dropped, it is di�cult for the replier to de-cide how far the retransmission must go. However, if arequester assumes it is immediately behind the lossy link,it can determine (as we show below) an upper bound on thehop count needed to reach all other members behind thelossy link. The upper bound is called the proxy hop countbecause the requester acts as request proxy for memberswho share the same loss. When a replier receives a requestfrom a requester h hops away, and the proxy hop count ofthe requester is P , then the replier's reply hop count, �,is given by � = h + P . Note that the reply hop count isan upper bound and the reply may reach members who donot share the loss.Our hop-scoped error recovery requires a member tomeasure its distances, in terms of the number of hops, toall the other members in the same session. The distanceis measured by exchanging session messages. Since sessionmessages are periodic, the measurement is also periodicallyrefreshed. We will discuss the algorithm to determine therequest and proxy hop counts in Section 2.1 and Section2.2. The detailed mechanism is described in Section 2.3.4In [2], a 2-step reply-relying hop-scoped error recovery mechanismis suggested, but without a speci�c method to measure the request andreply hop counts. Our proposed mechanism can also be used to measurethe request and reply hop counts in [2].

2.1 Request Hop CountEach requester simply sets its request hop count largeenough to reach at least one member that is closer to thesource. This member does not necessarily share the samedata delivery path with the requester; all that matters isthat the upstream member is closer to the source thanthe requester. Hence the hop count to reach an upstreammember for a member p regarding a source s in a sessionG, d1sp, can be set to,d1sp = minfhpq j 8q 2 G; hsq < hspgwhere hpq is the distance, in terms of the number of hops,from p to q.
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to reach the replier but also to reach one another for sup-pression. 5The characteristic of this scenario in Figure 2 is thatmultiple requesters do not choose one another as repliersfor retransmission. For example, both p and q request rwho is closer to the source than p and q. Because thereplier selection is autonomous and independent, in generala member will not know the selection of other members.However, two members p and q are very likely to be inthe scenario described in Figure 2 if they fall within thefollowing three conditions:1. p requests someone closer to the source than q,2. q requests someone closer to the source than p, and3. their request scopes overlap with each other.To check Conditions 1 and 2, a member p needs to cal-culate the distance from source s to its intended replier(denoted by d2sp).d2sp = minfhsr j 8r 2 G; hpr � d1spgIf d2sp < hsq, then p concludes that it does not requestmember q for retransmission. Similarly, if d2sq < hsp, thenp concludes that it is not the intended replier for memberq. For Condition 3, p concludes that their request scopesoverlap if (d1sp + d1sq) > minfhpq; hqpg, Therefore, memberp can compute the required hop count to suppress otherrequests as d3sp, d3sp = maxfhpq j 8q 2 G;(d2sp < hsq) ^ (d2sq < hsp) ^ (d1sp + d1sq > minfhpq; hqpg)gThe request hop count of p regarding source s (denoted by�sp) is the maximum of d1sp and d3sp, i.e.,�sp = maxfd1sp; d3spgThe request hop count is calculated on a per-source basisunder the assumption that source-speci�c multicast distri-bution trees are used. Issues related to the use of othertypes of multicast trees are left for future study.2.2 Proxy Hop CountA requester sets its proxy hop count so as to reach othermembers that share the same loss. Since a requester hasno knowledge of the underlying network topology, it canonly estimate an upper bound of its proxy hop count.A requester only has to consider members farther awayfrom the source than itself in determining its proxy hopcount. There are four kinds of relationship between a re-quester and a member farther from the source. They aredemonstrated in Figure 3 by member pairs fp; qg, fp; ug,fp; vg and fp; wg.1. p and q have an upstream-downstream relationship.That is, The path from s to p is a subset of the pathfrom s to q. In this case q most likely shares losses5Sally Floyd helped identify this pathological case in an earlier versionof this paper.
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source s, P sp , by taking the maximum of its D1sp, D2sp andD3sp from all members fromwhich it hears session messages.P sp = maxfD1sp; D2sp; D3spgA replier r determines its reply hop count triggered byan incoming request from p regarding a loss from s, �sr, as�sr = hrp + P sp2.3 Mechanism Description and Discus-sionMembers exchange session messages to measure the dis-tance, in terms of the number of hops, from and to othermembers. Additional information is carried in each sessionmessage. In particular, member p includes hsp, d1sp, d2spand maxfD1sp, D2spg for each source s, and hpq for eachmember q, in its session messages. The distance betweeneach pair of members is used to compute the request andproxy hop counts.The computation of request and proxy hop counts is per-formed iteratively. A member recomputes its request andproxy hop counts when a new session message is received.It takes as few as two session cycles 6 for a member tocompute its request hop count. The computation of theproxy hop count takes several session cycles to convergebecause it depends on results from other members (D2, tobe speci�c). In order to capture session dynamics, the com-putation of request and proxy hop counts is timestampedand aged, so obsolete results will be timed out.When a packet loss is detected, a requester multicastsa request within the radius of its request hop count. Therequest message carries distance from the source to the in-tended replier (d2), and the proxy hop count. d2 is usedto determine request suppression. A member suppressesits scheduled request if the received request is intended toreach someone closer to the source. Otherwise, the sched-uled request should be sent. The replier uses the proxyhop count to determine the reply hop count. Normally,at least one request from members behind the lossy linkreaches a member with the requested data and triggers areply. However, if no reply is received due to packet lossor underestimated request hop count, the requester sendsa second request globally, and the corresponding reply willbe sent globally as well.A di�erent approach to reply scope control would bethat, when a replier responds to a request, it multicasts itsreply with a hop count h, where h is the distance to theoriginal requester. After receiving the reply, the originalrequester relays the reply to other members downstreamwithin the radius of its proxy hop count, P [2]. However,this 2-step reply-relaying scheme introduces additional de-lay in reply propagation, which may cause additional du-plicate requests being sent. Furthermore, the scopes of6A session cycle time is the period between two consecutive sessionmessages sent by a member. Since all members send their session messagesat the same rate, a member should receive a session message from eachmember during a session cycle time.

the �rst reply and the relayed reply overlap, thus memberswithin the overlapped area receive duplicate replies. Sincethe distance between a replier and a requester, h, is rela-tively small in the average case, multicasting a reply with ahop count of h+P should not introduce signi�cantly moreoverhead in terms of network bandwidth. Therefore, in ourhop-scoped error recovery, a replier uses h+P for its replyhop count. If multiple requests are received, the repliertakes the maximum P value received in its calculation.One question regarding the hop-scoped error recoverymechanism is that the hop-scoped packets may preventmulticast pruning in dense-mode multicast routing pro-tocols, such as DVMRP [10, 11] and PIM-DM [12, 13].As a result, hop-scoped multicast packets become locallybroadcast, i.e., they reach all the routers within the hoplimit including those that are not on the multicast routingtree. However, in SRM, because each member periodicallymulticasts global session messages, those session messagescauses branches that reach no members to be pruned o�.Therefore, hop-scoped request and reply tra�c is containedwithin the multicast tree.Ideally, a request should reach a few neighbors who havethe requested data, and a reply should reach only thosemembers who lost the same packet. However, becausehop-scoped multicast tra�c radiates in all directions, thebandwidth overhead can be signi�cant in some cases, es-pecially in case of the reply tra�c. For example, the replyfrom member r in Figure 3 propagates upstream as well asdownstream to recover a loss. In the next section we con-sider the use of separate multicast groups to more preciselycontrol the scope of error recovery tra�c.3 Group-Scoped Error RecoveryA local recovery group consists of a set of members whoshare common data losses to at least some degree. Mem-bers share the same losses because they share one or morelossy links along the data delivery path from a source.Because we assume source-speci�c multicast distributiontrees, the creation of local groups is on a per-source basis.However, our mechanism does not limit members to a sin-gle local group per source. Multiple local groups can beassociated with a source where each group is responsiblefor error recovery for one or more lossy links. For a speci�csource, the relationship among these lossy links is eitherancestor-descendant or siblings, so that these local recov-ery groups are either perfectly nested or totally disjoint, asshown in Figure 4.Our group-scoped error recovery follows a basic SRMdesign principle of each member being an autonomous en-tity. That is, each member makes its own decisions onwhether to join or leave a local group. There is no central-ized coordination among members. Members use the error�ngerprints to measure the degree of loss sharing with alocal group. An error �ngerprint is the sequence numbersof the last f losses in a local group. For example, a mem-ber p shares 50% losses with a local group G if p lost more4



sourceFigure 4: Membership of local recovery groups are eitherperfectly nested or totally disjoint.than half of the packets speci�ed in G's error �ngerprint.At the beginning of a session, data losses are recoveredglobally. A member who su�ers noticeable data losses froma source proposes the creation of a local recovery group inits retransmission request (sent globally), together with itserror �ngerprint. The creation of the local group is grantedby a replier in its reply. 7 Since the reply is sent globally,other members who have a matching error �ngerprint jointhe local group when they receive the reply. These mem-bers are called the regular members, or simply members,of the group and their subsequent requests are sent to thelocal group. Other members selectively join a local groupto help error recovery. They are called helpers of the group.When a helper receives a request from a member of a localgroup, the helper sends its reply to that same local group.A regular member in a local group measures the extentto which it shares losses with that group. It stays in thegroup if the degree of loss sharing is high, otherwise itleaves the group. If a regular member has joined multiplenested groups, it always sends retransmission requests tothe innermost group �rst. In cases the loss actually oc-curred in an outer group, another member who sees theouter group as its innermost group should have detectedthe loss and requested retransmission.Our group-scoped error recovery follows the \soft-state"approach. Membership solicitation and loss-sharing mea-surement are periodically refreshed to capture session dy-namics. The mechanism is described in detail in the fol-lowing sections. In particular, we discuss the criteria forproposing, granting, joining and leaving local groups.3.1 Proposing and Granting a LocalGroupAmember proposes a local group if its error rate exceeds �,where 0 � � � 100%. In the extreme case, we can choose� = 0 to encourage all error recovery to be handled by localgroups. If a member decides to propose a local group, itwaits a period of time before proposing in order to learn ofexisting local groups. If there is an existing local group, themember joins the existing local group instead of proposinga new one. Section 3.5 discusses in more detail the joiningprocess. The waiting period can be measured in terms oftime, number of losses or number of received data packets.A longer waiting period increases the chance for a member7A similar approach was proposed in [14, 15] to solve the implosion ofmulticast congestion feedback.

to discover existing local groups, thus reduces the overheadof unnecessary group creation. On the other hand, if thewaiting period is short, a new group can be created quicklyand the overhead of the global error recovery is reduced,at the expense of group creation overhead. Since an er-ror �ngerprint is required for proposing a local group, thewaiting period before a member proposing a group has tobe long enough to cover f losses.A member proposes a new local group in its request mes-sage by including the proposed multicast address and theerror �ngerprint. Since the proposed local group is not yetcreated, the member uses the sequence numbers of its ownlosses as the initial group error �ngerprint. The requestproposing a local group is multicast globally to suppressother group proposals. If a member has joined any localgroup, it is not allowed to propose additional local groups.However, it may join other groups as appropriate.A replier grants the creation of a new local group inits reply. The reply message includes the address and theerror �ngerprint of the granted local group. This messageis multicast globally to solicit members who share the samelosses. Furthermore, the replier joins the local group as ahelper, which assures that there is at least one helper inthe new group.3.2 Joining a Local Group as a RegularMemberA member joins a local group if it shares more than � ofthe losses with the group, where 0 � � � 100%. Whena reply granting a new local group is received, a memberjoins the group if the similarity of its own losses and theerror �ngerprint of the granted group exceeds �.If a member joins multiple local groups, these groupsmust be nested. That is, the membership of an inner groupis a subset of the membership of an outer group. It is im-portant that all members maintain a consistent view ofgroup order so they can exercise these nested groups inthe same fashion and produce correct loss-sharing mea-surement. The group order is also used in error recoveryprocess since a member always sends its requests to its in-nermost local group �rst. One simple way to determine theorder of a local group is by the sequence number of the re-ply granting the local group. The sequence number of thereply granting a local group is called the order number ofthe local group. To be precise, an order number consists ofthe sequence number of the reply in the high order portionand the local group address in the low order portion. Weassume a local group address is unique within a session. Ifmultiple local groups are created with the same sequencenumber, their order numbers are still unique. Generallyspeaking, a local group granted later has a larger grouporder number and a larger scope. Note that the originalsession group is always the outermost group even thoughit does not have an order number.The order of nested groups may not re
ect their phys-ical scopes at a particular point of time, a transient phe-nomenon that will be �xed after the requests and replies5
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(d)Figure 5: Evolution of misplaced nested local groupsdisseminate completely. For example, in Figure 5, a newmember p may propose a new group G2 before learning ofthe existing local groups, G1 (Figure 5(a) and 5(b)). p willbe solicited to join G1 later and then it will use G1 as theinnermost local group (Figure 5(c)). At this point of time,the physical scope of G1 is larger than that of G2. Even-tually, G2 will be timed out and disappear (Figure 5(d)).The group timeout scheme is discussed in Section 3.4 andthe membership solicitation scheme is discussed in Section3.5.The threshold � de�nes the tradeo�s between the num-ber of nested local groups and the error recovery perfor-mance. For large � value, more nested local groups arecreated, and each group has a higher loss-sharing ratio andachieves greater e�ciency for retransmission. As a result,the group maintenance overhead is higher and the errorrecovery performance is better. On the other hand, forsmall �, fewer nested local groups are maintained but theloss-sharing ratio in each local group is also lower. In theextreme case, if we choose � = 0, there is only one lo-cal group in the session to recover all losses; if we choose� = 100%, the number of local groups is equal to the num-ber of lossy links and each group recovers losses over eachlossy link.3.3 Error Recovery in a Local GroupWhen a loss is detected, a member sends its request to itsinnermost group �rst. If there is no reply, it will expandits request scope by trying its next outer group until theloss is recovered. As described earlier, even if a requestto the innermost group does not reach a helper, membersin the outer group should have detected the loss and senttheir requests. Therefore, the majority of the losses arerecovered quickly and sending requests to an outer groupupon timeout should happen rarely. Since members in theinner group may rely on members in the outer group to askfor data repair, a member p's scheduled request should notbe suppressed by a request from a local group G if p is nota regular member in G (p can be a helper in G to receive arequest sent to G.) In other words, a request addressed toa local group should only suppress requests of other regularmembers in that group.The order number of the addressed group is included inthe request message. It is used by a replier to determinethe destination group for the corresponding reply. A repliersends its reply to the local group to which the request was

sent. If it receives multiple requests that are sent to dif-ferent groups, the replier addresses its reply to the groupwith the largest order number.3.4 Leaving a Local GroupA member measures the degree of loss sharing in each lo-cal group it joins by the ratio of the number of its totallosses over the number of received replies from the group.For example, the loss sharing can be measured every mreplies received in a local group. To prevent oscillation,exponentially-weighted moving average is adopted. If amember's loss-sharing ratio is smaller than �, it leaves thelocal group.A helper leaves a local group if its last k consecutivescheduled replies for the local group are suppressed. As aresult, there are at most k helpers in a local group.If there is no error recovery tra�c in a local group, thelocal group should be timed out to reduce group main-tenance overhead. Both helpers and members determinewhen a local group is dormant and leave the group. Thetimeout period can be measured in terms of seconds or thenumber of received data packets.3.5 Soliciting New MembersSince an error �ngerprint is a snapshot of the group losses,a member who shares the majority of losses with a localgroup may unfortunately decide not to join when it learnsabout the group the �rst time. Furthermore, when a newmember joins an ongoing session, it has no knowledge ofthe existing local groups. A scheme to periodically solicitnew members is necessary to capture new members as wellas old members whose snapshots happened to be skewed.A local group solicits new members by periodic polling.Members periodically send their requests to the next outergroup. The group address, order number and error �nger-print of the inner group are carried in the polling requestto solicit new members and helpers.Members in the outer group join the inner group basedon the comparison of their own losses and the inner-grouperror �ngerprint. Since the polling requests are sent tothe next outer group, a new member joins local groupsone at a time in an outside-in fashion until it has joined allnested local groups. Note that the periodic polling requestsscheduled by inner-group members suppress one another.If a requester does not receive a retransmission in its �rsttry, the next repair request addressed to its outer groupcan also serve the purpose of membership solicitation.Our mechanism requires that a member joins an outerlocal group before an inner local group. A helper doesnot solicit new comers into a local group since a helperdoes not maintain the order of nested local groups. If amember is solicited into an inner group without joiningproper outer groups, it cannot received replies triggeredby requests from outer groups. Consequently, its lossesrequire multiple request iterations to recover, resulting inlonger recovery delay and higher bandwidth overhead.6



The same scheme is used to solicit new helpers. If areplier in the outer group responds to a polling request, itjoins the corresponding inner group as a helper. However,if the request can be handled by a helper that is already inthe inner group, this helper is closer to the requester andis most likely to respond �rst. Therefore, a new helper willrarely need to join the inner group unless all helpers in theinner group have left.4 Simulation Results and Discus-sionWe believe the behavior of our proposed mechanisms canbe best understood by �rst testing a variety of extremesettings before moving on to more general scenarios. Inthis section we �rst explore our local recovery mechanismsin three extreme but simple topologies { star, string andbinary tree { each with a single data source. The star topol-ogy represents a session where all members have indepen-dent losses. The string topology represents a session wheredownstream members share the same losses with their up-stream members. The binary tree topology represents amixture of shared and independent losses in a session.Each topology is tested with �ve di�erent session sizes:8, 16, 32, 64 and 128. We simulated the performance of �vedi�erent mechanisms for each session size: the global er-ror recovery, the hop-scoped error recovery, and the group-scoped error recovery with three di�erent degrees of losssharing, 33%, 50% and 100%. We choose � = 0 (errorthreshold to propose a local group), k = 3 (threshold foran inactive helper to leave a local group), m = 10 (num-ber of losses in a loss-sharing measurement period) andf = 6 (number of losses in an error �ngerprint) in all thegroup-scoped error recovery simulations. Each simulationstarts with a warmup period and measures the error recov-ery activities of the next 2500 data losses. Data losses aregenerated by assigning an uniformly-distributed error rateon each lossy link of the simulated topologies, and theseerror rates are �xed throughout a single simulation. Theaggregated error rate among all links is 10% of the traf-�c, including data, requests, replies and session messages.The data rate is 40 packets per second. The link delay is10 ms for links between routers and 3 ms for links con-necting group members. The session cycle time is 9 � 1seconds. The warmup period is de�ned as each lossy linkexperiencing at least 250 losses. The total simulation timeis roughly 625 seconds.The performance is evaluated by three metrics: the re-quest tra�c, the reply tra�c and the recovery delay. Therequest tra�c is the product of the average measured re-quest scope and the average measured number of requestsper loss. The request scope is a fraction of the global scopeand it is measured in terms of the number of hops that arequest propagates. For example, in the global error recov-ery, the request scope is equal to the global scope since eachrequest is multicast to the entire session. The reply tra�cis the product of the average measured reply scope and the

average measured number of replies per loss. The recoverydelay is measured in terms of the one-way propagation de-lay from the data source. In other words, it is the intervalbetween a member's detection of a loss and reception of aretransmission, divided by the one-way propagation delayfrom the data source to the member.In our simulations, we adopted a random timer adap-tation mechanism to optimize the performance of the re-covery delay, and the number of requests and replies perloss. The general idea is to make the generation of re-quest and reply timers adaptive to the network and sessionenvironment. A member estimates the number of compet-ing requesters and repliers by interpreting feedback from asession, and uses the estimated values to tune its requestand reply timer parameters. These parameters determinewhether requests and replies are generated aggressively orconservatively. Generally speaking, adopting local errorrecovery limits the number of competing requesters andrepliers, which allows members to send requests and repliesmore aggressively and reduces recovery delays. More dis-cussion is in [16, 17, 18].4.1 Topologies with Multiple Lossy LinksThe �rst set of simulations assumed that all links haveuniformly-distributed error rates.The Star TopologyFigure 6(a), 6(b) and 6(c) show the simulation results inthe star topology. Members in the star topology have inde-pendent losses, hence there is no loss shared among mem-bers and approximately one request message per loss isgenerated. Since the distances between each pair of mem-bers are equal, the hop-scoped error recovery performs ex-actly like global error recovery. Note that the number ofavailable helpers for a speci�c loss is large in the globalerror recovery and the hop-scoped error recovery, there aremultiple replies generated per loss (Figure 6(b)).In the group-scoped error recovery, each member cre-ates its own local group. The requests and replies onlypropagate within individual local groups. Because of theconstant number of helpers in a local group (k = 3), the re-quest and reply tra�c decreases by increasing session size.The number of local groups in the group-scoped errorrecovery is equal to the number of lossy links. In general,if there are n members in a session, the number of localgroups is equal to n. Each local group recovers 1n of totallosses in the session and its scope is roughly 1n of the sessionscope. Therefore, we can estimate a lower bound on therequest and reply tra�c in the group-scoped error recoveryas 1n of the tra�c in the global error recovery. Since thisestimated request and reply tra�c is a lower bound, itrepresents the greatest degree of savings possible. 8 Theestimated values are plotted as gray curves in Figure 6(a)and 6(b).8Upper bound estimates would need to take several other factors intoaccount. For example, the number of helpers and membership dynamicsin a local group.7
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Global error recovery
Hop-scoped error recovery

Group-scoped error recovery : β = 33%
Group-scoped error recovery : β = 50%
Group-scoped error recovery : β = 100%

represents the estimated lower bound of the group-scoped error recoveryFigure 6: Simulation results of all links with uniformly-distributed error ratesThe String TopologyIn the string topology, downstream members share losseswith all their upstream members. A downstream membercan rely on its upstream members to ask for repair in thehop-scoped error recovery. As a result, request tra�c isreduced signi�cantly (Figure 6(d)).
101.3 102.9 103.3 103.2 103.1 88.81 67.82 42.87 27.96 21.46 69.58 50.86 30.72 18.12 10.14

Session size

Requests per loss

Request hops

Request traffic %

8 16 6432 128 8 16 6432 128 8 16 6432 128

Topology Star topology String topology Tree topology

16 32 64 128 256 6.26 6.71 6.86 6.92 6.95 9.17 9.06 9.68 10.18 9.99

1.01 1.03 1.03 1.03 1.03 2.27 3.24 4.00 5.17 7.90 1.21 1.80 2.03 2.28 2.60Table 1: The number of requests per loss and the number ofhops that a request travels in the hop-scope error recoveryTable 1 shows the average number of requests per lossand the average number of hops that a request messagetravels in the hop-scoped error recovery. The number ofrequests per loss in the string topology increases with thesession size, but the number of hops that a request mes-sage travels remains constant. However, the increase in the
number of requests per loss is sub-linear in terms of thesession size, the average request tra�c decreases with thesession size. As described earlier, even if multiple requestsper loss are presented in the hop-scoped error recovery, theoverall request tra�c is improved because the scope of eachrequest is small and a member far behind a lossy link mayreceive a reply before even sending a request.

32.56 20.36 14.69 11.35 10.69 77.02 83.28 96.41 112.2 136.6 42.30 28.16 19.64 12.33 7.17

Topology

Session size

Requests per loss

Request hops

Request traffic %

8 16 6432 128 8 16 6432 128 8 16 6432 128

Star topology String topology Tree topology

5.21 6.52 9.40 14.55 27.40 8.65 16.18 31.71 61.35 119.5 5.49 6.81 8.62 10.44 11.36

1.00 1.00 1.00 1.00 1.00 1.42 1.65 1.95 2.34 2.93 1.23 1.32 1.46 1.51 1.62Table 2: The number of requests per loss and the num-ber of hops that a request travels in the group-scope errorrecovery with � = 100%In the group-scoped error recovery, request messagespropagate to all downstream members for suppression anda limited number of upstream neighbors for retransmis-sion. A request may not reach any helpers if the scope of8



the request does not cover the lossy link where the packetwas dropped. When the length of the string increases, thenumber of nested local recovery groups increases and it ismore likely that requests from inner groups do not reachany helpers. Therefore, request tra�c goes up with thesession size as shown in Figure 6(d). Table 2 shows the av-erage number of requests per loss and the average numberof hops that a request message travels in the group-scopederror recovery with � = 100%. The number of requests perloss and the average hops of a request in the string topol-ogy increase with the session size, thus the average requesttra�c increases with the session size.In terms of reply tra�c, since the hop-scoped error re-covery does not regulate the direction in which the replymessages propagate, the hop-scoped error recovery shouldperform much worse than the group-scoped error recovery.However, in the group-scoped error recovery, a requestersends it second request to its outer group if the �rst onedid not reach any helper. Since an outer-group membermay already ask for repair, the second request from theinner-group member is very likely to trigger a duplicate re-ply. Consequently, the number of replies per loss increasesand the improvement limited in comparison with the hop-scoped error recovery (Figure 6(e)).The recovery delay in the hop-scoped error recovery de-creases with the session size since request messages onlyreach a small number of members. As a consequence, mem-bers send requests more aggressively and the recovery delayis reduced (see the discussion of dynamic timer adaptationin Section 4). On the other hand, members have large esti-mated timer parameters in both the global error recoveryand the group-scoped error recovery since requests reach allmembers who share the loss. However, in the group-scopederror recovery, only those members whose innermost localgroup covers the lossy link are eligible to request retrans-mission, therefore the average delay increases with the ses-sion size (Figure 6(f)).The Tree TopologyThe tree topology is a mixture of the star and string topolo-gies. The average request tra�c decreases with the sessionsize in the group-scoped error recovery because the num-ber of nested local groups is much smaller than it is inthe string topology (Figure 6(g)). As shown in Table 2,both the number of requests per loss and the request hopsincreases much more slowly with the session size.The number of local groups in the group-scoped error re-covery in the string and tree topologies is proportional to �.For example, if � = 100%, each local group is responsiblefor the error recovery of a single lossy links. The number oflocal groups is equal to the number of lossy links in the ses-sion. If � = 50%, a local group is responsible for the errorrecovery of two lossy links and the number of local groupsis equal to half of the number of lossy links. In general, fora session of size n, the number of local groups is � � n, thenumber of lossy links covered by a local group is 1� , andthe percentage of losses recovered by a local group is 1��n .

Therefore, the estimated error recovery tra�c, T , can becalculated as T = 1��n �P��ni=1 �(i)n , where �(i) is the size ofthe ith local group. For the string topology, �(i) = n� i�1� .For the tree topology, �(i) ' 2(log2 n�log2( i�1� +1))). The es-timated lower bounds of the error recovery tra�c in stringand tree topologies are,Tstring = � � n+ 12 � � � n ; Ttree = ��nXi=1 1(� + i� 1) � nThe estimated values are plotted as gray curves in Figure6(d), 6(e), 6(g) and 6(h).4.2 Topologies with Randomly-SelectedLossy LinksIn the second set of simulations, randomly-selected 18of the links have uniformly-distributed error rates, whichmakes one lossy link in the 8-node topologies, two lossylinks in the 16-node topologies, and so on. The simulationresults are shown in Figure 7. Both the hop-scoped andgroup-scoped error recoveries outperform the global errorrecovery in terms of the request and reply tra�c, exceptfor the hop-scoped error recovery in the star topology.Generally speaking, the hop-scoped error recovery per-forms better than the group-scoped error recovery in termsof the request tra�c if members have an upstream-downstream relationship (i.e., they share losses.) Down-stream members can rely on the requests from their up-stream members to ask for retransmission, therefore thehop-scoped error recovery generates less request tra�c inthe string and tree topologies than the group-scoped errorrecovery (Figure 7(d) and 7(g)).On the other hand, since the hop-scoped error recoverydoes not regulate tra�c direction, it does not perform wellin terms of the reply tra�c if the degree of connectivityin the topology is high. For example, in the star and treetopologies, the reply tra�c generated by the hop-scopederror recovery populates in a much larger region than thereply tra�c generated by the group-scoped error recovery(Figure 7(b) and 7(h)). Note that, in the 16-node stringtopology, the reply tra�c in the hop-scoped error recoveryis close to 100% because the randomly-selected lossy linksare in the middle of the topology (Figure 7(e)).Interestingly, the group-scoped error recovery with small� (e.g., � = 33%) not only generates more request and re-ply tra�c, but also produces longer recovery delay, thanthe group-scoped error recovery with large � (e.g., � =100%). For small �, a member's error �ngerprint matchesmore easily with the error �ngerprint of a local group withwhich it does not share losses. If the lossy links are sparselydistributed, a member who joins a non-loss-sharing groupby accident is more likely to request retransmission fromremote helpers. Therefore, small � produces more band-width consumption and longer recovery delay than large �(Figure 7(f) and 7(i)).9
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Global error recovery
Hop-scoped error recovery

Group-scoped error recovery : β = 33%
Group-scoped error recovery : β = 50%
Group-scoped error recovery : β = 100%Figure 7: Simulation results of 18 of the links with uniformly-distributed error rates4.3 An Mbone-like Topology

s1

r2

s2

s3 s4

source
r3

r5r4
r7

r6

p3

r1

p2

q1 q2

p1Figure 8: An Mbone-like topology (Lossy links are coloredin gray and placed at local area networks.)The local error recovery mechanisms were also simulatedin an Mbone-like topology shown in Figure 8. Nodes con-nected with thick lines symbolize the Mbone. Other nodesrepresent local area networks. Session members are repre-sented by black nodes and one of them, s1, is selected asthe data source. The lossy links are represented by graylines. We assume most of the losses are at local area net-works. The simulation results are shown in Table 3. Ingeneral, the group-scoped error recovery generates less re-
quest and reply tra�c, and longer recovery delay than thehop-scoped error recovery.

Error recovery
mechanisms

Request scope %

Reply scope %

Recovery delay

Group-scoped
ββ = 33%

Group-scoped
ββ = 50%

Group-scoped
ββ = 100%Global Hop-scoped

5.15 4.21 4.47 4.80 4.80

139.75% 97.69% 59.24% 48.82% 40.08%

113.14% 86.77% 55.92% 49.64% 39.24%Table 3: Simulation results of the Mbone-like topologyFigure 9 shows the average measured request and re-ply scopes of individual members. The scope is measuredin terms of the number of hops that requests and repliestravel. The hop-scoped error recovery performs in betweenthe global error recovery and the group-scoped error recov-ery, however, the improvement in the reply scope is insignif-icant. The request and reply scopes in the group-scopederror recovery go down as � goes up. A large � meanshigher degree of loss sharing. As a consequence, fewermembers are in each local group and less error recoverybandwidth is wasted. On the other hand, large � causesmore local groups being created than small �. There are10 local groups being used for error recovery in the sim-10
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Global error recovery
Hop-scoped error recovery
Group-scoped error recovery : β = 33%
Group-scoped error recovery : β = 50%
Group-scoped error recovery : β = 100%Figure 9: Average request and reply scopes of individualmembers in the Mbone-like topologyulation with � = 100%, 6 local groups in the simulationwith � = 50%, and 3 local groups in the simulation with� = 33%.In Figure 9(a), p1, p2 and p3 have relatively large requestscopes when � is small (e.g., 50% and 33%) because theirlocal group includes remote members in other local areanetworks. q1 and r1 have relatively large request scopes inboth the hop-scoped and the group-scoped error recoveriesbecause their requests have to propagate across the Mboneto reach helpers. On the other hand, q2 has relatively smallrequest scopes because its requests only has to reach q1.r2 � r7 have relatively large requests scopes because theyare involved in the scenario sketched in Figure 2. Theyhave to extend their request hop counts to suppress oneanother.The reply scope, shown in Figure 9(b), depends on theorigin of the request. A member with a small reply scopemeans most of the incoming requests are from its local areanetwork; a member with a large reply scope means most ofthe incoming requests are across the Mbone. For example,s2 � s4, p1 � p3 and q2 have relatively large reply scopes inboth the hop-scoped and the group-scoped error recoveries,which means their replies respond to requests from remotemembers across the Mbone. On the other hand, the replyscopes of q1 and r1 are relatively small because they onlyresponsible to recover losses of their downstream memberswithin their local area network. Note that r1's reply scopein the hop-scoped error recovery covers the entire topologybecause the hop-scoped error recovery does not regulatetra�c direction. Response to remote requesters happensrarely in the group-scoped error recovery. As a result, theaverage reply scope is much smaller than it is in the globalerror recovery.Figure 10 shows the measured request tra�c and replytra�c during the simulation. It is measured in terms of thenumber of hops. The convergence periods of the request
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Global error recovery
Hop-scoped error recovery
Group-scoped error recovery : β = 33%
Group-scoped error recovery : β = 50%
Group-scoped error recovery : β = 100%

1% of the simulation time is roughly equal to
6.25 simulated seconds and 25 data lossesFigure 10: Error recovery tra�c dynamics in the Mbone-like topologyand reply scopes are relatively short in the group-scopederror recovery because once a member joined a local group,its request and reply tra�c is reduced. The convergencetime depends on the number of nested local groups andtheir sequence of creation. If the innermost group is created�rst, the convergence is fast. If the group with the largestscope is created �rst, this group has to be shrunk beforethe second nested group can be created (Only memberswithout joining any local groups can propose the creation.)Therefore, it takes longer time to converge. In the hop-scoped error recovery, members require several session cy-cles to calculate the correct request and proxy hop counts.Generally speaking, the convergence time of request scopeis approximately two session cycles. The computation ofproxy scope relies on the results from other members, theconvergence takes more than two session cycles.
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Global error recovery
Hop-scoped error recovery
Group-scoped error recovery : β = 33%
Group-scoped error recovery : β = 50%
Group-scoped error recovery : β = 100%

1% of the simulation time is roughly equal to
6.25 simulated seconds and 25 data lossesFigure 11: Request tra�c dynamics of r7 (r7's state is resetin the middle of the simulation.)To further understand the behavior of convergence timeof a new member joining an ongoing session, we manually11



reset the state of member r7 during the next simulation.r7 starts with global error recovery after its state is reset.It calculates its request hop count based on the incomingsession messages in the hop-scoped error recovery or learnsof the existing local groups in the group-scoped error re-covery to restore its state. The measured request tra�c isshown in Figure 11.4.4 A Random Topology with Sparsely-distributed Membership
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h11Figure 12: A topology with rich connectivity and sparsely-distributed membership (The lossy links are colored in grayare placed around the middle of the topology.)Figure 12 shows a random topology used in our next sim-ulation experiment. The topology consists of 40 routers,52 inter-router links and 16 members. We place 9 lossylinks around the middle of the topology and one lossy linkclose to the source, so members have shared losses as wellas independent losses.
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Request scope %

Reply scope %

Recovery delay

Group-scoped
ββ = 33%

Group-scoped
ββ = 50%

Group-scoped
ββ = 100%Global Hop-scoped

6.33 3.63 3.56 3.58 3.35

128.36% 109.23% 49.40% 37.38% 23.88%

105.86% 86.05% 40.90% 34.10% 25.00%Table 4: Simulation results of the random topology withsparsely-distributed membershipThe simulation results are shown in Table 4. Since thedegree of connectivity of routers are high, the request andreply delivery paths may di�er from the data delivery path.In other words, members is more likely to �nd some closesiblings to recover lost packets. Remember that we adopt adynamic timer adjustment mechanism to optimize the er-ror recovery timer. If requests and replies only propagateto near neighbors, the recovery timers are smaller than theyare in the global error recovery. Therefore, the recovery de-lays in both the hop-scoped and group-scoped error recov-eries are smaller than the recovery delay in the global errorrecovery. Note that the reduction of error recovery tra�cis limited in the hop-scoped error recovery because its re-quests and replies travel more hops in the topology withrich connectivity and sparsely-distributed membership.
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Global error recovery
Hop-scoped error recovery
Group-scoped error recovery : β = 33%
Group-scoped error recovery : β = 50%
Group-scoped error recovery : β = 100%Figure 13: Average request and reply scopes of individualmembers in the random topologyFigure 13 shows the measured request and reply scopesof individual members. Note that member h15 has largerequest scope in the group-scoped error recovery becauseit shares losses with all other members. Its requests arepopulated in a local group which consists of all sessionmembers.4.5 DiscussionIn conclusion, we found that the group-scoped error recov-ery performs better than the hop-scoped error recovery interms of the reply tra�c. The hop-scoped error recoveryperforms better than the group-scoped error recovery interms of the request tra�c, except in the star topology.Since the size of a request message is much smaller thanthe size of a reply message, it is more important to reducethe reply tra�c than to reduce the request tra�c, and sothe group-scoped error recovery appears to provide a bet-ter solution in terms of the tra�c reduction. However, thenumber of duplicate requests increases with the number ofnested groups; issues related to this scenario are left forfuture study.If we consider other sources of overhead introduced bythese two approaches, it appears that the group-scoped er-ror recovery imposes more overhead on session membersas well as the underlying multicast routing. For example,group-scoped error recovery requires the host to send peri-odic IGMP messages to refresh the multicast delivery pathfor each local group [19]. Issues related to the overhead ofmulticast group management are left for future study.5 Related WorkThere have been several other treatments of error recov-ery for reliable multicast transport [20, 21, 22]. In con-trast to our proposal which assumes session members are12



autonomous, these previous works require various degreeof static con�guration, centralized coordination or routersupport.Hofmann [23, 24, 25] proposed a \local group concept".A session is split into subgroups and each subgroup com-bines members in a local region. A subgroup is representedby a local group controller which provides local loss retrans-mission. The establishment of local groups is supported bya communication service, named Group Distance Service.A member searches and joins the closest local group. Ifno suitable group exists, the member will establish a newlocal group and appoint itself as the controller.Towsley et al. [26] examined the approach of using sep-arate multicast groups to recover individual losses in re-liable multicast communication. Lost packets are catego-rized into groups, the retransmission of a lost packet ismulticast to the group it belongs to. Receivers dynami-cally join and leave those groups to recover packet losses.Holbrook et al. [27] suggested a hierarchic logging serverstructure to reduce error recovery tra�c in a multicastsession. The distribution and hierarchy of logging serversis statically con�gured. Receivers contact their local sec-ondary server for retransmission instead of the remote pri-mary servers to avoid NAK implosion, and to minimizerecovery latency and bandwidth. A server either unicastsor multicasts a retransmission based on the number of re-quests it receives.TMTP [28] con�gures session members in the same sub-net into domains and organizes these domains into a hi-erarchic control tree to improve the scalability of error re-covery. Members in a domain request the domain managerfor retransmission. A domain manager is also responsiblefor error recovery of its children managers in the controltree. The scope of retransmission is restricted by usingthe TTL �eld. The control tree is self-organized, and it isbuilt dynamically as domain managers join and leave thesession.RMTP [29, 30] adopts a similar hierarchic structure toavoid message implosion. A set of designated receivers(DR) is selected statically in a session. DRs are capa-ble of retransmitting lost data. The hierarchy of DRs isconstructed dynamically. Each receiver selects its least up-stream DR as the ACK processor (AP), and periodicallysends its receiving state to the AP to request retransmis-sions. A retransmission is either unicast or multicast basedon the number of incoming requests.PGM [31] makes use of the router support to maintain atree hierarchy among routers. When a packet is lost, a re-quest is unicast hop-by-hop upstream towards the source.Intermediate routers build retransmit states in order to re-member where to forward the corresponding reply. Eventu-ally, the request will hit the source or a member on the re-quest forwarding path who has the requested packet, whichtriggers a reply multicast hop-by-hop downstream towardsthe requester.Papadopoulos et al. [32] elaborated further on the routerforwarding model to localized the scope of error recoverytra�c. Each router selects a replier link which points to-

wards a local replier. Instead of forwarding requests up-stream towards the source, a router forwards a request to-wards its local replier if the incoming request is not receivedfrom the replier link. Since the replier link is a downstreamlink of the router, this router is at the turning point of therequest delivery path. Eventually, the request reaches areplier and triggers a reply. The reply is �rst unicast tothe turning point and then it is multicast downstream fromthe turning point.6 ConclusionWe proposed two di�erent approaches to reduce error re-covery tra�c in SRM. In the hop-scoped error recovery,members calculate the required hop counts for their re-quests and replies based on distance information exchangedin session messages. Since the information is piggybackedon their session messages, the overhead imposed by thehop-scoped error recovery is relatively small. However, thehop-scoped error recovery does not regulate the directionof tra�c propagation. If the topology of a session is star-shaped, the hop-scoped error recovery does not performmuch better than the global error recovery.Group-scoped error recovery bounds the scope of errorrecovery tra�c by using separate multicast groups. Mem-bers that share the same losses join a local recovery group,thus the error recovery tra�c is only distributed withinthe local group. Group-scoped error recovery requires in-dividual members to maintain and manage multiple localgroups. Therefore, more overhead is imposed on membersas well as on the underlying multicast routing.There remain several open issues. In the hop-scoped er-ror recovery, maintaining a pair of request and reply hopcounts for individual sources does not introduce signi�-cant overhead. However, maintainingmultiple local groupsfor individual sources in the group-scoped error recoverymay not be acceptable. Further research should investi-gate group aggregation across sources. A local group isassociated with one or more lossy links. Sources who sharethe delivery path (e.g., shared-tree multicasting) and thelossy links along the path could be considered the same interms of error recovery, and so error recovery from thesesources should be handled by a single local group.Another scenario that we have not fully understood isthe convergence time of the group-scoped error recoveryin the presence of network dynamics [33]. For example, ifthe network topology changes, members in a local groupmay not share the same lossy links, i.e., they do not sharelosses anymore. Another example of network dynamics istra�c congestion. Data losses due to congestion changesthe error rates and the locations of lossy links in a session.Since local groups are associated with lossy links, changesin error rates and locations of lossy links a�ect the loss-sharing behavior within local groups. Members have toreadjust themselves adaptive to these networks dynamicsso that the new membership in the local group representsa set of members who share the same losses. The study of13
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