Local Error Recovery in SRM :
Comparison of Two Approaches

Ching-Gung Liu, Deborah Estrin, Scott Shenker and Lixia Zhang

Abstract— SRM is a framework for reliable multicast de-
livery. In order to maximize the collaboration among the
group members in error recovery, both retransmission re-
quests and replies are multicast to the entire group. While
SRM effectively uses random timers to suppress duplicate
requests and replies, the global nature of the request and
replies means that every packet loss results in at least one
request and reply message sent to the entire group.

To further improve the scalability of SRM, one must lo-
calize the scope of error recovery traffic. In this paper we
present two approaches to local recovery: hop-based scope
control and use of local recovery groups. The first approach
uses hop count to limit the distribution of requests and
replies, whereas the second approach confines error recov-
ery traffic using separately-addressed local recovery groups.
The local recovery groups and hop count settings are au-
tomatically created and dynamically adjusted based on ob-
served loss patterns. We use simulation experiments to ex-
amine the performance of both approaches.

1 Introduction

Scalable Reliable Multicast (SRM) [1, 2] is a framework
for reliable multicast delivery; it guarantees data deliv-
ery to all members in a multicast session [3]. The mecha-
nisms needed to achieve this reliability can be decomposed
into two parts: session message exchange and receiver-
initiated error recovery. Members periodically exchange
session messages to report current group state (e.g., the
highest received sequence number from each source, so that
losses can be detected) and to determine the propagation
delays between each pair of members. ' The error re-
covery mechanism is receiver-initiated and NAK-based [4];
receivers are responsible for detecting data losses and re-
questing retransmissions. These retransmission requests,
and the resulting replies, are multicast to the entire group.

Ching-Gung Liu is with the Fujitsu Laboratories of America, Inc. (e-
mail: charley@fla.fujitsu.com).

Deborah Estrin is with the Computer Science Department/Information
Sciences Institute, University of Southern California (e-mail: es-
trin@usc.edu).

Scott Shenker is with the Xerox Palo Alto Research Center (e-mail:
shenker@parc.xerox.com).

Lixia Zhang is with the Computer Science Department, University of
California, Los Angeles (e-mail: lizta@cs.ucla.edu).

This research was supported in part by the Advanced Research Projects
Agency, monitored by Fort Huachuca under contracts DABT63-94-C-
0073, and by the National Science Foundation under grant award No.
NCR-96-28-729. The views expressed here do not reflect the position or
policy of the U.S. government.

1Although the delay from a member and the delay to a member may be
different, SRM assumes the path between a pair of members are symmet-
ric; thus each member determines its one-way delay to another member by
taking half of its measured round-trip delay. This symmetry assumption
should cause no performance penalty even when the paths are asymmet-
ric, because the delay between members is mainly used to differentiate
members in setting their retransmission timers.

Members use propagation delays to schedule their request
and reply timers; each member detecting a loss waits for a
random time period before sending the retransmission re-
quest, and similarly each member receiving a retransmis-
sion request waits for a random time period before sending
the reply. 2 When members receive a retransmission re-
quest (or, respectively, a reply message) while waiting to
send one of their own, they cancel their scheduled trans-
mission. This enables SRM to suppress duplicate requests
and replies, and thus avoid the request and reply message
implosion problem [5].

However, each packet loss will result in at least one re-
quest and one reply message being sent to the entire mul-
ticast group. This limits the scalability of SRM as network
and group size increases [6, 7]. As suggested in [2], the
premise of this paper 1s that the error recovery mechanism
should isolate error recovery traffic to the required scope.
In this paper, we present two different mechanisms to lo-
calize the scope of error recovery traffic. The hop-scoped
error recovery mechanism uses hop count to limit the dis-
tance that request and reply messages can travel. In con-
trast, the group-scoped error recovery mechanism confines
the propagation of error recovery traffic by distributing it
to subsets of the group using separate multicast addresses.
Simulation results of these mechanisms suggest that they
both reduce error recovery traffic without introducing sig-
nificant overhead. 3

Note that local recovery is a performance optimization,
thus the mechanisms do not have to achieve the optimal or
precise degree of locality; the more local the recovery, the
less recovery traffic overhead there is. In both mechanisms
that we propose here, a member may occasionally send
its requests and replies to an inappropriate scope. While
such “mistakes” have a slight impact on the performance
of SRM (in terms of the volume of error recovery traffic),
they have no impact on its correctness, since all data losses
are eventually recovered.

The paper is organized as follows: Sections 2 and 3 de-
scribe the hop-scoped error recovery and the group-scoped
error recovery mechanisms, respectively. Section 4 presents
the simulation models and analyzes the simulation results,
and Section b reviews related work. We conclude in Section
6 with a short summary.

2SRM assumes most or all session members, not only the data source,
save all the application data. If some members do not save the data
requested, they simply do not participate in the error recovery process.

3The discussion of localizing session messages is outside the scope of
this paper. More information can be found in [8, 9].



2 Hop-Scoped Error Recovery

The simplest way to control the scope of requests and
replies is to limit the number of hops they travel. * We
wish to use the minimum hop counts possible in requests
and replies. To minimize the hop limit for request mes-
sages, our design takes the approach that a member p’s re-
quest extends just far enough to reach some other member
¢ who is closer to the source. If the loss occurred between
q and p, then ¢ will be able to retransmit the lost packet.
If the loss occurred elsewhere so that ¢ missed the packet
as well, then we only need to make sure that ¢ will send
a request further up towards the source. All that matters
i1s that at least one request makes it across the lossy link
(i.e., link where the loss occurs), and it is likely that this
request comes from the closest member behind the lossy
link since each member’s request timer 1s set proportional
to the measured delay from the source.

In the original SRM design a request is used to suppress
duplicate requests as well as to ask for repair. While lim-
iting the hop count of the request message limits the over-
head it generates, it also diminishes its ability to suppress
other members from sending the same requests. Fortu-
nately, the request hop count in our mechanism, generally
speaking, is relatively small compared to the distance (in
terms of the number of hops) to the source. Thus the re-
quest overhead per loss is acceptable even though multiple
requests for retransmitting the same data are generated.
Moreover, because request timers are based on the propa-
gation delay from the source, a member far behind the lossy
link may receive a reply before sending its own request.

While we greatly limit the scope of requests, we require
that a reply have sufficient scope to reach all members who
share the same loss. Since a replier does not know where
a packet 1s dropped, it is difficult for the replier to de-
cide how far the retransmission must go. However, if a
requester assumes it 1s immediately behind the lossy link,
it can determine (as we show below) an upper bound on the
hop count needed to reach all other members behind the
lossy link. The upper bound is called the prozy hop count
because the requester acts as request proxy for members
who share the same loss. When a replier receives a request
from a requester h hops away, and the proxy hop count of
the requester is P, then the replier’s reply hop count, II,
is given by Il = A + P. Note that the reply hop count is
an upper bound and the reply may reach members who do
not share the loss.

Our hop-scoped error recovery requires a member to
measure its distances, in terms of the number of hops, to
all the other members in the same session. The distance
1s measured by exchanging session messages. Since session
messages are periodic, the measurement is also periodically
refreshed. We will discuss the algorithm to determine the
request and proxy hop counts in Section 2.1 and Section
2.2. The detailed mechanism is described in Section 2.3.

“In [2], a 2-step reply-relying hop-scoped error recovery mechanism
is suggested, but without a specific method to measure the request and
reply hop counts. Our proposed mechanism can also be used to measure
the request and reply hop counts in [2].

2.1 Request Hop Count

Each requester simply sets its request hop count large
enough to reach at least one member that is closer to the
source. This member does not necessarily share the same
data delivery path with the requester; all that matters is
that the upstream member 1s closer to the source than
the requester. Hence the hop count to reach an upstream
member for a member p regarding a source s in a session
G, di,,, can be set to,

di, = min{hp | Vg € G, hsg < hsp}

where h,4 is the distance, in terms of the number of hops,
from p to q.

eg"e‘

source ‘ requester
® - e —
repli " %, requester

0\9,8,

Figure 1: Multicasting requests with a limited hop count
reduces the effectiveness of request suppression. (Scenario
in the string topology)

Because a limited hop count reduces the effectiveness of
request suppression, multiple requests regarding the same
loss may be generated. In particular, two scenarios illus-
trated in Figure 1 and 2 are known to cause duplicate re-
quests. In Figure 1, the hop count to an immediate up-
stream member is smaller than the hop count to an im-
mediate downstream member. Therefore, requests sent by
upstream members can not reach their downstream mem-
bers to suppress them from sending out the same requests.
In the worst case, the request overhead within the loss re-
gion can be two requests per link, one traveling upstream
and the other downward. We consider such overhead ac-
ceptable.

requester p
requester q

sources  replierr

Figure 2: Multicasting requests with a limited hop count
reduces the effectiveness of request suppression. (Scenario
in the star topology)

The scenario illustrated in Figure 2 can cause much
higher request overhead. All the requesters in Figure 2
choose r as the replier. They multicast their requests with
a hop count value that is big enough to reach r, but not big
enough to reach one another for duplicate suppression. In
the worst case the number of requests per loss within the
loss region is equal to the number of requesters. Therefore
to minimize the number of duplicate requests, requesters
have to set their request hop counts large enough not only



to reach the replier but also to reach one another for sup-
pression. °

The characteristic of this scenario in Figure 2 is that
multiple requesters do not choose one another as repliers
for retransmission. For example, both p and ¢ request »
who is closer to the source than p and ¢. Because the
replier selection is autonomous and independent, in general
a member will not know the selection of other members.
However, two members p and ¢ are very likely to be in
the scenario described in Figure 2 if they fall within the
following three conditions:

1. p requests someone closer to the source than g¢,
2. ¢ requests someone closer to the source than p, and
3. their request scopes overlap with each other.

To check Conditions 1 and 2, a member p needs to cal-
culate the distance from source s to its intended replier
(denoted by day).

ds?

, = min{h,, | Vr € G, hp, < dl;}

If dzf, < hsq, then p concludes that it does not request
member ¢ for retransmission. Similarly, if dzg < hsp, then
p concludes that it is not the intended replier for member
g. For Condition 3, p concludes that their request scopes
overlap if (dij, + di3) > min{hpg, hyp }, Therefore, member
p can compute the required hop count to suppress other
requests as dz,,,

ds;

» = max{h,, | Vg € G,

(dop < hsg) N (dzg < hsp) A (dry + dig > min{hyg, hep})}
The request hop count of p regarding source s (denoted by

7,) is the maximum of dy, and ds,, i.e.,

T, = max{dy,, ds, }

The request hop count is calculated on a per-source basis
under the assumption that source-specific multicast distri-
bution trees are used. Issues related to the use of other

types of multicast trees are left for future study.

2.2 Proxy Hop Count

A requester sets its proxy hop count so as to reach other
members that share the same loss. Since a requester has
no knowledge of the underlying network topology, it can
only estimate an upper bound of its proxy hop count.

A requester only has to consider members farther away
from the source than itself in determining its proxy hop
count. There are four kinds of relationship between a re-
quester and a member farther from the source. They are
demonstrated in Figure 3 by member pairs {p, ¢}, {p, u},

{p,v} and {p, w}.
1. p and ¢ have an upstream-downstream relationship.

That is, The path from s to p is a subset of the path
from s to ¢. In this case ¢ most likely shares losses

5Sally Floyd helped identify this pathological case in an earlier version
of this paper.

Figure 3: Request and reply hop counts (Thick lines rep-
resent data delivery path, circles represent the regions of
request and reply scopes.)

with p. An upstream member should be proxy for its
downstream members to request retransmission. If ¢
is downstream of p, then h,, + hpq i1s equal to hg,.
However, because a member may be one hop away
from its first-hop router, h,, 4+ hpy may be two hops
greater than h,,. We refer to the downstream distance
of p regarding a source s as Dy,.

Dy}

» = max{h,, | Vg € G,

(hsp < hsg) A (hsp + hpg < hsg + 2)}

2. p and w are siblings (one’s path from s is not a subset
of the other) and u requests p for repair. In other
words, p is closer to source s than v and p is within the
radius of u’s request hop count (To be more specific,
p is within the radius of di;.) Therefore, p has to be
proxy for u as well as u’s downstream members. We
refer to this distance as sz,.

Dy}

» = max{hyy +max{ Dy, Doy, } | Yu € G,

(hsp < hsu) A(hup < diy)}

3. p and v are also siblings and v is within the radius of
p’s request hop count (hy, < ), although v is not
p’s intended replier (da, < hgy). p has to be proxy for
v and v’s downstream members because v’s requests
may be suppressed by p. We refer to this distance as
D3;. Since v’s requests are suppressed by p, p does
not have to consider Ds; in computing D3;.

D3, = max{hy, +max{Diy, Doy} | Vv € G,

(d2y, < hso) A (hpy < )}

4. p and w are also siblings but they are not within the
request hop counts of each other, i.e., w does not ask
p for repair and its requests are not suppressed by p.
Therefore, w sends its own requests and p does not
need to proxy for w.

The proxy hop count is calculated on a per-source basis.
A requester p can determine its proxy hop count regarding



source s, P, by taking the maximum of its Dy}, Dy and
D3, from all members from which it hears session messages.
P; = HlaX{le), Dz;, D3;}

A replier r determines its reply hop count triggered by
an incoming request from p regarding a loss from s, I1Z, as

I = hrp 4+ Pps

2.3 Mechanism Description and Discus-
sion

Members exchange session messages to measure the dis-
tance, in terms of the number of hops, from and to other
members. Additional information is carried in each session
message. In particular, member p includes hgp, diy, da,
and max{D;;, Da,} for each source s, and h,, for each
member ¢, in its session messages. The distance between
each pair of members 1s used to compute the request and
proxy hop counts.

The computation of request and proxy hop counts is per-
formed iteratively. A member recomputes its request and
proxy hop counts when a new session message is received.
It takes as few as two session cycles ® for a member to
compute its request hop count. The computation of the
proxy hop count takes several session cycles to converge
because it depends on results from other members (D2, to
be specific). In order to capture session dynamics, the com-
putation of request and proxy hop counts i1s timestamped
and aged, so obsolete results will be timed out.

When a packet loss is detected, a requester multicasts
a request within the radius of its request hop count. The
request message carries distance from the source to the in-
tended replier (d3), and the proxy hop count. da is used
to determine request suppression. A member suppresses
its scheduled request if the received request is intended to
reach someone closer to the source. Otherwise, the sched-
uled request should be sent. The replier uses the proxy
hop count to determine the reply hop count. Normally,
at least one request from members behind the lossy link
reaches a member with the requested data and triggers a
reply. However, if no reply 1s received due to packet loss
or underestimated request hop count, the requester sends
a second request globally, and the corresponding reply will
be sent globally as well.

A different approach to reply scope control would be
that, when a replier responds to a request, it multicasts its
reply with a hop count h, where h is the distance to the
original requester. After receiving the reply, the original
requester relays the reply to other members downstream
within the radius of its proxy hop count, P [2]. However,
this 2-step reply-relaying scheme introduces additional de-
lay in reply propagation, which may cause additional du-
plicate requests being sent. Furthermore, the scopes of

SA session cycle time is the period between two consecutive session
messages sent by a member. Since all members send their session messages
at the same rate, a member should receive a session message from each
member during a session cycle time.

the first reply and the relayed reply overlap, thus members
within the overlapped area receive duplicate replies. Since
the distance between a replier and a requester, h, is rela-
tively small in the average case, multicasting a reply with a
hop count of h+ P should not introduce significantly more
overhead in terms of network bandwidth. Therefore, in our
hop-scoped error recovery, a replier uses h+ P for its reply
hop count. If multiple requests are received, the replier
takes the maximum P value received in its calculation.

One question regarding the hop-scoped error recovery
mechanism is that the hop-scoped packets may prevent
multicast pruning in dense-mode multicast routing pro-
tocols, such as DVMRP [10, 11] and PIM-DM [12, 13].
As a result, hop-scoped multicast packets become locally
broadcast, i.e., they reach all the routers within the hop
limit including those that are not on the multicast routing
tree. However, in SRM, because each member periodically
multicasts global session messages; those session messages
causes branches that reach no members to be pruned off.
Therefore, hop-scoped request and reply traffic is contained
within the multicast tree.

Ideally, a request should reach a few neighbors who have
the requested data, and a reply should reach only those
members who lost the same packet. However, because
hop-scoped multicast traffic radiates in all directions, the
bandwidth overhead can be significant in some cases, es-
pecially in case of the reply traffic. For example, the reply
from member 7 in Figure 3 propagates upstream as well as
downstream to recover a loss. In the next section we con-
sider the use of separate multicast groups to more precisely
control the scope of error recovery traffic.

3 Group-Scoped Error Recovery

A local recovery group consists of a set of members who
share common data losses to at least some degree. Mem-
bers share the same losses because they share one or more
lossy links along the data delivery path from a source.
Because we assume source-specific multicast distribution
trees, the creation of local groups is on a per-source basis.
However, our mechanism does not limit members to a sin-
gle local group per source. Multiple local groups can be
associated with a source where each group is responsible
for error recovery for one or more lossy links. For a specific
source, the relationship among these lossy links is either
ancestor-descendant or siblings, so that these local recov-
ery groups are either perfectly nested or totally disjoint, as
shown in Figure 4.

Our group-scoped error recovery follows a basic SRM
design principle of each member being an autonomous en-
tity. That is, each member makes its own decisions on
whether to join or leave a local group. There is no central-
ized coordination among members. Members use the error
fingerprints to measure the degree of loss sharing with a
local group. An error fingerprint is the sequence numbers
of the last f losses in a local group. For example, a mem-
ber p shares 50% losses with a local group G if p lost more



source

Figure 4: Membership of local recovery groups are either
perfectly nested or totally disjoint.

than half of the packets specified in G’s error fingerprint.

At the beginning of a session, data losses are recovered
globally. A member who suffers noticeable data losses from
a source proposes the creation of a local recovery group in
its retransmission request (sent globally), together with its
error fingerprint. The creation of the local group is granted
by a replier in its reply. © Since the reply is sent globally,
other members who have a matching error fingerprint join
the local group when they receive the reply. These mem-
bers are called the regular members, or simply members,
of the group and their subsequent requests are sent to the
local group. Other members selectively join a local group
to help error recovery. They are called helpers of the group.
When a helper receives a request from a member of a local
group, the helper sends its reply to that same local group.

A regular member in a local group measures the extent
to which it shares losses with that group. It stays in the
group if the degree of loss sharing is high, otherwise it
leaves the group. If a regular member has joined multiple
nested groups, it always sends retransmission requests to
the innermost group first. In cases the loss actually oc-
curred in an outer group, another member who sees the
outer group as its innermost group should have detected
the loss and requested retransmission.

Our group-scoped error recovery follows the “soft-state”
approach. Membership solicitation and loss-sharing mea-
surement are periodically refreshed to capture session dy-
namics. The mechanism is described in detail in the fol-
lowing sections. In particular, we discuss the criteria for
proposing, granting, joining and leaving local groups.

3.1 Proposing and Granting a Local

Group

A member proposes a local group if its error rate exceeds «,
where 0 < a < 100%. In the extreme case, we can choose
a = 0 to encourage all error recovery to be handled by local
groups. If a member decides to propose a local group, it
waits a period of time before proposing in order to learn of
existing local groups. If there is an existing local group, the
member joins the existing local group instead of proposing
a new one. Section 3.5 discusses in more detail the joining
process. The waiting period can be measured in terms of
time, number of losses or number of received data packets.
A longer waiting period increases the chance for a member

7A similar approach was proposed in [14, 15] to solve the implosion of
multicast congestion feedback.

to discover existing local groups, thus reduces the overhead
of unnecessary group creation. On the other hand, if the
waiting period is short, a new group can be created quickly
and the overhead of the global error recovery is reduced,
at the expense of group creation overhead. Since an er-
ror fingerprint is required for proposing a local group, the
waiting period before a member proposing a group has to
be long enough to cover f losses.

A member proposes a new local group in its request mes-
sage by including the proposed multicast address and the
error fingerprint. Since the proposed local group is not yet
created, the member uses the sequence numbers of its own
losses as the initial group error fingerprint. The request
proposing a local group is multicast globally to suppress
other group proposals. If a member has joined any local
group, 1t is not allowed to propose additional local groups.
However, it may join other groups as appropriate.

A replier grants the creation of a new local group in
its reply. The reply message includes the address and the
error fingerprint of the granted local group. This message
1s multicast globally to solicit members who share the same
losses. Furthermore, the replier joins the local group as a
helper, which assures that there is at least one helper in
the new group.

3.2 Joining a Local Group as a Regular
Member

A member joins a local group if it shares more than 3 of
the losses with the group, where 0 < 8 < 100%. When
a reply granting a new local group is received, a member
joins the group if the similarity of its own losses and the
error fingerprint of the granted group exceeds (.

If a member joins multiple local groups, these groups
must be nested. That is, the membership of an inner group
is a subset of the membership of an outer group. It is im-
portant that all members maintain a consistent view of
group order so they can exercise these nested groups in
the same fashion and produce correct loss-sharing mea-
surement. The group order is also used in error recovery
process since a member always sends 1ts requests to its in-
nermost local group first. One simple way to determine the
order of a local group 1s by the sequence number of the re-
ply granting the local group. The sequence number of the
reply granting a local group 1is called the order number of
the local group. To be precise, an order number consists of
the sequence number of the reply in the high order portion
and the local group address in the low order portion. We
assume a local group address is unique within a session. If
multiple local groups are created with the same sequence
number, their order numbers are still unique. Generally
speaking, a local group granted later has a larger group
order number and a larger scope. Note that the original
session group 1s always the outermost group even though
it does not have an order number.

The order of nested groups may not reflect their phys-
ical scopes at a particular point of time, a transient phe-
nomenon that will be fixed after the requests and replies



@ source @ source @ source @ source
p p p p
° ° ° °
G, G,
Gl Gl Gl Gl
(@ (b) (0 (d)

Figure 5: Evolution of misplaced nested local groups

disseminate completely. For example, in Figure 5, a new
member p may propose a new group (G5 before learning of
the existing local groups, G (Figure 5(a) and 5(b)). p will
be solicited to join (G later and then it will use Gy as the
innermost local group (Figure 5(c)). At this point of time,
the physical scope of (G7 is larger than that of G5. Even-
tually, G2 will be timed out and disappear (Figure 5(d)).
The group timeout scheme is discussed in Section 3.4 and
the membership solicitation scheme is discussed in Section
3.5.

The threshold 3 defines the tradeoffs between the num-
ber of nested local groups and the error recovery perfor-
mance. For large § value, more nested local groups are
created, and each group has a higher loss-sharing ratio and
achieves greater efficiency for retransmission. As a result,
the group maintenance overhead is higher and the error
recovery performance is better. On the other hand, for
small 3, fewer nested local groups are maintained but the
loss-sharing ratio in each local group is also lower. In the
extreme case, if we choose § = 0, there is only one lo-
cal group in the session to recover all losses; if we choose
3 = 100%, the number of local groups is equal to the num-
ber of lossy links and each group recovers losses over each
lossy link.

3.3 Error Recovery in a Local Group

When a loss is detected, a member sends its request to its
innermost group first. If there is no reply, it will expand
its request scope by trying its next outer group until the
loss is recovered. As described earlier, even if a request
to the innermost group does not reach a helper, members
in the outer group should have detected the loss and sent
their requests. Therefore, the majority of the losses are
recovered quickly and sending requests to an outer group
upon timeout should happen rarely. Since members in the
inner group may rely on members in the outer group to ask
for data repair, a member p’s scheduled request should not
be suppressed by a request from a local group G if p is not
a regular member in G (p can be a helper in G to receive a
request sent to G.) In other words, a request addressed to
a local group should only suppress requests of other regular
members in that group.

The order number of the addressed group is included in
the request message. It is used by a replier to determine
the destination group for the corresponding reply. A replier
sends its reply to the local group to which the request was

sent. If 1t receives multiple requests that are sent to dif-
ferent groups, the replier addresses its reply to the group
with the largest order number.

3.4 Leaving a Local Group

A member measures the degree of loss sharing in each lo-
cal group it joins by the ratio of the number of its total
losses over the number of received replies from the group.
For example, the loss sharing can be measured every m
replies received in a local group. To prevent oscillation,
exponentially-weighted moving average is adopted. If a
member’s loss-sharing ratio is smaller than 3, it leaves the
local group.

A helper leaves a local group if its last & consecutive
scheduled replies for the local group are suppressed. As a
result, there are at most & helpers in a local group.

If there is no error recovery traffic in a local group, the
local group should be timed out to reduce group main-
tenance overhead. Both helpers and members determine
when a local group is dormant and leave the group. The
timeout period can be measured in terms of seconds or the
number of received data packets.

3.5 Soliciting New Members

Since an error fingerprint is a snapshot of the group losses,
a member who shares the majority of losses with a local
group may unfortunately decide not to join when it learns
about the group the first time. Furthermore, when a new
member joins an ongoing session, 1t has no knowledge of
the existing local groups. A scheme to periodically solicit
new members is necessary to capture new members as well
as old members whose snapshots happened to be skewed.

A local group solicits new members by periodic polling.
Members periodically send their requests to the next outer
group. The group address, order number and error finger-
print of the inner group are carried in the polling request
to solicit new members and helpers.

Members in the outer group join the inner group based
on the comparison of their own losses and the inner-group
error fingerprint. Since the polling requests are sent to
the next outer group, a new member joins local groups
one at a time in an outside-in fashion until it has joined all
nested local groups. Note that the periodic polling requests
scheduled by inner-group members suppress one another.
If a requester does not receive a retransmission in its first
try, the next repair request addressed to its outer group
can also serve the purpose of membership solicitation.

Our mechanism requires that a member joins an outer
local group before an inner local group. A helper does
not solicit new comers into a local group since a helper
does not maintain the order of nested local groups. If a
member is solicited into an inner group without joining
proper outer groups, it cannot received replies triggered
by requests from outer groups. Consequently, its losses
require multiple request iterations to recover, resulting in
longer recovery delay and higher bandwidth overhead.



The same scheme is used to solicit new helpers. If a
replier in the outer group responds to a polling request, it
joins the corresponding inner group as a helper. However,
if the request can be handled by a helper that is already in
the inner group, this helper is closer to the requester and
1s most likely to respond first. Therefore, a new helper will
rarely need to join the inner group unless all helpers in the
inner group have left.

4 Simulation Results and Discus-
sion

We believe the behavior of our proposed mechanisms can
be best understood by first testing a variety of extreme
settings before moving on to more general scenarios. In
this section we first explore our local recovery mechanisms
in three extreme but simple topologies — star, string and
binary tree — each with a single data source. The star topol-
ogy represents a session where all members have indepen-
dent losses. The string topology represents a session where
downstream members share the same losses with their up-
streamn members. The binary tree topology represents a
mixture of shared and independent losses in a session.

Each topology is tested with five different session sizes:
8,16, 32, 64 and 128. We simulated the performance of five
different mechanisms for each session size: the global er-
ror recovery, the hop-scoped error recovery, and the group-
scoped error recovery with three different degrees of loss
sharing, 33%, 50% and 100%. We choose o = 0 (error
threshold to propose a local group), & = 3 (threshold for
an inactive helper to leave a local group), m = 10 (num-
ber of losses in a loss-sharing measurement period) and
f = 6 (number of losses in an error fingerprint) in all the
group-scoped error recovery simulations. Each simulation
starts with a warmup period and measures the error recov-
ery activities of the next 2500 data losses. Data losses are
generated by assigning an uniformly-distributed error rate
on each lossy link of the simulated topologies, and these
error rates are fixed throughout a single simulation. The
aggregated error rate among all links is 10% of the traf-
fic, including data, requests, replies and session messages.
The data rate is 40 packets per second. The link delay is
10 ms for links between routers and 3 ms for links con-
necting group members. The session cycle time is 9 £ 1
seconds. The warmup period is defined as each lossy link
experiencing at least 250 losses. The total simulation time
is roughly 625 seconds.

The performance is evaluated by three metrics: the re-
quest traffic, the reply traffic and the recovery delay. The
request traffic is the product of the average measured re-
quest scope and the average measured number of requests
per loss. The request scope is a fraction of the global scope
and 1t is measured in terms of the number of hops that a
request propagates. For example, in the global error recov-
ery, the request scope is equal to the global scope since each
request is multicast to the entire session. The reply traffic
is the product of the average measured reply scope and the

average measured number of replies per loss. The recovery
delay is measured in terms of the one-way propagation de-
lay from the data source. In other words, it is the interval
between a member’s detection of a loss and reception of a
retransmission, divided by the one-way propagation delay
from the data source to the member.

In our simulations, we adopted a random timer adap-
tation mechanism to optimize the performance of the re-
covery delay, and the number of requests and replies per
loss. The general idea 1s to make the generation of re-
quest and reply timers adaptive to the network and session
environment. A member estimates the number of compet-
ing requesters and repliers by interpreting feedback from a
session, and uses the estimated values to tune its request
and reply timer parameters. These parameters determine
whether requests and replies are generated aggressively or
conservatively. Generally speaking, adopting local error
recovery limits the number of competing requesters and
repliers, which allows members to send requests and replies
more aggressively and reduces recovery delays. More dis-
cussion is in [16, 17, 18].

4.1 Topologies with Multiple Lossy Links

The first set of simulations assumed that all links have
uniformly-distributed error rates.

The Star Topology

Figure 6(a), 6(b) and 6(c) show the simulation results in
the star topology. Members in the star topology have inde-
pendent losses, hence there is no loss shared among mem-
bers and approximately one request message per loss is
generated. Since the distances between each pair of mem-
bers are equal, the hop-scoped error recovery performs ex-
actly like global error recovery. Note that the number of
available helpers for a specific loss is large in the global
error recovery and the hop-scoped error recovery, there are
multiple replies generated per loss (Figure 6(b)).

In the group-scoped error recovery, each member cre-
ates its own local group. The requests and replies only
propagate within individual local groups. Because of the
constant number of helpers in a local group (k = 3), the re-
quest and reply traffic decreases by increasing session size.

The number of local groups in the group-scoped error
recovery is equal to the number of lossy links. In general,
if there are n members in a session, the number of local
groups is equal to n. Each local group recovers % of total
losses in the session and its scope is roughly % of the session
scope. Therefore, we can estimate a lower bound on the
request and reply traffic in the group-scoped error recovery
as % of the traffic in the global error recovery. Since this
estimated request and reply traffic is a lower bound, it
represents the greatest degree of savings possible. ® The
estimated values are plotted as gray curves in Figure 6(a)

and 6(b).

8Upper bound estimates would need to take several other factors into
account. For example, the number of helpers and membership dynamics
in a local group.



o 125 o 225 6.0
s 100 _ae%_%' _____ o P ) T L g’ co ' ' '
g S 1ok T s °
s B 1 s 1254 - g 561 T S-S
& 50t — ?: 100 - N 3 5.4 &% ]
= e 5 . e
g 25| i i = s2) .
P S - 2 Bloa o o o 50 — —
0 35 70 105 140 0 35 70 105 140 0 35 70 105 140

(a) session size

(b) session size

(C) session size

Star topology

150 150

125
100
75

100 1~

125 {7

reply traffic %

50
25

request traffic %

|
recovery delay

0 35 70 105 140 0 35
(d) session size

70 105 140 0 35 70 105 140
(e) session size

String topology

150

125
100

request traffic %
reply traffic %

recovery delay

0 35 70 105 140 0 35
(g) session size

140
0} session size

70 105 140
() session size

Tree topology

¥--%  Global error recovery

0—20
— A Group-scoped error recovery : 3 = 50%

Group-scoped error recovery : 3 = 33%

A
O--O  Hop-scoped error recovery s« Group-scoped error recovery : 8 = 100%
represents the estimated lower bound of the group-scoped error recovery

Figure 6: Simulation results of all links with uniformly-distributed error rates

The String Topology

In the string topology, downstream members share losses
with all their upstream members. A downstream member
can rely on its upstream members to ask for repair in the
hop-scoped error recovery. As a result, request traffic is
reduced significantly (Figure 6(d)).

Topology Star topology String topology Tree topology

number of requests per loss is sub-linear in terms of the
session size, the average request traffic decreases with the
session size. As described earlier, even if multiple requests
per loss are presented in the hop-scoped error recovery, the
overall request traffic is improved because the scope of each
request is small and a member far behind a lossy link may
receive a reply before even sending a request.

Session size 8 |16 |32 |64 |128| 8 | 16 | 32 | 64 |128 | 8 | 16 | 32 | 64 | 128

Topology Star topology String topology Tree topology

Requests per loss | 1.01|1.03|1.03|1.03 | 1.03|2.27|3.24 | 4.00 | 5.17 | 7.90 | 1.21 | 1.80 | 2.03 | 2.28 | 2.60

Session size 8 |16 |32 |64 |128| 8 | 16 | 32 | 64 |128 | 8 | 16 | 32 | 64 | 128

Request hops 16 | 32 | 64 | 128 | 256 | 6.26 | 6.71 | 6.86 | 6.92| 6.95 | 9.17 | 9.06 | 9.68 [10.18| 9.99

Requests per loss | 5.21 | 6.52 | 9.40 |14.55|27.40| 8.65 |16.18(31.71|61.35119.5( 5.49 | 6.81 | 8.62 |10.44|11.36|

Request traffic % |101.3/102.9|103.3|103.2(103.1|88.81|67.82|42.87|27.96|21.46|69.58|50.86| 30.72(18.1210.14|

Request hops 1.00|1.00|{1.00|1.00|{1.00|1.42|1.65]195|234|293|1.23|1.32|146|151|162

Table 1: The number of requests per loss and the number of
hops that a request travels in the hop-scope error recovery

Table 1 shows the average number of requests per loss
and the average number of hops that a request message
travels in the hop-scoped error recovery. The number of
requests per loss in the string topology increases with the
session size, but the number of hops that a request mes-
sage travels remains constant. However, the increase in the

Request traffic % |32.56|20.36|14.69|11.35|10.69|77.02(83.28|96.41|112.2(136.6|42.30| 28.16|19.64|12.33| 7.17

Table 2: The number of requests per loss and the num-

ber of hops that a request travels in the group-scope error
recovery with 2 = 100%

In the group-scoped error recovery, request messages
propagate to all downstream members for suppression and
a limited number of upstream neighbors for retransmis-
sion. A request may not reach any helpers if the scope of



the request does not cover the lossy link where the packet
was dropped. When the length of the string increases, the
number of nested local recovery groups increases and it is
more likely that requests from inner groups do not reach
any helpers. Therefore, request traffic goes up with the
session size as shown in Figure 6(d). Table 2 shows the av-
erage number of requests per loss and the average number
of hops that a request message travels in the group-scoped
error recovery with = 100%. The number of requests per
loss and the average hops of a request in the string topol-
ogy Increase with the session size, thus the average request
traffic increases with the session size.

In terms of reply traffic, since the hop-scoped error re-
covery does not regulate the direction in which the reply
messages propagate, the hop-scoped error recovery should
perform much worse than the group-scoped error recovery.
However, in the group-scoped error recovery, a requester
sends it second request to its outer group if the first one
did not reach any helper. Since an outer-group member
may already ask for repair, the second request from the
inner-group member is very likely to trigger a duplicate re-
ply. Consequently, the number of replies per loss increases
and the improvement limited in comparison with the hop-
scoped error recovery (Figure 6(e)).

The recovery delay in the hop-scoped error recovery de-
creases with the session size since request messages only
reach a small number of members. As a consequence, mem-
bers send requests more aggressively and the recovery delay
is reduced (see the discussion of dynamic timer adaptation
in Section 4). On the other hand, members have large esti-
mated timer parameters in both the global error recovery
and the group-scoped error recovery since requests reach all
members who share the loss. However, in the group-scoped
error recovery, only those members whose innermost local
group covers the lossy link are eligible to request retrans-
mission, therefore the average delay increases with the ses-
sion size (Figure 6(f)).

The Tree Topology

The tree topology is a mixture of the star and string topolo-
gies. The average request traffic decreases with the session
size in the group-scoped error recovery because the num-
ber of nested local groups is much smaller than it is in
the string topology (Figure 6(g)). As shown in Table 2,
both the number of requests per loss and the request hops
increases much more slowly with the session size.

The number of local groups in the group-scoped error re-
covery 1n the string and tree topologies is proportional to 3.
For example, if 3 = 100%, each local group is responsible
for the error recovery of a single lossy links. The number of
local groups is equal to the number of lossy links in the ses-
sion. If 3 = 50%, a local group is responsible for the error
recovery of two lossy links and the number of local groups
is equal to half of the number of lossy links. In general, for
a session of size n, the number of local groups is [ - n, the

number of lossy links covered by a local group is %, and
1

the percentage of losses recovered by a local group is AR

Therefore, the estimated error recovery traffic, T, can be
calculated as T' = ﬁ% . Zﬁn 3G) where (i) is the size of

i=1 n
i—1

the 7! local group. For the string topology, 6(i) = n— R

For the tree topology, d(7) ~ 9(loga n—log;(F+1))  The es-
timated lower bounds of the error recovery traffic in string
and tree topologies are,

B+ _ 1
Tstring = ENER Tiree —Zm

i=1

The estimated values are plotted as gray curves in Figure

6(d), 6(e), 6(g) and 6(h).

4.2 Topologies with Randomly-Selected
Lossy Links

In the second set of simulations, randomly-selected %
of the links have uniformly-distributed error rates, which
makes one lossy link in the 8-node topologies, two lossy
links in the 16-node topologies, and so on. The simulation
results are shown in Figure 7. Both the hop-scoped and
group-scoped error recoveries outperform the global error
recovery in terms of the request and reply traffic, except
for the hop-scoped error recovery in the star topology.

Generally speaking, the hop-scoped error recovery per-
forms better than the group-scoped error recovery in terms
of the request traffic if members have an upstream-
downstream relationship (i.e., they share losses.) Down-
stream members can rely on the requests from their up-
stream members to ask for retransmission, therefore the
hop-scoped error recovery generates less request traffic in
the string and tree topologies than the group-scoped error
recovery (Figure 7(d) and 7(g)).

On the other hand, since the hop-scoped error recovery
does not regulate traffic direction, it does not perform well
in terms of the reply traffic if the degree of connectivity
in the topology is high. For example, in the star and tree
topologies, the reply traffic generated by the hop-scoped
error recovery populates in a much larger region than the
reply traffic generated by the group-scoped error recovery
(Figure 7(b) and 7(h)). Note that, in the 16-node string
topology, the reply traffic in the hop-scoped error recovery
is close to 100% because the randomly-selected lossy links
are in the middle of the topology (Figure 7(e)).

Interestingly, the group-scoped error recovery with small
3 (e.g., B =33%) not only generates more request and re-
ply traffic, but also produces longer recovery delay, than
the group-scoped error recovery with large § (e.g., f =
100%). For small 3, a member’s error fingerprint matches
more easily with the error fingerprint of a local group with
which i1t does not share losses. If the lossy links are sparsely
distributed, a member who joins a non-loss-sharing group
by accident is more likely to request retransmission from
remote helpers. Therefore, small 3 produces more band-
width consumption and longer recovery delay than large g8

(Figure 7(f) and 7(i)).



o 125 o 225 s, 6.0
i 100 —saéﬁb%l ----- e@ll@g i 200 —Q;}—%@’-ii‘-’—%@::-,._,_,_,_'v—::ﬁ_ % 5.8 | | |
1 fif 1 a0 |
= 751+ — = B ] > 561 -
= 125 o S-S,
@ B 2 100}~ . 3 salu® T
% 50 — @- 5L ] g 5 —
g 2518 — gg Mot 1 = 52+ —
= | — a—ﬂ/ﬁmﬂ
0 ! ] 0 ! | ! 5.0 | ! !
0 35 70 105 140 0 35 70 105 140 0 35 70 105 140
(@ session size (b) session size () session size
Star topology
s 150 | | | s 150 ) S— > 4 | | |
L 1851 Froeonn $eel v L 1255 KT Sy 3
® 100 ¢ — ® 100+ . — >
= = ' 5
= >
8 = g
S S e
2
0 | | | 0 | | |
0 35 70 105 140 0 35 70 105 140 0 35 70 105 140
(d) session size G) session size 0] session size
String topology
s 150 1 1 1 < igg 1 T > 6 1 1 1
o 1254+ e - o kTR N o
£ o T * £ 150 5, * . 3 st .
© 100 1+ — S 1051 | >
= = 100 s . g
8 T SRR = :
] o Tl ®
g 50 1+~ TToe-oH =
= 25 — ~
4 0 i —— 2 R el cl EECET f---0
0 35 70 105 140 0 35 70 105 140 0 35 70 105 140

(g) session size

() session size 0} session size

Tree topology

¥--%  Global error recovery
O--O  Hop-scoped error recovery o

0—20
A—A  Group-scoped error recovery : 3 =

&

33%
50%
100%

Group-scoped error recovery : 3 =

Group-scoped error recovery : 3 =

Figure 7: Simulation results of % of the links with uniformly-distributed error rates

4.3 An Mbone-like Topology

o
O/. r

o—el;3

1\5 "

3

>
./f

Figure 8: An Mbone-like topology (Lossy links are colored
in gray and placed at local area networks.)

SOUf ce

The local error recovery mechanisms were also simulated
in an Mbone-like topology shown in Figure 8. Nodes con-
nected with thick lines symbolize the Mbone. Other nodes
represent local area networks. Session members are repre-
sented by black nodes and one of them, sq, is selected as
the data source. The lossy links are represented by gray
We assume most of the losses are at local area net-

The simulation results are shown in Table 3. In

lines.
works.
general, the group-scoped error recovery generates less re-

10

quest and reply traffic, and longer recovery delay than the
hop-scoped error recovery.

ety |Gt | Hapocoma | SPIPRS | Gyt | Cpupped
Request scope % 113.14% 86.77% 55.92% 49.64% 39.24%
Reply scope % 139.75% 97.69% 59.24% 48.82% 40.08%
Recovery delay 5.15 4.21 4.47 4.80 4.80

Table 3: Simulation results of the Mbone-like topology

Figure 9 shows the average measured request and re-
ply scopes of individual members. The scope is measured
in terms of the number of hops that requests and replies
travel. The hop-scoped error recovery performs in between
the global error recovery and the group-scoped error recov-
ery, however, the improvement in the reply scope is insignif-
icant. The request and reply scopes in the group-scoped
error recovery go down as [ goes up. A large [ means
higher degree of loss sharing. As a consequence, fewer
members are in each local group and less error recovery
bandwidth is wasted. On the other hand, large 8 causes
more local groups being created than small 3. There are
10 local groups being used for error recovery in the sim-



40

30 +—

20 1~

request hops

reply hops

o 40 f f f f
Q
2 30t |
g
S 201 -
o
[
= 10+ —
0 | | | |
S1 Sz S3 S4 P1 P2 P3 O1 G2 T T2 f3 Tz Ts Tg [I7 average 0 20 40 60 80 100
session member time %
@ @
o 40 T T T T
o
< 30+ —
>
=y
o 201 m
10+

Sy S2 S3 S4 P1 P2 P3 41 Q2 N1 T2 T3

EEEOO

(b)

Global error recovery
Hop-scoped error recovery
Group-scoped error recovery
Group-scoped error recovery
Group-scoped error recovery

ry Is Tfg TI7 average

session member

B=33%
- B =50%
- =100%

100
time %

(b)

Global error recovery

Hop-scoped error recovery
Group-scoped error recovery : 3 = 33%
Group-scoped error recovery : 3 = 50%
Group-scoped error recovery : 3 = 100%

Figure 9: Average request and reply scopes of individual
members in the Mbone-like topology

ulation with g = 100%, 6 local groups in the simulation
with @ = 50%, and 3 local groups in the simulation with
8 =33%.

In Figure 9(a), p1, p2 and ps have relatively large request
scopes when 3 is small (e.g., 50% and 33%) because their
local group includes remote members in other local area
networks. ¢; and r; have relatively large request scopes in
both the hop-scoped and the group-scoped error recoveries
because their requests have to propagate across the Mbone
to reach helpers. On the other hand, g5 has relatively small
request scopes because its requests only has to reach ¢;.
ro ~ r7 have relatively large requests scopes because they
are involved in the scenario sketched in Figure 2. They
have to extend their request hop counts to suppress one
another.

The reply scope, shown in Figure 9(b), depends on the
origin of the request. A member with a small reply scope
means most of the incoming requests are from its local area
network; a member with a large reply scope means most of
the incoming requests are across the Mbone. For example,
S9 ~ s4, p1 ~ p3 and ¢o have relatively large reply scopes in
both the hop-scoped and the group-scoped error recoveries,
which means their replies respond to requests from remote
members across the Mbone. On the other hand, the reply
scopes of ¢ and r; are relatively small because they only
responsible to recover losses of their downstream members
within their local area network. Note that r1’s reply scope
in the hop-scoped error recovery covers the entire topology
because the hop-scoped error recovery does not regulate
traffic direction. Response to remote requesters happens
rarely in the group-scoped error recovery. As a result, the
average reply scope is much smaller than it is in the global
eITor recovery.

Figure 10 shows the measured request traffic and reply
traffic during the simulation. It is measured in terms of the
number of hops. The convergence periods of the request

1% of the simulation time isroughly equal to
6.25 simulated seconds and 25 data |osses

Figure 10: Error recovery traffic dynamics in the Mbone-
like topology

and reply scopes are relatively short in the group-scoped
error recovery because once a member joined a local group,
its request and reply traffic is reduced. The convergence
time depends on the number of nested local groups and
their sequence of creation. If the innermost group is created
first, the convergence is fast. If the group with the largest
scope 1s created first, this group has to be shrunk before
the second nested group can be created (Only members
without joining any local groups can propose the creation.)
Therefore, it takes longer time to converge. In the hop-
scoped error recovery, members require several session cy-
cles to calculate the correct request and proxy hop counts.
Generally speaking, the convergence time of request scope
is approximately two session cycles. The computation of
proxy scope relies on the results from other members, the
convergence takes more than two session cycles.

40 f f f f

20—

request hops

10+

30+ —

40 60 80 100

time %

Global error recovery

Hop-scoped error recovery
Group-scoped error recovery : 3 = 33%
Group-scoped error recovery : 3 = 50%
Group-scoped error recovery : 3 = 100%

1% of the simulation time isroughly equal to
6.25 simulated seconds and 25 data |osses

Figure 11: Request traffic dynamics of r7 (r7’s state is reset

in the middle of the simulation.)

To further understand the behavior of convergence time
of a new member joining an ongoing session, we manually

11



reset the state of member r; during the next simulation.
r7 starts with global error recovery after its state is reset.
It calculates its request hop count based on the incoming
session messages in the hop-scoped error recovery or learns
of the existing local groups in the group-scoped error re-
covery to restore its state. The measured request traffic is
shown in Figure 11.

4.4 A Random Topology with Sparsely-
distributed Membership

Figure 12: A topology with rich connectivity and sparsely-
distributed membership (The lossy links are colored in gray
are placed around the middle of the topology.)

Figure 12 shows a random topology used in our next sim-
ulation experiment. The topology consists of 40 routers,
52 inter-router links and 16 members. We place 9 lossy
links around the middle of the topology and one lossy link
close to the source, so members have shared losses as well
as independent losses.

ey | dobd | wopopen | CHTIR | Oupioger | Coupscp
Request scope % 105.86% 86.05% 40.90% 34.10% 25.00%
Reply scope % 128.36% 109.23% 49.40% 37.38% 23.88%
Recovery delay 6.33 3.63 3.56 3.58 3.35

Table 4: Simulation results of the random topology with
sparsely-distributed membership

The simulation results are shown in Table 4. Since the
degree of connectivity of routers are high, the request and
reply delivery paths may differ from the data delivery path.
In other words, members 1s more likely to find some close
siblings to recover lost packets. Remember that we adopt a
dynamic timer adjustment mechanism to optimize the er-
ror recovery timer. If requests and replies only propagate
to near neighbors, the recovery timers are smaller than they
are in the global error recovery. Therefore, the recovery de-
lays in both the hop-scoped and group-scoped error recov-
eries are smaller than the recovery delay in the global error
recovery. Note that the reduction of error recovery traffic
is limited in the hop-scoped error recovery because its re-
quests and replies travel more hops in the topology with
rich connectivity and sparsely-distributed membership.

12

request hops

reply hops

src hy hy hg hy hs hg h7 hg hg hyg hyy hip hig hyy hys

C)

average
session member

src hy hy hg hy hs hg hy hg hg hyg hyy hip hig hyy hys

(b)

average
session member

Global error recovery

Hop-scoped error recovery
Group-scoped error recovery : 3 = 33%
Group-scoped error recovery : 3 = 50%
Group-scoped error recovery : 3 = 100%

EEEOO

Figure 13: Average request and reply scopes of individual
members in the random topology

Figure 13 shows the measured request and reply scopes
of individual members. Note that member hi5 has large
request scope in the group-scoped error recovery because
it shares losses with all other members. Its requests are
populated in a local group which consists of all session
members.

4.5 Discussion

In conclusion, we found that the group-scoped error recov-
ery performs better than the hop-scoped error recovery in
terms of the reply traffic. The hop-scoped error recovery
performs better than the group-scoped error recovery in
terms of the request traffic, except in the star topology.
Since the size of a request message is much smaller than
the size of a reply message, it is more important to reduce
the reply traffic than to reduce the request traffic, and so
the group-scoped error recovery appears to provide a bet-
ter solution in terms of the traffic reduction. However, the
number of duplicate requests increases with the number of
nested groups; issues related to this scenario are left for
future study.

If we consider other sources of overhead introduced by
these two approaches, it appears that the group-scoped er-
ror recovery imposes more overhead on session members
as well as the underlying multicast routing. For example,
group-scoped error recovery requires the host to send peri-
odic IGMP messages to refresh the multicast delivery path
for each local group [19]. Issues related to the overhead of
multicast group management are left for future study.

5 Related Work

There have been several other treatments of error recov-
ery for reliable multicast transport [20, 21, 22]. In con-
trast to our proposal which assumes session members are



autonomous, these previous works require various degree
of static configuration, centralized coordination or router
support.

Hofmann [23, 24, 25] proposed a “local group concept”.
A session is split into subgroups and each subgroup com-
bines members in a local region. A subgroup is represented
by alocal group controller which provides local loss retrans-
mission. The establishment of local groups is supported by
a communication service, named Group Distance Service.
A member searches and joins the closest local group. If
no suitable group exists, the member will establish a new
local group and appoint itself as the controller.

Towsley et al. [26] examined the approach of using sep-
arate multicast groups to recover individual losses in re-
liable multicast communication. Lost packets are catego-
rized into groups, the retransmission of a lost packet is
multicast to the group it belongs to. Receivers dynami-
cally join and leave those groups to recover packet losses.

Holbrook et al. [27] suggested a hierarchic logging server
structure to reduce error recovery traffic in a multicast
session. The distribution and hierarchy of logging servers
is statically configured. Receivers contact their local sec-
ondary server for retransmission instead of the remote pri-
mary servers to avoid NAK implosion, and to minimize
recovery latency and bandwidth. A server either unicasts
or multicasts a retransmission based on the number of re-
quests 1t receives.

TMTP [28] configures session members in the same sub-
net into domains and organizes these domains into a hi-
erarchic control tree to improve the scalability of error re-
covery. Members in a domain request the domain manager
for retransmission. A domain manager is also responsible
for error recovery of its children managers in the control
tree. The scope of retransmission is restricted by using
the TTL field. The control tree is self-organized, and it is
built dynamically as domain managers join and leave the
session.

RMTP [29, 30] adopts a similar hierarchic structure to
avoid message implosion. A set of designated receivers
(DR) is selected statically in a session. DRs are capa-
ble of retransmitting lost data. The hierarchy of DRs is
constructed dynamically. Each receiver selects its least up-
stream DR as the ACK processor (AP), and periodically
sends its receiving state to the AP to request retransmis-
sions. A retransmission is either unicast or multicast based
on the number of incoming requests.

PGM [31] makes use of the router support to maintain a
tree hierarchy among routers. When a packet is lost, a re-
quest 1s unicast hop-by-hop upstream towards the source.
Intermediate routers build retransmit states in order to re-
member where to forward the corresponding reply. Eventu-
ally, the request will hit the source or a member on the re-
quest forwarding path who has the requested packet, which
triggers a reply multicast hop-by-hop downstream towards
the requester.

Papadopoulos et al. [32] elaborated further on the router
forwarding model to localized the scope of error recovery
traffic. Each router selects a replier link which points to-

13

wards a local replier. Instead of forwarding requests up-
stream towards the source, a router forwards a request to-
wards its local replier if the incoming request is not received
from the replier link. Since the replier link is a downstream
link of the router, this router is at the turning point of the
request delivery path. Eventually, the request reaches a
replier and triggers a reply. The reply is first unicast to
the turning point and then it is multicast downstream from
the turning point.

6 Conclusion

We proposed two different approaches to reduce error re-
covery traffic in SRM. In the hop-scoped error recovery,
members calculate the required hop counts for their re-
quests and replies based on distance information exchanged
in session messages. Since the information is piggybacked
on their session messages, the overhead imposed by the
hop-scoped error recovery is relatively small. However, the
hop-scoped error recovery does not regulate the direction
of traffic propagation. If the topology of a session is star-
shaped, the hop-scoped error recovery does not perform
much better than the global error recovery.

Group-scoped error recovery bounds the scope of error
recovery traffic by using separate multicast groups. Mem-
bers that share the same losses join a local recovery group,
thus the error recovery traffic is only distributed within
the local group. Group-scoped error recovery requires in-
dividual members to maintain and manage multiple local
groups. Therefore, more overhead is imposed on members
as well as on the underlying multicast routing.

There remain several open issues. In the hop-scoped er-
ror recovery, maintaining a pair of request and reply hop
counts for individual sources does not introduce signifi-
cant overhead. However, maintaining multiple local groups
for individual sources in the group-scoped error recovery
may not be acceptable. Further research should investi-
gate group aggregation across sources. A local group is
associated with one or more lossy links. Sources who share
the delivery path (e.g., shared-tree multicasting) and the
lossy links along the path could be considered the same in
terms of error recovery, and so error recovery from these
sources should be handled by a single local group.

Another scenario that we have not fully understood is
the convergence time of the group-scoped error recovery
in the presence of network dynamics [33]. For example, if
the network topology changes, members in a local group
may not share the same lossy links, i.e., they do not share
losses anymore. Another example of network dynamics is
traffic congestion. Data losses due to congestion changes
the error rates and the locations of lossy links in a session.
Since local groups are associated with lossy links, changes
in error rates and locations of lossy links affect the loss-
sharing behavior within local groups. Members have to
readjust themselves adaptive to these networks dynamics
so that the new membership in the local group represents
a set of members who share the same losses. The study of



the convergence time of membership readjustment can help
us to better understand the tolerance to network dynamics
in our group-scoped scheme.

Finally, one might consider combining these two
approaches by using hop-scoped request messages in local
groups since the hop-scoped error recovery produces better
request traffic reduction. However, requests in our hop-
scoped scheme are addressed to the global session group
with a specific hop count and that hop count i1s determined
by measuring how far is the closest upstream neighbor. If
a hop-scoped request is sent to a local group, it can only
guarantee a response if the requester knows both how to
set the hop count and how to choose the appropriate local
group. Our hop-scoped error recovery only provides the
former information. The requester would analyze session
messages, determine an appropriate hop count, but then
the target upstream neighbor might not be a member of
that local group. More research has to be done to ensure
that either the closest upstream neighbor joins the same
local group or the requester only considers members in the
same local group in computing its request hop count.

References

[1] Sally Floyd, Van Jacobson, Ching-Gung Liu, Steve Mc-
Canne and Lixia Zhang. “A Reliable Multicast Framework for
Lightweight Session and Application Layer Framing”. Proceed-
g of ACM SIGCOMM ’95. August 1995.

[2] Sally Floyd, Van Jacobson, Ching-Gung Liu, Steve Mc-
Canne and Lixia Zhang. “A Reliable Multicast Framework
for Lightweight Session and Application Layer Framing”.
IEEE/ACM Transactions on Networking, Volume 5, Number
6. 1997.

[3] D. Clark and D.Tennenhouse. “Architectural Considerations for
a New Generation of Protocols”. Proceedings of ACM SIG-
COMM 90, Pages 201-208. September 1990.

[4] D. Clark, M. Lambert and L. Zhang. “NETBLT: A High
Throughput Transport Protocol”. Proceedings of ACM SIG-
COMM ’87, Pages 3538-859. August 1987.

[5] Sridhar Pingali, Don Towsley and James Kurose. “A Compari-
son of sender-initiated and Receiver-Initiated Reliable Multicast
Protocols. Proceedings of ACM SIGMETRICS ’94. 1994.

[6] J. Nonnenmacher, M. Lacher, M. Jung, E. Biersack and G. Carle.
“How bad is Reliable Multicast without Local Recovery?”. Pro-
ceeding of IEEE INFOCOM ’98. March 1998.

[7] Suchitra Raman, Steve McCanne and Scott Shenker. “Asymp-
totic Behavior of Global Recovery in SRM. Proceedings of ACM
SIGMETRICS '98/PERFORMANCE ’98. June, 1998.

[8] Puneet Sharma, Deborah Estrin, Sally Floyd and Van Jacobson.
“Scalable Timers for Soft State Protocols”. Proceedings of the
IEEE INFOCOM ’97. April, 1997.

[9] Puneet Sharma, Deborah Estrin, Sally Floyd and Lixia Zhang.

“Scalable Session Messages in SRM Using Self-Configuration”.

ftp://catarina.usc.edu/pub/puneetsh/papers/ssm.ps. 1998.

D. Waitzman, C. Partridge and S. Deering. “Distance Vector

Multicast Routing Protocol”. RFC1075. November 1988.

S. Deering. “Multicast Routing in a Datagram Internetwork”.

PhD Thesis, Stanford University, Palo Alto, CA. December

1991.

S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C. Liu and

L. Wei. “An Architecture for Wide-Area Multicast Routing”.

Proceeding of ACM SIGCOMM ’94.

S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C. Liu and L.

Wei. “The PIM Architecture for Wide-Area Multicast Routing”.

IEEE/ACM Transactions on Networking, Volume 4, Number 2.

1996.

Dante DelLucia and Katia Obraczka. “Multicast Feedback Sup-

pression Using Representatives”. Proceedings of IEEE INFO-

COM ’97. 1997.

(10]

(11]

(12]

(13]

(14]

[15] Dante DeLucia and Katia Obraczka. “A Multicast Congestion
Control Mechanism for Reliable Multicast”. Proceedings of IEEE
ISCC ’98. 1998

Ching-Gung Liu, Deborah Estrin, Scott Shenker and Lixia
Zhang. “Timer Adjustment in SRM”. Technical report USC 97-
656, Unwversity of Southern California. July 1997.
Ching-Gung Liu, Deborah Estrin,
Scott Shenker and Lixia Zhang. “Recovery Timer Adaptation in
SRM”. ftp://catarina.usc.edu/charley/papers/timer.ps. 1997.
Ching-Gung Liu. “Error Recovery in Scalable Reliable Multi-
cast”. Ph.D. Dissertation, University of Southern California.
December 1997.

S. Deering. “Host extensions for IP multicasting”. RFC1112.
August 1989.

Brian Neil Levine and J.J. Garcia-Luna-Aceves. “ A Comparison
of Known Classes of Reliable Multicast Protocols”. Proceedings
of International Conference on Network Protocols (ICNP-96).
October 1996.

A. Mankin, A. Romanow, S. Bradner and V. Paxson. “IETF
Criteria for Evaluating Reliable Multicast Transport and Appli-
cation Protocols”. RFC 2857. 1998.

Katia Obraczka. “Multicast Transport Mechanisms: A Survey
and Taxonomy”. To appear in IEEE Communications Maga-
zine. 1998.

M. Hofmann, T. Braun and C. Carle. “Multicast communi-
cation in large scale networks”. Proceedings of "Third IEFE
Workshop on High Performance Communication Subsystems
(HPCS), Mystic, Connecticut, August 1995

Markus Hofmann. “A Generic Concept for Large Scale Multi-
cast” Proceedings of International Zurich Seminar on Digital
Communication (IZ5°96), Springer Verlag. February 1996.
Markus Hofmann. “Adding Scalability to Transport Level Mul-
ticast”. Proceedings of "Third COST 237 Workshop - Multime-
dia Telecommunications and Applications” (Springer Verlag),
Barcelona, Spain. November 1996.

Sneha Kasera, Jim Kurose and Don Towsley. “Scalable Reliable
Multicast Using Multiple Multicast Groups”, CMPSCI Techni-
cal Report TR 96-73. October 1996.

Hugh W. Holbrook, Sandeep K. Singhal and David R. Cheriton.
“Log-Based Receiver-Reliable Multicast for Distributed Interac-
tive Simulation”. Proceedings of ACM SIGCOMM ’95. August
1995.

R. Yavatkar, J. Griffioen and M. Sudan. “A Reliable Dissemina-
tion Protocol for Interactive Collaborative Applications”. Pro-
ceedings of ACM Multimedia ’95. 1995.

John C. Lin and Sanjoy Paul. “RMTP: A Reliable Multi-
cast Transport Protocol”. Proceedings of IEEE INFOCOM 96,
Pages 1414-1424. April 1996.

S. Paul, K. K. Sabnani, J. C. Lin and S. Bhattacharyya. “Re-
liable Multicast Transport Protocol (RMTP)”. To appear in
IEEE Journal on Selected Areas in Communications, special
issue on Network Support for Multipoint Communication.
Tony Speakman, Dino Farinacci, Steve Lin and Alex Tweedly.
“PGM Reliable Transport Protocol Specification”. Internet
Draft draft-speakman-pgm-spec-01.txt. January, 1998

C. Papadopoulos, G. Parulkar and G. Varghese. “An Error
Scheme for Large-Scale Multicast Application”. Proceedings of
IEEE INFOCOM ’98. March, 1998

Kannan Varadhan, Deborah Estrin and Sally Floyd. “Impact
of Network Dynamics on End-to-End Protocols: Case Studies
in TCP and Reliable Multicast. Technical report USC 98-672,
Unaversity of Southern California. 1998.

(16]

(17]

18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

26]

(27]

(28]

(29]

(30]

Ching-Gung Liu (M '98 / ACM '95) is currently a member of Re-
search Staff of Fujitsu Laboratories of America, Inc., Sunnyvale, CA.
He received his Ph.D. and M.S. from the University of Southern Cal-
ifornia in 1997 and 1991, and B.S. from National Taiwan University,
Taiwan, in 1988. His research is focus on multicast routing, transport
and application. He has been working on the design and implementa-
tion of PIM (Protocol Independent Multicast) and SRM for the past
five years.

Deborah Estrin (S '78 - M '80 - SM '95) is a Professor of Computer



Science at the University of Southern California in Los Angeles where
she joined the faculty in 1986. Estrin received her Ph.D. (1985) and
M.S.(1982) from the Massachusetts Institute of Technology and her
B.S. (1980) from U.C. Berkeley. In 1987, Estrin received the National
Science Foundation, Presidential Young Investigator Award for her
research in network interconnection and security. Estrin is a Co-PI
on the DARPA Virtual Internet Testbed (VINT) project and the
NSF Routing Arbiter project at USC’s Information Sciences Insti-
tute where she spends much of her time supervising doctoral student
research.

Estrin is an active member of the IETF multicast routing related
working groups and a long-time member of the End-to-End research
group. Estrin is a member of the ACM, IEEE,and AAAS. She has
served on numerous panels for The National Science Foundation, The
National Academy of Engineering, and served on DARPA’s Informa-
tion Systems and Technology (ISAT) advisory board from 1995-98.
Estrin has served as an editor for the ACM/IEEE Transaction on
Networks and the Wiley Journal of Internetworking Research and
Experience, and as a member of the program committee for many
IEEE INFOCOM and ACM SIGCOMM conferences, and she was
program Co-Chair of ACM SIGCOMM '96.

Scott Shenker (S '87 - SM '95) is currently a Principal Scientist at
the Xerox Palo Alto Research Center. He received his Sc. B (1978)
from Brown University, his Ph. D. (1983) in theoretical physics from
the University of Chicago, and spent the 1983-4 academic year at
Cornell University as a Post-Doctoral Associate. His most recent
computer science research focuses on the design of integrated services
packet networks and the related issues of service models, scheduling
algorithms, and reservation protocols. His recent economic research
addresses incentive compatibility and fairness in various cost sharing
mechanisms. Besides computer networks and theoretical economics,
his other research interests include chaos in nonlinear systems, critical
phenomena, distributed algorithms, conservative garbage collection,
and performance analysis.

Lixia Zhang (S '81 - M '86 - SM '94) received the Ph.D. degree in
Computer Sciences from the Massachusetts Institute of Technology,
Cambridge, in 1989. She is an Associate Professor of Computer Sci-
ence at the University of California, Los Angeles, where she joined
the faculty in January of 1996. Prior to that, she was a member
of Research Staff at Xerox PARC, engaged in research on advanced
networking technologies, including high performance transport pro-
tocols, reliable multicast, and integrated services support over the
Internet. She is the Co-Chair of the IETF RSVP Working Group, a
member of the IETF Transport Area Directorate, and was a member
of the Internet Architecture Board from 1994 to 1996.

15



