
On Design and Evaluation of “Intention-Driven” ICMP Traceback

Allison Mankin, Dan Massey USC/ISI
Chien-Lung Wu NCSU

 S. Felix Wu UCDavis
 Lixia Zhang UCLA

(* alphabetic order of author’s last names *)

ABSTRACTION

Since late 1999, DDoS (Distributed Denial of Service) [1,2,3]
attack has drawn many attentions from both research and
industry communities. Many potential solutions (e.g., ingress
filtering [6,7], packet marking [5,8,9,10,11] or tracing [4], and
aggregate-based congestion control or rate limiting) have been
proposed to handle this network bandwidth consumption attack.
Among them, “ICMP traceback (iTrace)” is currently being
considered as an industry standard by IETF (Internet
Engineering Task Force). While the idea of iTrace is very clever,
efficient, reasonably secure and practical, it suffers a serious
statistic problem such that the chance for “useful” and
“valuable” iTrace messages can be extremely small against
various types of DDoS attacks. This implies that most of the
network resources spent on generating and utilizing iTrace
messages will be wasted. Therefore, we propose a simple
enhancement called “Intention-Driven” iTrace, which
conceptually introduces an extra bit in the routing and
forwarding process. With the new “intention-bit”, it is shown
that, through our simulation study, the performance of iTrace
improves dramatically. This work has been proposed to IETF’s
ICMP Trace-Back working group.

1. Introduction
A network-based intrusion detection system (IDS) might be
able to detect an attack instance (either an attack packet or a
sequence of attack packets) by automatically extracting and
analyzing the attack signatures from a collection of incoming
and outgoing data packets. However, because of the source
accountability problem of today’s Internet, IDS generally
cannot tell where the attack packets were originated.
Recently, the problem of attack source tracing has drawn a lot
of attentions as many DDoS (Distributed Denial of Service)
attacks (which affected many popular web sites such as
Yahoo!, E-Bay, CNN among many others,) utilize IP source
address spoofing.

The following are a few terms we will use to describe the
problem and our proposed solutions in this paper:
 DDoS Attack Infrastructure: Hackers form their own

community and they share resources among themselves.
When one Internet host is compromised (a resource for
the hackers), the host identity and the key to access this
host are announced to all the hackers. Gradually,
compromised hosts are organized and connected together

as a DDoS attack infrastructure. In this infrastructure,
some hosts play the role of masters, while others are
slaves.

 Attacker: An attacker is the person who utilizes the
DDoS attack infrastructure to launch attack instances
against a particular victim. For instance, the 15 years old
Canadian boy was the attacker who launched the attack
against e-bay through the plain DDoS attack
infrastructure from the hacker’s community.

 Master: A master receives attack commands from
attackers. It then sends out similar commands, through
some special signaling protocol, to a set of slaves.
Masters are compromised hosts with “DDoS master
software” installed.

 Slave: A slave, after receiving the attack commands from
its master, sends out lots of malicious packets toward the
victim. In the case of reflective DDoS attacks, it will
send lots of reflective packets toward a huge set of
reflectors. In the worst case, every single reflective
attack packet is for a different reflector. Slaves are
compromised hosts with “DDoS slave software”
installed.

 Victim: Under the DDoS attack model, the network
bandwidth toward this attacked victim will be eventually
taken away by the collection of DDoS or reflective
DDoS packets.

DDoS attack has drawn a lot of attention lately from both the
research and industry communities. At least four or five
solutions have been proposed lately to handle the plain DDoS
attack: probabilistic marking, IP hashing, deterministic tunnel
marking, ICMP traceback, egress/ingress filtering, and
finally, ACC (Aggregate-based Congestion Control) with

pushback. Savage and others proposed to use the IP identity
field (16 bits) to include some partial route path information.
Probabilistic ID-field marking requires modifications of
Internet routing devices to generate such marks on the fly. On
the other hand, the DECIDUOUS system [5] utilizes the
IPSec protocol suite such that marks are essentially IPSec
authentication headers. While both Savage’s [9] and
DECIDUOUS place some “routing path” marks directly on
the data packets, IETF iTrace working group has introduced
an additional new message “ICMP traceback” [4] (or simply
an iTrace message) toward the victim. Under the assumption

that a huge amount of traffic will be generated toward the
victim, a small probability (1 over 20K) will be sufficient (at
least in theory) to generate a useful iTrace message to help
the victim or its upstream ISP to identify the possible slaves.

While many different approaches have been proposed, one
practical approach proposed and evaluated under IETF is
"ICMP Traceback" (or simply "iTrace"). Under the current
iTrace proposal, the number of iTrace packets generated by a
router is small, which implies a low overhead (statistically,
around 0.005% if we pick one out of 20,000) to the Internet.
However, if each DDoS slave only contributes a small
amount of attack traffic, then the probability for a nearby
router picking the right attack packet can be very small. And,
this small probability is independent of the 0.005%. Roughly
speaking, the routers closer to the victims tend to have higher
probability to send iTrace messages toward the true victims
because most of the attack traffic has been aggregated. On the
other hand, the routers closer to the true slaves might send the
iTrace messages to non-victims or the slaves themselves.
This fact is due to a potentially large amount of “noisy”
background traffic passing through those routers at the same
time. When such routers need to generate an iTrace message,
it will very likely pick an innocent packet.

In this paper, we focus on the analysis and enhancement of
the probability for a router to generate "valuable/useful"
routers. We first present an evaluation model, based on the
concepts of "usefulness" and “value”, for each generated
iTrace messages. Second, we will quantitatively show how
"valuable" iTrace messages are generated under the current
iTrace proposal against DDoS attack models: plain DDoS.
Then, we will propose a simple and practical enhancement
for iTrace, "Intention Driven" iTrace, which improves the
values of generated iTrace messages dramatically.

2. DDoS: Simulation Testbed and Experiments
For studying the behavior of DDoS attacks as well as
evaluating various different ICMP traceback proposals, we
construct a network simulation test-bed (based on NS-2
simulator [12]) with 128 routers as shown above. In this
section, we only discuss the topology of our testbed as well as

different DDoS attack strategies. The simulation results will
appear later.

Our DDoS simulation testbed has been used to performed a
set of experiments:
1. SS-SV: single-slave versus single-victim
2. MS-SV: multiple-slaves versus single-victim
3. MS-MV: multiple-slaves versus multiple-victims
4. ML-SV: multi-layer-slaves versus single-victims
5. ML-MV: multi-layer-slaves versus multiple-victims

Example 1:
For instance, in the first case, SS-SV, network node 25 is the
only slave, and node 125 is the only victim, while the attack
path is 2524160112124125. The rate of attack
packets is between 1,000 and 50,000 packets per second per
slave. Also, each network node has been assigned different
amounts of background traffic (two examples are shown):

Node 24 %
Entry not for
victim

(normal traffic) 410k packets/sec 0.9976~0.8
936

Entry for victim Normal traffic 10k packets/sec
 Attack traffic {1k~50k

packets/sec}
0.00237~0.
10638

Node 16 %
Entry not for
victim

(normal traffic) 710k packets/sec 0.9986~0.9
3506

Entry for victim Normal traffic 10k packets/sec
 Attack traffic {1k~50k

packets/sec}
0.001387~0
.0649

For the multiple slaves and single victim case, MS-SV, we
have three slaves: 25, 95, and 117 against the single slave
125. And three attack paths are:
(1) 025024016000112124125
(2) 095092080112124125
(3) 117116124125.

Furthermore, for the multiple victim case, we add another
victim, 41 and thus three more attack paths:
(1) 122112000032040041
(2) 087084000032040041
(3) 023020016032040041.

3. On “Usefulness” and “Value” of iTrace Messages
Potentially, the design of the original iTrace proposal might
have one critical disadvantage: the routers closer to the true
slaves will be unlikely to generate “useful” iTrace messages
toward some victims who really desperately need those
iTrace messages. In order to verify this potential weakness, in
this section, we define two different measures to evaluate the
effectiveness of a particular tracing technique: “usefulness”
and “value”.

Definition 1: “iTrace”
An iTrace message (iTr) contains mainly three pieces of
information: the identity of the router generating this iTrace
message (iTr.rtr-ID), a destination address that will receive
this iTrace message (iTr.dst-ID), and the packet picked by the
router (iTr.pkt).

In the original iTrace proposal, the concept of “intention”
does not exist, and the iTrace box is merely a statistic packet
generation box without the concern about the “intention” of
the receiver. However, in today’s Internet environment, there
are so many possible receivers for iTrace messages, and
therefore, for efficiency, we need to know which destinations
are indeed interested in utilizing information from the iTrace
framework. In fact, adding the concept of “intention” into
iTrace is the key contribution of this paper.

Definition 2: “Intention”
Each destination node has an “intention” value associated
with it. If the intention value is 1, then it implies that this
network node is interested in receiving iTrace messages.
Otherwise, the intention value should be zero.

An iTrace message (iTr) is not very “useful”, if (iTr.pkt) is
not an attack packet, or (iTr.dst-ID) is not interested in
receiving iTrace messages. In other words, if a network
address is not under attacks (or the IDS does not detect it) or
it does not care about tracing (even it is under a DDoS
attack), the iTrace message will not make any difference.

Definition 3: “Usefulness”
If the packet contained in an iTrace message (iTr.pkt) is an
attack packet and the node iTr.dst-ID is interested in
receiving iTr (or Intention(iTr.dst-ID) = 1), then we call this
iTrace message “useful”.

Based on the definition of “usefulness”, we run simulation for
SS-SV (as described in Example #1 earlier), and obtained the
following simulation results on router 24, which is very close
to the true slave, router 25:

node 24's itraced_table Total itraced pkts= 1200
Src Dst count % intention usefulness
 25 125 5 0.004167 1 1
126 26 1195 0.995833 0 0

It is not surprised that, because of the amount of background
traffic, for the first 1200 iTrace messages generated by router
24, most (99.58%) of the iTrace messages was NOT toward
the victim. After examining closely on the simulation log, we
found that the generation sequence numbers of those five
useful iTrace messages by router 24 were #293, #429, #707,
#817, and #1107. I.e., the first useful iTrace message was
generated after router 24 generated 292 useless iTrace
messages toward other destinations. If one iTrace message
represents 20,000 data packets, this implies that the first
useful iTrace message is generated after router24 forwarded
about 6 million data packets.

While the first measure, “usefulness”, is simple, but it does
not catch up certain important aspects of iTrace behavior.
We also concern how fast the router can generate “useful
iTrace messages. we observe that, in responding to DDoS
attacks, in order for a system administrator to quickly recover
from the damage, it is highly desirable to receive iTrace
messages immediately after the attack. For instance, in
example #1, the first iTrace message from router 24 toward
the true victim 125 is generated AFTER router 24 generated
292 useless iTrace messages (roughly 2 million packets). If
router 24’s throughput is 10,000 packets per second, it will
take about 600 seconds before we can identify router 24.
Clearly, it will be better if we can receive this first iTrace
message in an earlier stage.

With the above observations, we add three more attributes
into our “value” evaluation of iTrace messages:

An iTrace message (iTr) is not very “valuable”, if iTr[rtr-ID]
has sent iTr[dst-ID] at least N iTrace messages within the
past K seconds, while N and K will depend on parameters
such as how many iTrace messages will be dropped. This
observation implies that duplicate iTrace messages over a
short period of time might not be very efficient in iTrace
message generation. In other words, if the Internet has
multiple DDoS victims simultaneously, then each router in
the network should try to generate iTrace messages for ALL
the victims. It is NOT very valuable if a router only generates
iTrace messages for a single victim over and over again.

Furthermore, an iTrace message is less “valuable,” if iTr[rtr-
ID] is only X (e.g., X <= 3) hops away from the victim,
iTr[dst-ID]. For instance, if iTr[rtr-ID] is only 1 or 2 hops
away from iTr[dst-ID], then this iTrace message does not
provide too much “new” information about the attack source.
If the victim has only one (or two) ISP, then we can derive
pretty much the same conclusion without the iTrace
messages. However, it is much more useful, if we can receive
iTrace messages from routers that are, for example, 10 or
more hops away from the victim.

Finally, an iTrace message is more “valuable” if the iTrace
message is generated right after the attack begins, which

gives the intrusion response system more time to handle the
problem. Therefore, in our evaluation, we give more “value”
to iTrace messages being generated earlier in the attack cycle.

Definition 4: “Value”
The information value of an iTrace message iTr is determine
by the following five parameters (the first two have been
covered in the definition of “usefulness”.):
Value(iTr) =
F(Attack[iTr.pkt], Intention[iTr.dst-ID], HopCount[iTr.rtr-IDiTr.dst-ID],
Received[iTr.rtr-IDiTr.dst-ID], Generated[iTr.rtr-ID]),

where Received[iTr.rtr-IDiTr.dst-ID] represents how many
iTrace messages from iTr.rtr-ID to iTr.dst-ID have been
received before, and Generated[iTr.rtr-ID] represents the
number of iTrace messages already generated by iTr.rtr-ID
for all destinations.

Please note that, while the function “F” can be possibly
defined in many different formats, in this paper, we use a
very simple form of “F” for the purpose of evaluation:
Value(iTr) =
 (Attack[iTr.pkt] * Intention[iTr.dst-ID] * HopCount[iTr.rtr-IDiTr.dst-ID])
 / ((Received[iTr.rtr-IDiTr.dst-ID] + 1) * (Generated[iTr.rtr-ID] + 1)),

According to Definition #4, most of the first 1200 iTrace
messages generated by router 24 in Example #1 are value-
less except:

 Value (iTr-r24-0293) = (1 * 1 * 5) / ((0+1) * (293)) = 0.0170648
 Value (iTr-r24-0429) = (1 * 1 * 5) / ((1+1) * (429)) = 0.0058275
 Value (iTr-r24-0707) = (1 * 1 * 5) / ((2+1) * (707)) = 0.0023573
 Value (iTr-r24-0817) = (1 * 1 * 5) / ((3+1) * (817)) = 0.0015300
 Value (iTr-r24-1107) = (1 * 1 * 5) / ((4+1) * (1107)) = 0.0009033

The value of the duplicated iTrace messages decrease
according to the “F” function defined in Definition #4. The
accumulated value (for all the useful or useless iTrace
messages) generated by router 24 is 0.028, based on the
“Value” measure. We will show in the next section that a
simple enhancement to the iTrace proposal will boost the
value to about 8.12.

4. Intention-Driven iTrace
In this section, we present a new mechanism called
"intention-driven" iTrace to resolve the statistic problem of
the original iTrace proposal. Our design objectives are:

 The probability for generating "useful/valuable" iTrace

messages should be significantly higher than the original
static iTrace scheme. In the worst case, the new scheme
should just fall back to the original scheme, but not
worse.

 The number of iTrace messages generated by each router
remains the same, i.e., roughly 1 over 20,000 data
packets.

 The new mechanism is compatible with the current
iTrace scheme such that we do not require every router
to support the new mechanism.

 The design and implementation of the new mechanism is
simple, efficient, secure and scaleable.

4.1. Routing Table and Packet-Forwarding Table
Since our proposed solution heavily depends on the BGP
routing protocol, we will first clarify the difference between a
routing table and a packet-forwarding table in a network
router.

On a BGP router, we have two tables: a routing table and a
packet-forwarding table. The former table is maintained by
the BGP protocol implementation and it contains information
such as which route (including both next-hop and AS path
information) should be used for a particular destination
address prefix. The content of the BGP routing table is passed
into the kernel’s packet forwarding table. The forwarding
table is the key component for the packet forwarding process
in a router. Today, a typical high-end router will have about 1
quarter million entries in its forwarding table. Usually, adding
a new attribute to the forwarding table or changing the
pipeline of the packet-forwarding process (usually done in
hardware) is more difficult than changing the BGP protocol
itself (in firmware/software). Therefore, it is also our
objective to minimize any changes to the forwarding process
or table.

4.2. Architecture of Intention-Driven iTrace
From a high-level point of view, “intention-driven” iTrace
separates the functions of iTrace into two different modules:
decision module and iTrace generation module. The decision
module will determine, based on the information provided in
the “routing table”, which kind of iTrace messages should
this router generate next? More specifically, which “entry” in
the “packet-forwarding” table should be the target for iTrace
generation? Based on this decision, one special bit in the
packet-forwarding table (iTrace generation bit, see below)
will be set to 1, and the very next data packet using this
particular forwarding entry will be chosen as an iTrace
message. Next, this chosen packet will be processed by the
“iTrace generation” module, and a new iTrace message will
be sent.

4.3. iTrace Generation Bit in the Packet-Forwarding
Table

We introduce a new bit, an iTrace bit, into each entry in the
packet-forwarding table. In our current design, at any
moment, at most one iTrace bit will be set to 1. When the
forwarding engine forwards a data packet, it will perform a
table look-up to find the right entry to forward the packet. If
the forwarding process sees a ‘1’ in the entry for this packet,
it will send a copy of this packet to the iTrace generation
module and reset that bit to ‘0’. Furthermore, The modified
packet-forwarding process is described as the following piece
of pseudo-code:

Int perDataPacketProcess(IP *p)
{

 ForwardEntry *fe = findForwardEntry(
 p->destinationIPaddr);

 if (fe == NULL) return -1;
 if (fe->iTrGenBit == 1)
 {
 sendiTrace(p);
 fe->iTrGenBit = 0;
 }
 regularPacketForwarding(p, fe);
 return 0;

}

Please note that, while the design here requires an extra bit in
the forwarding table, in practice, we have considered a
similar design without requiring any changes to the packet
forwarding process. However, the router needs to have some
packet logging facility available for us to choose a packet
from the log. We presented this design to IETF’s ICMP
Trace-Back working group, and some router venders voiced
their concern about adding a new bit, while some others feel
that this should be possible in their commercial routers.

4.4. Intention Bit in the BGP Routing Table
We associate each routing table entry with one extra bit
called "intention bit". If the "intention bit" for a particular
route entry is 1, then the network destination under this route
entry indicates its desire in receiving iTrace messages. Please
note that zero or more routing entries might simultaneously
have intention bits on. For instance, multiple sites might be
simultaneously under serious DDoS attacks and they have
running applications that will utilize the information being
carried by iTrace messages.

On the other hand, if the intention bit is 0, then it indicates
that either the destination's intrusion detection system does
not believe that its network is under DDoS attacks or it
believes that iTrace messages would not help to handle the
attacks it observed. For instance, if an intrusion detection
system detects that its network is under reflective DDoS
attacks, then the normal (so called) "forward" iTrace
messages will not help because iTrace messages will only

lead to a huge number of reflectors, but not to the real DDoS
slaves.

A side issue we would like to mention here is that, at this
point of time, it is not clear whether the option of "backward
iTrace messages" will be adopted by the working group or
not. But, if the "backward iTrace option" is adopted, then we
need to introduce another bit to express the intention of
receiving backward iTrace messages. In other words, in the
current draft, the intention bits are only for controlling the
"forward iTrace option".

4.5. Decision Module
After a router forwards about 20,000 packets, it should emit
an “iTrace trigger” to indicate the need for generating an
iTrace message. This trigger will be delivered to the decision
module, and the decision module will then need to make a
decision: which “entry in the packet-forwarding table” needs
a 1 in their iTrace generation bit. We have implemented two
very simple strategies:
 Generate a random number to select one routing table

entry from all the routing entries with intention bit ‘1’.
And, all such entries will have exactly the same
probability.

 Generate a random number to select one entry. In
addition to (1), we add a statistical bias toward entries
having longer ASPath toward the final destination. This
heuristic is to prefer the destinations with a longer
“distance” from the generation router.

After deciding which routing/forwarding entry should be the
next iTrace target, the corresponding iTrace generation bit
will be set. Also, if none of the entries has intention to receive
iTrace, then no iTrace message will ever be sent. Therefore,
our design does not introduce any more (if not less) iTrace
messages than the original proposal does. The following is
the pseudo code for the Decision module handling each
iTrace trigger:

Int periTraceTriggerProcess (RouteEntry *RETable, int
 RETableSize)
{

 int i;
 RouteEntry *re;
 for(i = 0; i < RETableSize; i++)

 {
 re = &(RETable[i]);
 if (re->intention == 1)
 #ifdef INTENTION_WITH_DISTANCE
 enterSelection(re, re->ASPathLength);

#else INTENTION_WITH_DISTANCE
 enterSelection(re, 1);
 #endif INTENTION_WITH_DISTANCE

 }

 re = finalSelection();

 if (re != NULL) re->fe->iTrGenBit = 1;
 return 0;
}

4.6. How to Set and Distribute the Intention Bits?
So far we have discussed, based on the intention bits in the
routing table, we can decide the forwarding entry for the next
iTrace message. In this section, we will present our design
about “how to set and distribute the intention bits?”

We propose to utilize the BGP routing information exchange
protocol as the vehicle to distribute the intention bit values.
When a BGP router advertises its reach ability to some
network addresses, it will also attach the “Intention bit” value
for that particular network address prefix. Therefore, when
this BGP update is propagated to some downstream BGP
routers, the intention bit value of the corresponding route
entry will be updated. Furthermore, if BGP updates are
aggregated, the intention bit values will also be aggregated.

Specifically, we utilize the “community attribute” in BGP to
carry the intention bit value. The community attribute in BGP
is a 32 bit unsigned integer, and we introduce two new
community string values, one for “Intend to receive iTrace”
and the other for “Not intend to receive iTrace”. (If our
proposal is accepted by IETF, we will determine the exact
values for these two strings later.) Furthermore, the
community attribute is “transitive” and “optional”, which
means that if a router does not understand these new
community values (such as an old BGP router does not
support “intention-driven” iTrace), it will still forward it to
the next hop. Eventually, a downstream BGP router can pick
it up, update its intention bit values, and maybe perform
proxy aggregation for some old upstream routers. We believe
that our design is practical as it doesn’t require changes to all
the routers. And, even for the new routers, the change is fairly
small as we do not introduce a new BGP attribute, but two
new values for an existing BGP attribute.

Therefore, when a particular network is under DDoS attack,
the intrusion detection system will inform the BGP router to
include the iTrace intention value in the next update. Since
the rate of our updates can be limited by the BGP keepALive
interval, our design will not introduce extra BGP traffic,
while the intention bit value can be distributed through the
whole Internet. Finally, because of BGP route aggregation,
our design will not increase the number of entries in the
routing or forwarding tables.

5. Performance Evaluation
In this section, we compare four different iTrace schemes: the
original one with or without distance and intention-driven
iTrace, again with or without distance. We use two different
performance measures: “usefulness” and “value” as defined
in Section 4. Due to the space limitation, we will only present
two cases: Multiple Slaves versus Multiple Victims (MS-

MV) and Multiple Layers versus Multiple Victims (ML-
MV):

The following figure shows the “usefulness” of iTrace
messages along “one attack path” against victim 125:

The following figure represents the same measure but for a
different path against victim 41:

Clearly, we can observe that, under our simulation study,
most of the iTrace messages for the original iTrace proposal
are wasted, while it is not really clear whether the heuristic of
“distance” really contributes significantly – under the
“usefulness” measure. However, if we look at the “value”
measure, the story is different:

From our result of “accumulated” iTrace message value over
time, we conclude that:
(1). With intention-driven iTrace (regardless of distance
heuristics or not), the value of iTrace information increases
very fast to its maximum in the first few iTrace triggers. This

result is very encouraging as it implies that we can identify
the sources (even under the MS-MV case) very quickly after
the attack starts. Furthermore, this also indicates that maybe
one iTrace per 20,000 is an “over-kill”.
(2). With the distance heuristics, the value of information is
about 40% better, based on the value measure, which is
biased toward “long shot” iTrace messages. We feel that we
need to consider other possible measures as well as to get
inputs from the operational folks (e.g., ISP) to validate
whether the “value” measure we are using here is fair or not.

The following is the “usefulness” measure for ML-MV (the
“value” measure is very similar to MS-MV). The interesting
observation is that, even under the “usefulness” measure, the
normal iTrace hardly generates “ANY” useful iTrace
messages. After examining the log file, we found all the
routers on the path generated at most two “useful” iTrace
messages while many actually scored zero.

6. Security Consideration
Since our scheme will introduce exactly the same amount of
iTrace messages as the original iTrace proposal, our proposal
will not introduce any new vulnerability related to denial of
service attacks based on the iTrace messages themselves.

Since we propose using BGP to distribute the intention
values, our scheme is subject to the same security risks as
BGP. The risks with respect to intention values would be that
an attacker who can tamper with the BGP contents could
modify the behavior of iTrace to divert iTrace away from the
attacker's location. This attack seems as if it would be very
difficult to accomplish, but the issue should be considered in
more detail in the future.

7. Remarks
In this paper, we study the problem of DDoS attack source
tracing, and in particular, we examine the weakness of one
proposed solution, ICMP Trace-Back. We have defined two
different measures for source tracing performance and
performed simulation on four iTrace schemes against 5
different types of DDoS attacks. From the results we
obtained, we believe that the statistic problem of iTrace is

very critical and we are very convinced that “intention-
driven” iTrace is a MUST in order to achieve a much better
tracing performance. Furthermore, our proposed solution is
very practical and simple: it requires very few changes to the
routing infrastructure and it does not require a global
replacement. Finally, one immediate next step we are
considering is to have a prototype implementation in the
Linux kernel to study more about its run-time behavior.

8. References

1. John Elliott, “Distributed Denial of Service attack and

the zombie ant effect,” IP professional, March/April
2000.

2. Computer Emergency Response Team (CERT), “CERT
Advisory CA-2000-01 Denial-of-service developments,”
January, 2000, http://www.cert.org/advisories/CA-2000-
01.html

3. Dave Ditrich, “Distributed Denial of Service (DDoS)
attacks/tools resource page,”
http://staff.washington.edu/dittrich/misc/ddos/

4. Steven M. Bellovin, “ICMP Traceback Messages”,
Internet Draft, March, 2001.

5. H.Y. Chang, S. F. Wu, and et al. “Deciduous:
Decentralized source identification for network- based
intrusions,” in 6th IFIP/IEEE International Symposium on
Integrated Network Management. IEEE Communication
Society Press, May 1999.

6. P. Ferguson and D. Senie. RFC2267 Network Igress
Filtering: Defeating Denial of Service Attacks which
employ IP source address spoofing, January 1998

7. Cisco Systems. Configuring TCP Intercept (prevent
Denial-of-Service attacks). CISCO IOS Documentation,
March 1999.

8. Robert Stone, “CenterTrack: An IP overlay network for
tracking DoS flooding,”, October 1999.
http://www.nanog.org/mtg-9910/robert.html

9. Stefan savage, David Wetherall, Anna Karlin, and Tom
Anderson, “Pratical Network Support for IP traceback,”
Technical Report UW-CSE-00-02-01, Department of
Computer Science and Engineering, University of
Washington, February 2000

10. Dawn Song and Adrian Perrig, “Advanced and
authenticated marking scheme for IP traceback,” IEEE
INFOCOM 2001.

11. K. Park, and H. Lee, “On the Effectiveness of
Probabilistic Packet Marking for IP Traceback under
Denial of Service Attack,” IEEE INFOCOM 2001.

12. Network Simulator ns-2< http://www.isi.edu/nsnam/ns/ >

9. Acknowledgements
Our research is sponsored by DARPA under the fault tolerant
networking program.

