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ABSTRACTION 
 
Since late 1999, DDoS (Distributed Denial of Service) [1,2,3] 
attack has drawn many attentions from both research and 
industry communities. Many potential solutions (e.g., ingress 
filtering [6,7], packet marking [5,8,9,10,11] or tracing [4], and 
aggregate-based congestion control or rate limiting) have been 
proposed to handle this network bandwidth consumption attack. 
Among them, “ICMP traceback (iTrace)” is currently being 
considered as an industry standard by IETF (Internet 
Engineering Task Force). While the idea of iTrace is very clever, 
efficient, reasonably secure and practical, it suffers a serious 
statistic problem such that the chance for “useful” and 
“valuable” iTrace messages can be extremely small against 
various types of DDoS attacks. This implies that most of the 
network resources spent on generating and utilizing iTrace 
messages will be wasted. Therefore, we propose a simple 
enhancement called “Intention-Driven” iTrace, which 
conceptually introduces an extra bit in the routing and 
forwarding process. With the new “intention-bit”, it is shown 
that, through our simulation study, the performance of iTrace 
improves dramatically. This work has been proposed to IETF’s 
ICMP Trace-Back working group. 

1. Introduction 
A network-based intrusion detection system (IDS) might be 
able to detect an attack instance (either an attack packet or a 
sequence of attack packets) by automatically extracting and 
analyzing the attack signatures from a collection of incoming 
and outgoing data packets. However, because of the source 
accountability problem of today’s Internet,  IDS generally 
cannot tell where the attack packets were originated. 
Recently, the problem of attack source tracing has drawn a lot 
of attentions as many DDoS (Distributed Denial of Service) 
attacks (which affected many popular web sites such as 
Yahoo!, E-Bay, CNN among many others,) utilize IP source 
address spoofing. 
 
The following are a few terms we will use to describe the 
problem and our proposed solutions in this paper: 
 DDoS Attack Infrastructure: Hackers form their own 

community and they share resources among themselves. 
When one Internet host is compromised (a resource for 
the hackers), the host identity and the key to access this 
host are announced to all the hackers. Gradually, 
compromised hosts are organized and connected together 

as a DDoS attack infrastructure. In this infrastructure, 
some hosts play the role of masters, while others are 
slaves. 

 Attacker: An attacker is the person who utilizes the 
DDoS attack infrastructure to launch attack instances 
against a particular victim. For instance, the 15 years old 
Canadian boy was the attacker who launched the attack 
against e-bay through the plain DDoS attack 
infrastructure from the hacker’s community. 

 Master: A master receives attack commands from 
attackers. It then sends out similar commands, through 
some special signaling protocol, to a set of slaves. 
Masters are compromised hosts with “DDoS master 
software” installed. 

 Slave: A slave, after receiving the attack commands from 
its master, sends out lots of malicious packets toward the 
victim. In the case of reflective DDoS attacks, it will 
send lots of reflective packets toward a huge set of 
reflectors. In the worst case, every single reflective 
attack packet is for a different reflector. Slaves are 
compromised hosts with “DDoS slave software” 
installed.  

 Victim: Under the DDoS attack model, the network 
bandwidth toward this attacked victim will be eventually 
taken away by the collection of DDoS or reflective 
DDoS packets. 

 
DDoS attack has drawn a lot of attention lately from both the 
research and industry communities. At least four or five 
solutions have been proposed lately to handle the plain DDoS 
attack: probabilistic marking, IP hashing, deterministic tunnel 
marking, ICMP traceback, egress/ingress filtering, and 
finally,  ACC (Aggregate-based   Congestion   Control)   with  
 
pushback. Savage and others proposed to use the IP identity 
field (16 bits) to include some partial route path information. 
Probabilistic ID-field marking requires modifications of 
Internet routing devices to generate such marks on the fly. On 
the other hand, the DECIDUOUS system [5] utilizes the 
IPSec protocol suite such that marks are essentially IPSec 
authentication headers. While both Savage’s [9] and 
DECIDUOUS place some “routing path” marks directly on 
the data packets, IETF iTrace working group has introduced 
an additional new message “ICMP traceback” [4] (or simply 
an iTrace message) toward the  victim. Under the  assumption  



 
that a huge amount of traffic will be generated toward the 
victim, a small probability (1 over 20K) will be sufficient (at 
least in theory) to generate a useful iTrace message to help 
the victim or its upstream ISP to identify the possible slaves. 
 
While many different approaches have been proposed, one 
practical approach proposed and evaluated under IETF is 
"ICMP Traceback" (or simply "iTrace"). Under the current 
iTrace proposal, the number of iTrace packets generated by a 
router is small, which implies a low overhead (statistically, 
around 0.005% if we pick one out of 20,000) to the Internet. 
However, if each DDoS slave only contributes a small 
amount of attack traffic, then the probability for a nearby 
router picking the right attack packet can be very small. And, 
this small probability is independent of the 0.005%. Roughly 
speaking, the routers closer to the victims tend to have higher 
probability to send iTrace  messages  toward  the true  victims 
because most of the attack traffic has been aggregated. On the 
other hand, the routers closer to the true slaves might send the 
iTrace messages to non-victims or the slaves themselves. 
This fact is due to a potentially large amount of “noisy” 
background traffic passing through those routers at the same 
time. When such routers need to generate an iTrace message, 
it will very likely pick an innocent packet.  
 
In this paper, we focus on the analysis and enhancement of 
the probability for a router to generate "valuable/useful" 
routers.  We first present an evaluation model, based on the 
concepts of "usefulness" and “value”, for each generated 
iTrace messages. Second, we will quantitatively show how 
"valuable" iTrace messages are generated under the current 
iTrace proposal against DDoS attack models: plain DDoS. 
Then, we will propose a simple and practical enhancement 
for iTrace, "Intention Driven" iTrace, which improves the 
values of generated iTrace messages dramatically.  
 

2. DDoS: Simulation Testbed and Experiments 
For studying the behavior of DDoS attacks as well as 
evaluating various different ICMP traceback proposals, we 
construct a network simulation test-bed (based on NS-2 
simulator [12]) with 128 routers as shown above. In this 
section, we only discuss the topology of our testbed as well as 

different DDoS attack strategies. The simulation results will 
appear later. 
 
Our DDoS simulation testbed has been used to performed a 
set of experiments: 
1. SS-SV:   single-slave              versus   single-victim 
2. MS-SV:  multiple-slaves        versus   single-victim 
3. MS-MV: multiple-slaves        versus        multiple-victims 
4. ML-SV:  multi-layer-slaves    versus        single-victims 
5. ML-MV: multi-layer-slaves    versus        multiple-victims 
 
Example 1: 
For instance, in the first case, SS-SV, network node 25 is the 
only slave, and node 125 is the only victim, while the attack 
path is 2524160112124125. The rate of attack 
packets is between 1,000 and 50,000 packets per second per 
slave. Also, each network node has been assigned different 
amounts of background traffic (two examples are shown): 
 

Node 24   % 
Entry not for 
victim  

(normal traffic) 410k packets/sec 0.9976~0.8
936 

Entry for victim Normal traffic 10k packets/sec  
 Attack traffic {1k~50k 

packets/sec} 
0.00237~0.
10638 

 
Node 16   % 
Entry not for 
victim  

(normal traffic) 710k packets/sec 0.9986~0.9
3506 

Entry for victim Normal traffic 10k packets/sec  
 Attack traffic {1k~50k 

packets/sec} 
0.001387~0
.0649 

 
For the multiple slaves and single victim case, MS-SV, we 
have three slaves: 25, 95, and 117 against the single slave 
125. And three attack paths are: 
(1) 025024016000112124125 
(2) 095092080112124125 
(3) 117116124125. 
 
Furthermore, for the multiple victim case, we add another 
victim, 41 and thus three more attack paths: 
(1) 122112000032040041 
(2) 087084000032040041 
(3) 023020016032040041. 



3. On “Usefulness” and “Value” of iTrace Messages 
Potentially, the design of the original iTrace proposal might 
have one critical disadvantage: the routers closer to the true 
slaves will be unlikely to generate “useful” iTrace messages 
toward some victims who really desperately need those 
iTrace messages. In order to verify this potential weakness, in 
this section, we define two different measures to evaluate the 
effectiveness of a particular tracing technique: “usefulness” 
and “value”. 
 
Definition 1: “iTrace” 
An iTrace message (iTr) contains mainly three pieces of 
information: the identity of the router generating this iTrace 
message (iTr.rtr-ID), a destination address that will receive 
this iTrace message (iTr.dst-ID), and the packet picked by the 
router (iTr.pkt). 
 
In the original iTrace proposal, the concept of “intention” 
does not exist, and the iTrace box is merely a statistic packet 
generation box without the concern about the “intention” of 
the receiver. However, in today’s Internet environment, there 
are so many possible receivers for iTrace messages, and 
therefore, for efficiency, we need to know which destinations 
are indeed interested in utilizing information from the iTrace 
framework. In fact, adding the concept of “intention” into 
iTrace is the key contribution of this paper. 
 
Definition 2: “Intention” 
Each destination node has an “intention” value associated 
with it. If the intention value is 1, then it implies that this 
network node is interested in receiving iTrace messages. 
Otherwise, the intention value should be zero. 
 
An iTrace message (iTr) is not very “useful”, if (iTr.pkt) is 
not an attack packet, or (iTr.dst-ID) is not interested in 
receiving iTrace messages. In other words, if a network 
address is not under attacks (or the IDS does not detect it) or 
it does not care about tracing (even it is under a DDoS 
attack), the iTrace message will not make any difference. 
 
Definition 3: “Usefulness” 
If the packet contained in an iTrace message (iTr.pkt) is an 
attack packet and the node iTr.dst-ID is interested in 
receiving iTr (or Intention(iTr.dst-ID) = 1), then we call this 
iTrace message “useful”. 
 
Based on the definition of “usefulness”, we run simulation for 
SS-SV (as described in Example #1 earlier), and obtained the 
following simulation results on router 24, which is very close 
to the true slave, router 25: 
 
node 24's itraced_table         Total itraced pkts= 1200 
Src      Dst      count        %              intention     usefulness 
 25      125          5      0.004167              1             1 
126       26       1195      0.995833           0             0 

It is not surprised that, because of the amount of background 
traffic, for the first 1200 iTrace messages generated by router 
24, most (99.58%) of the iTrace messages was NOT toward 
the victim. After examining closely on the simulation log, we 
found that the generation sequence numbers of those five 
useful iTrace messages by router 24 were #293, #429, #707, 
#817, and #1107. I.e., the first useful iTrace message was 
generated after router 24 generated 292 useless iTrace 
messages toward other destinations. If one iTrace message 
represents 20,000 data packets, this implies that the first 
useful iTrace message is generated after router24 forwarded 
about 6 million data packets. 
 
While the first measure, “usefulness”, is simple, but it does 
not catch up certain important aspects of iTrace behavior.  
We also concern how fast the router can generate “useful 
iTrace messages. we observe that, in responding to DDoS 
attacks, in order for a system administrator to quickly recover 
from the damage, it is highly desirable to receive iTrace 
messages immediately after the attack. For instance, in 
example #1, the first iTrace message from router 24 toward 
the true victim 125 is generated AFTER router 24 generated 
292 useless iTrace messages (roughly 2 million packets). If 
router 24’s throughput is 10,000 packets per second, it will 
take about 600 seconds before we can identify router 24. 
Clearly, it will be better if we can receive this first iTrace 
message in an earlier stage. 
 
With the above observations, we add three more attributes 
into our “value” evaluation of iTrace messages:  
 
An iTrace message (iTr) is not very “valuable”, if iTr[rtr-ID] 
has sent iTr[dst-ID] at least N iTrace messages within the 
past K seconds, while N and K will depend on parameters 
such as how many iTrace messages will be dropped. This 
observation implies that duplicate iTrace messages over a 
short period of time might not be very efficient in iTrace 
message generation. In other words, if the Internet has 
multiple DDoS victims simultaneously, then each router in 
the network should try to generate iTrace messages for ALL 
the victims. It is NOT very valuable if a router only generates 
iTrace messages for a single victim over and over again.  
 
Furthermore, an iTrace message is less “valuable,” if iTr[rtr-
ID] is only X (e.g., X <= 3) hops away from the victim, 
iTr[dst-ID]. For instance, if iTr[rtr-ID] is only 1 or 2 hops 
away from iTr[dst-ID], then this iTrace message does not 
provide too much “new” information about the attack source. 
If the victim has only one (or two) ISP, then we can derive 
pretty much the same conclusion without the iTrace 
messages. However, it is much more useful, if we can receive 
iTrace messages from routers that are, for example, 10 or 
more hops away from the victim.  
 
Finally, an iTrace message is more “valuable” if the iTrace 
message is generated right after the attack begins, which 



gives the intrusion response system more time to handle the 
problem. Therefore, in our evaluation, we give more “value” 
to iTrace messages being generated earlier in the attack cycle.  
 
Definition 4: “Value” 
The information value of an iTrace message iTr is determine 
by the following five parameters (the first two have been 
covered in the definition of “usefulness”.): 
Value(iTr) =  
F(Attack[iTr.pkt], Intention[iTr.dst-ID], HopCount[iTr.rtr-IDiTr.dst-ID], 
Received[iTr.rtr-IDiTr.dst-ID], Generated[iTr.rtr-ID]), 
 
where Received[iTr.rtr-IDiTr.dst-ID] represents how many 
iTrace messages from iTr.rtr-ID to iTr.dst-ID have been 
received before, and Generated[iTr.rtr-ID] represents the 
number of iTrace messages already generated by iTr.rtr-ID 
for all destinations.  
 
Please note that, while the function “F” can be possibly 
defined in many different formats, in this paper, we use a 
very simple form of “F” for the purpose of evaluation: 
Value(iTr) = 
 (Attack[iTr.pkt] * Intention[iTr.dst-ID] * HopCount[iTr.rtr-IDiTr.dst-ID])    
 / ((Received[iTr.rtr-IDiTr.dst-ID] + 1) * (Generated[iTr.rtr-ID] + 1)), 
 
According to Definition #4, most of the first 1200 iTrace 
messages generated by router 24 in Example #1 are value-
less except: 
 
    Value (iTr-r24-0293) = (1 * 1 * 5) / ((0+1) * (  293))  =  0.0170648 
    Value (iTr-r24-0429) = (1 * 1 * 5) / ((1+1) * (  429))  =  0.0058275 
    Value (iTr-r24-0707) = (1 * 1 * 5) / ((2+1) * (  707))  =  0.0023573 
    Value (iTr-r24-0817) = (1 * 1 * 5) / ((3+1) * (  817))  =  0.0015300 
    Value (iTr-r24-1107) = (1 * 1 * 5) / ((4+1) * (1107))  =  0.0009033 
 
The value of the duplicated iTrace messages decrease 
according to the “F” function defined in Definition #4. The 
accumulated value (for all the useful or useless iTrace 
messages) generated by router 24 is 0.028, based on the 
“Value” measure. We will show in the next section that a 
simple enhancement to the iTrace proposal will boost the 
value to about 8.12.  

4. Intention-Driven iTrace 
In this section, we present a new mechanism called 
"intention-driven" iTrace to resolve the statistic problem of 
the original iTrace proposal. Our design objectives are: 
 
 The probability for generating "useful/valuable" iTrace 

messages should be significantly higher than the original 
static iTrace scheme. In the worst case, the new scheme 
should just fall back to the original scheme, but not 
worse. 

 The number of iTrace messages generated by each router 
remains the same, i.e., roughly 1 over 20,000 data 
packets. 

 The new mechanism is compatible with the current 
iTrace scheme such that we do not require every router 
to support the new mechanism. 

 The design and implementation of the new mechanism is 
simple, efficient, secure and scaleable. 

4.1. Routing Table and Packet-Forwarding Table 
Since our proposed solution heavily depends on the BGP 
routing protocol, we will first clarify the difference between a 
routing table and a packet-forwarding table in a network 
router. 
 
On a BGP router, we have two tables: a routing table and a 
packet-forwarding table. The former table is maintained by 
the BGP protocol implementation and it contains information 
such as which route (including both next-hop and AS path 
information) should be used for a particular destination 
address prefix. The content of the BGP routing table is passed 
into the kernel’s packet forwarding table. The forwarding 
table is the key component for the packet forwarding process 
in a router. Today, a typical high-end router will have about 1 
quarter million entries in its forwarding table. Usually, adding 
a new attribute to the forwarding table or changing the 
pipeline of the packet-forwarding process (usually done in 
hardware) is more difficult than changing the BGP protocol 
itself (in firmware/software). Therefore, it is also our 
objective to minimize any changes to the forwarding process 
or table. 

4.2. Architecture of Intention-Driven iTrace 
From a high-level point of view, “intention-driven” iTrace 
separates the functions of iTrace into two different modules: 
decision module and iTrace generation module. The decision 
module will determine, based on the information provided in 
the “routing table”, which kind of iTrace messages should 
this router generate next? More specifically, which “entry” in 
the “packet-forwarding” table should be the target for iTrace 
generation? Based on this decision, one special bit in the 
packet-forwarding table (iTrace generation bit, see below) 
will be set to 1, and the very next data packet using this 
particular forwarding entry will be chosen as an iTrace 
message. Next, this chosen packet will be processed by the 
“iTrace generation” module, and a new iTrace message will 
be sent. 

 



4.3. iTrace Generation Bit in the Packet-Forwarding     
Table 
 
We introduce a new bit, an iTrace bit, into each entry in the 
packet-forwarding table. In our current design, at any 
moment, at most one iTrace bit will be set to 1. When the 
forwarding engine forwards a data packet, it will perform a 
table look-up to find the right entry to forward the packet.  If 
the forwarding process sees a ‘1’ in the entry for this packet, 
it will send a copy of this packet to the iTrace generation 
module and reset that bit to ‘0’. Furthermore, The modified 
packet-forwarding process is described as the following piece 
of pseudo-code: 
 

Int perDataPacketProcess(IP *p) 
{ 

           ForwardEntry *fe = findForwardEntry( 
     p->destinationIPaddr); 

            if (fe == NULL) return -1; 
            if (fe->iTrGenBit == 1) 
            { 
                      sendiTrace(p); 
                         fe->iTrGenBit = 0; 
            } 
            regularPacketForwarding(p, fe); 
         return 0; 

} 
 
Please note that, while the design here requires an extra bit in 
the forwarding table, in practice, we have considered a 
similar design without requiring any changes to the packet 
forwarding process. However, the router needs to have some 
packet logging facility available for us to choose a packet 
from the log. We presented this design to IETF’s ICMP 
Trace-Back working group, and some router venders voiced 
their concern about adding a new bit, while some others feel 
that this should be possible in their commercial routers. 

4.4. Intention Bit in the BGP Routing Table 
We associate each routing table entry with one extra bit 
called "intention bit". If the "intention bit" for a particular 
route entry is 1, then the network destination under this route 
entry indicates its desire in receiving iTrace messages. Please 
note that zero or more routing entries might simultaneously 
have intention bits on. For instance, multiple sites might be 
simultaneously under serious DDoS attacks and they have 
running applications that will utilize the information being 
carried by iTrace messages. 
 
On the other hand, if the intention bit is 0, then it indicates 
that either the destination's intrusion detection system does 
not believe that its network is under DDoS attacks or it 
believes that iTrace messages would not help to handle the 
attacks it observed. For instance, if an intrusion detection 
system detects that its network is under reflective DDoS 
attacks, then the normal (so called) "forward" iTrace 
messages will not help because iTrace messages will only 

lead to a huge number of reflectors, but not to the real DDoS 
slaves. 
 
A side issue we would like to mention here is that, at this 
point of time, it is not clear whether the option of "backward 
iTrace messages" will be adopted by the working group or 
not. But, if the "backward iTrace option" is adopted, then we 
need to introduce another bit to express the intention of 
receiving backward iTrace messages. In other words, in the 
current draft, the intention bits are only for controlling the 
"forward iTrace option". 
 

4.5. Decision Module 
After a router forwards about 20,000 packets, it should emit 
an “iTrace trigger” to indicate the need for generating an 
iTrace message. This trigger will be delivered to the decision 
module, and the decision module will then need to make a 
decision: which “entry in the packet-forwarding table” needs 
a 1 in their iTrace generation bit. We have implemented two 
very simple strategies: 
 Generate a random number to select one routing table 

entry from all the routing entries with intention bit ‘1’. 
And, all such entries will have exactly the same 
probability. 

 Generate a random number to select one entry. In 
addition to (1), we add a statistical bias toward entries 
having longer ASPath toward the final destination. This 
heuristic is to prefer the destinations with a longer 
“distance” from the generation router. 

 
After deciding which routing/forwarding entry should be the 
next iTrace target, the corresponding iTrace generation bit 
will be set. Also, if none of the entries has intention to receive 
iTrace, then no iTrace message will ever be sent. Therefore, 
our design does not introduce any more (if not less) iTrace 
messages than the original proposal does. The following is 
the pseudo code for the Decision module handling each 
iTrace trigger: 
 

Int periTraceTriggerProcess (RouteEntry *RETable, int  
                                                         RETableSize) 
{ 

             int  i; 
   RouteEntry *re; 
   for(i = 0; i < RETableSize; i++) 

               { 
              re = &(RETable[i]); 
                 if (re->intention == 1) 
 #ifdef   INTENTION_WITH_DISTANCE 
                               enterSelection(re, re->ASPathLength); 

#else    INTENTION_WITH_DISTANCE 
                              enterSelection(re, 1); 
 #endif   INTENTION_WITH_DISTANCE 

       } 
 
   re = finalSelection(); 



    if (re != NULL) re->fe->iTrGenBit = 1; 
    return 0; 
} 

4.6. How to Set and Distribute the Intention Bits? 
So far we have discussed, based on the intention bits in the 
routing table, we can decide the forwarding entry for the next 
iTrace message. In this section, we will present our design 
about “how to set and distribute the intention bits?” 
 
We propose to utilize the BGP routing information exchange 
protocol as the vehicle to distribute the intention bit values. 
When a BGP router advertises its reach ability to some 
network addresses, it will also attach the “Intention bit” value 
for that particular network address prefix. Therefore, when 
this BGP update is propagated to some downstream BGP 
routers, the intention bit value of the corresponding route 
entry will be updated. Furthermore, if BGP updates are 
aggregated, the intention bit values will also be aggregated. 
 
Specifically, we utilize the “community attribute” in BGP to 
carry the intention bit value. The community attribute in BGP 
is a 32 bit unsigned integer, and we introduce two new 
community string values, one for “Intend to receive iTrace” 
and the other for “Not intend to receive iTrace”. (If our 
proposal is accepted by IETF, we will determine the exact 
values for these two strings later.) Furthermore, the 
community attribute is “transitive” and “optional”, which 
means that if a router does not understand these new 
community values (such as an old BGP router does not 
support “intention-driven” iTrace), it will still forward it to 
the next hop. Eventually, a downstream BGP router can pick 
it up, update its intention bit values, and maybe perform 
proxy aggregation for some old upstream routers.  We believe 
that our design is practical as it doesn’t require changes to all 
the routers. And, even for the new routers, the change is fairly 
small as we do not introduce a new BGP attribute, but two 
new values for an existing BGP attribute. 
 
Therefore, when a particular network is under DDoS attack, 
the intrusion detection system will inform the BGP router to 
include the iTrace intention value in the next update. Since 
the rate of our updates can be limited by the BGP keepALive 
interval, our design will not introduce extra BGP traffic, 
while the intention bit value can be distributed through the 
whole Internet. Finally, because of BGP route aggregation, 
our design will not increase the number of entries in the 
routing or forwarding tables. 

5. Performance Evaluation 
In this section, we compare four different iTrace schemes: the 
original one with or without distance and intention-driven 
iTrace, again with or without distance. We use two different 
performance measures: “usefulness” and “value” as defined 
in Section 4. Due to the space limitation, we will only present 
two cases: Multiple Slaves versus Multiple Victims (MS-

MV) and Multiple Layers versus Multiple Victims (ML-
MV): 
 
The following figure shows the “usefulness” of iTrace 
messages along “one attack path” against victim 125:  

 
The following figure represents the same measure but for a 
different path against victim 41: 

 
Clearly, we can observe that, under our simulation study, 
most of the iTrace messages for the original iTrace proposal 
are wasted, while it is not really clear whether the heuristic of  
“distance” really contributes significantly – under the 
“usefulness” measure. However, if we look at the “value” 
measure, the story is different: 

 
From our result of “accumulated” iTrace message value over 
time, we conclude that: 
(1). With intention-driven iTrace (regardless of distance 
heuristics or not), the value of iTrace information increases 
very fast to its maximum in the first few iTrace triggers. This 



result is very encouraging as it implies that we can identify 
the sources (even under the MS-MV case) very quickly after 
the attack starts. Furthermore, this also indicates that maybe 
one iTrace per 20,000 is an “over-kill”. 
(2). With the distance heuristics, the value of information is 
about 40% better, based on the value measure, which is 
biased toward “long shot” iTrace messages. We feel that we 
need to consider other possible measures as well as to get 
inputs from the operational folks (e.g., ISP) to validate 
whether the “value” measure we are using here is fair or not.  

 
The following is the “usefulness” measure for ML-MV (the 
“value” measure is very similar to MS-MV). The interesting 
observation is that, even under the “usefulness” measure, the 
normal iTrace hardly generates “ANY” useful iTrace 
messages. After examining the log file, we found all the 
routers on the path generated at most two “useful” iTrace 
messages while many actually scored zero. 
 

6. Security Consideration 
Since our scheme will introduce exactly the same amount of 
iTrace messages as the original iTrace proposal, our proposal 
will not introduce any new vulnerability related to denial of 
service attacks based on the iTrace messages themselves. 
 
Since we propose using BGP to distribute the intention 
values, our scheme is subject to the same security risks as 
BGP.  The risks with respect to intention values would be that 
an attacker who can tamper with the BGP contents could 
modify the behavior of iTrace to divert iTrace away from the 
attacker's location.  This attack seems as if it would be very 
difficult to accomplish, but the issue should be considered in 
more detail in the future. 

7. Remarks 
In this paper, we study the problem of DDoS attack source 
tracing, and in particular, we examine the weakness of one 
proposed solution, ICMP Trace-Back. We have defined two 
different measures for source tracing performance and 
performed simulation on four iTrace schemes against 5 
different types of DDoS attacks. From the results we 
obtained, we believe that the statistic problem of iTrace is 

very critical and we are very convinced that “intention-
driven” iTrace is a MUST in order to achieve a much better 
tracing performance. Furthermore, our proposed solution is 
very practical and simple: it requires very few changes to the 
routing infrastructure and it does not require a global 
replacement. Finally, one immediate next step we are 
considering is to have a prototype implementation in the 
Linux kernel to study more about its run-time behavior. 
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