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a b s t r a c t

The natural world is enormous, dynamic, incredibly diverse, and highly complex. Despite
the inherent challenges of surviving in such a world, biological organisms evolve, self-orga-
nize, self-repair, navigate, and flourish. Generally, they do so with only local knowledge
and without any centralized control. Our computer networks are increasingly facing sim-
ilar challenges as they grow larger in size, but are yet to be able to achieve the same level of
robustness and adaptability. Many research efforts have recognized these parallels, and
wondered if there are some lessons to be learned from biological systems. As a result, bio-
logically inspired research in computer networking is a quickly growing field. This article
begins by exploring why biology and computer network research are such a natural match.
We then present a broad overview of biologically inspired research, grouped by topic, and
classified in two ways: by the biological field that inspired each topic, and by the area of
networking in which the topic lies. In each case, we elucidate how biological concepts have
been most successfully applied. In aggregate, we conclude that research efforts are most
successful when they separate biological design from biological implementation – that is
to say, when they extract the pertinent principles from the former without imposing the
limitations of the latter.

! 2009 Elsevier B.V. All rights reserved.

1. Introduction

In the last 15 years, we have witnessed unprecedented
growth of the Internet. The tremendous size and complex-
ity that is associated with any large-scale, distributed
system is pushing the limits of our ability to manage the
network, or even to fully understand its behavior. More-
over, the Internet continues to evolve at a rapid pace in
order to utilize the latest technological advances and meet
new usage demands. It has been a great research challenge
to find an effective means to influence its future [1], and to
address a number of important issues facing the Internet
today, such as overall system security, routing scalability
[2], effective mobility support for large numbers of moving
components, and the various demands put on the network

by the ever-increasing number of new applications and
devices.

Although the Internet is perhaps the world’s newest
large-scale, complex system, it is certainly not the first
nor the only one. Certainly, the oldest large-scale, complex
systems are biological. Biological systems have been evolv-
ing over billions of years, adapting to an ever-changing
environment. They share several fundamental properties
with the Internet, such as the absence of centralized con-
trol, increasing complexity as the system grows in size,
and the interaction of a large number of individual, self-
governing components, just to name a few. Despite their
disparate origins (one made by nature, the other made by
man), it is easy to draw analogies between these two
systems. Though drawing parallels between computer sys-
tems and biology is not a new idea [3], the unprecedented
complexity and scale of modern networks demands inves-
tigation from a different angle. As many researchers have
argued [4–6], there is a great opportunity to find solutions
in biology that can be applied to problems in networking.
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1.1. Topics covered

The topics that we have chosen to cover are a broad
selection of those that have proven to be fruitful and have
remained active in recent years. These topics are shown in
Figs. 1 and 2. In Fig. 1, each topic is categorized by the bio-
logical field or fields that inspired it. The categories are
those used by the US National Research Council for catego-
rizing research programs in the life sciences [7]. Though
these categories sometimes overlap, we have tried to make
the best classifications possible, preferring to use catego-
ries that emphasize systems and processes over those that
emphasize specific organisms (e.g., we have classified so-
cial insect routing as ethology-inspired rather than ento-
mology-inspired). In Fig. 2, each topic is categorized by
the area or areas of computer network research to which
it applies.

We have chosen to omit research areas that have only
an ancestral connection to biology. These research areas
involve applying an abstract, biologically inspired theory
or technique, but do not generally intend to draw a direct
parallel between the research topic and any biological
system.

One example is genetic algorithms (GA) [8]. Genetic
algorithms are a well-known optimization technique
which happens to have, in turn, been inspired by biology.
Genetic algorithms were invented over 35 years ago, and
have been applied to a diverse range of problems in com-
puter science, many of which have nothing in common
with any biological system in and of themselves.

Another notable omission is evolutionary game theory
[9]. Traditionally, game theory attempts to model strategic
decisions of a number of interacting individual players,
where the game and the players are concepts that can be

Fig. 1. A taxonomy of network research inspired by biology for the topics covered in this survey, organized by the area of inspiration. Research topics are
preceded by their section number.

Fig. 2. An alternative taxonomy of network research inspired by biology for the topics covered in this survey, organized by the area of application. Research
topics are preceded by their section number.
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interpreted quite broadly. One such interpretation is to
consider the game to be survival, and the players to be bio-
logical organisms. Evolutionary game theory augments tra-
ditional game theory by allowing strategies to evolve over
many generations. This augmentation is crucial when
modeling biological systems.

A number of research efforts have applied abstract
mathematical techniques from evolutionary game theory
to a wide variety of problems in networking [10–13]. How-
ever, even more so than genetic algorithms, these mathe-
matical techniques are general enough to model a great
variety of systems in a great number of disciplines, inde-
pendent of any connection between the modeled system
and any biological system.

1.2. Focus

In this survey, we focus on providing broad coverage of
the existing literature. For each topic, we will start from a
historical view, focusing on the pioneering efforts in the
area. We continue with the most influential works, leading
up to recent trends. Our discussion of recent trends will fo-
cus on the trendsetters, butwewill alsoprovide someexam-
ples of the most current work in the area (as of the time of
writing). We frame our coverage in the context of the natu-
ral parallels between biological systems and computer net-
works, and provide some analysis of what makes for
successful biologically inspired research. We also present
some general suggestions for how to extract useful ideas
and techniques from biology for use in future research.

Due to the breadth of this survey, it would be unrealistic
(and probably undesirable) for our literature review to be
exhaustive. Instead, wherever possible, we will include ref-
erences to more exhaustive literature reviews specific to
particular research topics. For readers interested in simi-
larly broad surveys with a different focus, we recommend
two excellent book chapters [14,15], both of which survey
algorithms and techniques in networking that are the
product of biologically inspired research.

1.3. Contents

The rest of this article is arranged as follows. Section 2
discusses in some depth why biology is an appealing and
appropriate place to find inspiration for computer net-
working research. As shown in Figs. 1 and 2, Section 3 cov-
ers routing research inspired by the behavior of social
insects, Section 4 covers intrusion and misbehavior detec-
tion research inspired by the immune system, Section 5
covers network services modeled on the interactions and
evolution of populations of organisms, Section 6 covers re-
search that applies techniques from the field of epidemiol-
ogy, and Section 7 presents a sampling of newly emerging
bio-inspired research topics. Section 8 mentions some
other relevant research topics that we do not cover. Section
9 concludes our survey.

2. Why biology?

At first glance, it might seem a bit arbitrary to look at
biology for inspiration in networking research. However,

the two fields have a much stronger connection than one
might expect. The Internet – the largest, most complex,
and most broadly successful computer network that exists
today – has much in common with complex biological
systems.

2.1. Parallel structures

In examining some of the common structures and algo-
rithms used on the Internet today, we can find some strik-
ing similarities to biological systems. For example, anyone
who has taken an introductory course in computer net-
works is familiar with the hourglass model of the Internet
architecture – a diverse and rapidly changing set of appli-
cations run on top of a smaller set of transport protocols,
which in turn run on a single Internet protocol (IP). IP runs
on top of a diverse and changing set of link-layer protocols
and physical mediums.

Many biological systems have a nearly identical archi-
tecture. For instance, bacteria can feed off of a variety of
different nutrients. All of these nutrients contain some or
all of the raw building blocks needed to power a bacterial
cell. However, a bacterium must first metabolize these
nutrients before they can be used, reassembling the build-
ing blocks into the multitude of complex macromolecules
that they require for survival. Just as it would be impracti-
cal to build a different version of every Internet application
for every physical-layer technology, it would be impracti-
cal for a bacterium to use a different metabolic process
to convert each nutrient to each of the macromolecules it
requires. Instead, much like the Internet model, the bacte-
rial metabolism converts all nutrients to a small number of
common currencies. These few common currencies are then
used to build the large number of complex macromole-
cules required to power the cell. Tilting the hourglass met-
aphor on its side, Csete and Doyle noted that this ‘‘bow tie”
structure is a nearly universal feature of complex systems
[16].

Looking more deeply into the Internet protocol stack,
similarities also exist at the individual protocol level. For
example, at the transport layer, the Transmission Control
Protocol (TCP) determines the sender’s transmission rate
based on a standard congestion control algorithm. This
algorithm uses feedback from the receiver, in the form of
acknowledgements (ACKs), to determine when the sen-
der’s rate should be adjusted. While the sender continues
to receive the expected ACKs (positive feedback), it slowly
increases its transmission speed. When the sender does not
receive the ACKs it expects (negative feedback), it quickly
reduces its transmission speed. In aggregate, this algorithm
allows the sender’s rate to continuously track the optimal
sending rate for the receiver, given the current state of
the network. In the field of control theory, this process
can be seen as a form of integral feedback. Long common
in engineered systems, recent research has shown strong
evidence that bacteria use integral feedback to govern their
speed and direction of movement when tracking the con-
centration of certain chemicals in their environment [17].

As we discuss in Sections 3.2 and 3.3, such similarities
can be found not only in the Internet protocols, but wire-
less protocols as well.
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2.2. Complexity and robustness

Stepping back from parallel structures and algorithms,
we can also find broader, systemic similarities between
the Internet and biological systems. In fact, the work cited
in the previous section is part of a larger attempt to devel-
op a unified theoretical model for the structure of large-
scale networks – biological, technological, and otherwise.
One particular model of complex networks, termed highly
optimized tolerance (HOT) [18], has been shown to agree
with the observed structure of real-world entities – both
in biological systems [19,20] and the Internet [21]. The
HOT authors compare their model to other popular models
of complex networks [22,23], finding that only HOT is well-
aligned with the properties of real-world systems.

The theoretical claims of HOT elucidate some of the sys-
temic similarities between the Internet and biological sys-
tems. The basic premise of HOT is that a complicated,
strictly organized internal structure is necessary for any
system to exhibit robust external behavior [24]. That is,
there is an inherent trade-off between structural simplicity
and robustness. Both the human body and the Internet
have a complex, strictly organized internal structure. The
human body has many different organs and physiological
systems, each of which serves a specific purpose. A kidney
cannot serve as a lung nor vice versa. The Internet also con-
tains a number of specialized devices. At its core are high-
speed routers, which single-mindedly forward data in a
highly optimized manner. At the edges of the network
are a diverse array of application-oriented devices, such
as laptop computers and cellular phones. A high-speed
router would be no more helpful in reading your e-mail
than a kidney would be in oxygenating your blood.

Furthermore, the HOT theory claims that complex sys-
tems are only optimized to be robust against expected fail-
ures or perturbations. The system becomes quite fragile in
regards to unexpected or rare failures or perturbations. For
example, humans are quite robust to the sorts of changes
we have evolved to tolerate – we live in climates from
the Arctic to the Sahara desert, we can obtain energy from
any number of different food sources, and can even survive
the loss of a limb. However, a miniscule change to an
important gene or exposure to trace levels of an unusual
toxin can cause massive systemic failures. The Internet
was optimized for robustness to physical failures of indi-
vidual components, and it has proven quite successful in
that regard. However, it is fragile to even small soft fail-
ures, such as an error in the design of a protocol (as oc-
curred in the early days of the ARPAnet [25]) or a single
component that breaks the rules (as with prefix hijacking
[26]).

In both biological and networked systems, far simpler
designs exist, but these simpler systems lack any resiliency
to even the most common failures. Bacteria are composed
of only a single cell, rather than a complex, structured net-
work of cells like a human, but can only tolerate very small
changes in their external environment, such as a slight
change in temperature or pH. Building a network with a
star topology makes many of the most difficult design chal-
lenges in the Internet, such as packet routing and address-
ing, trivially simple. However, a network with a star

topology is rendered completely useless by the failure of
the single central node.

2.3. Biological inspirations

The evidence certainly suggests that mother nature and
network engineers have not only had to solve similar prob-
lems, but have also independently converged upon strik-
ingly similar solutions. As such, it seems entirely
reasonable that new or persistent problems in computer
networks could have a lot in common with problems biol-
ogy has encountered and resolved long ago. As computer
network researchers, it would serve us well to take a long,
hard look at biological systems – we may find more an-
swers than we expect.

3. Social insect routing

Collectively, insect societies can perform impressively
complex tasks, such as nest building and food gathering.
Humans tend to anthropomorphize these insects, assum-
ing they are diligently and selflessly toiling away with
the greater good of the colony in mind. The reality is far
more surprising. Individual insects function much like sim-
ple computing devices – they execute simple procedures
based on their input, causing them to produce some out-
put. At any given moment, an individual insect is merely
reacting to stimuli in its immediate surroundings. Large-
scale, seemingly global cooperation emerges as a result of
two phenomena. First, each species is genetically pre-pro-
grammed to perform an identical set of procedures given
the same set of stimuli. Second, by performing these proce-
dures, creatures implicitly modify their environment (of
which they are one feature), creating new stimuli for
themselves and those around them. This phenomenon of
indirect communication via changes to the environment
is called stigmergy [27,28].1

3.1. Ant-inspired wired routing

The first and largest class of social insect-inspired rout-
ing algorithms is based on the ability of ants to converge
on the shortest path from their nest to a food source. Ants
accomplish this feat by laying various types of pheromone
trails, or scent trails, as they travel. These pheromones
serve as stimuli for other ants in their colony – ants prob-
abilistically follow the paths with the most pheromone.
When no pheromones are present, ants will follow random
paths. When an ant finds a food source, it will return to the
nest the same way it came. On its return journey, the ant
continues to leave its pheromone trail behind, thereby
increasing the amount of pheromone on the successful
path. The shortest successful path will receive this extra
dose of pheromone first, while the others will slowly fade
away. This causes other ants to be more likely to follow the
shortest path, and creates a positive feedback loop [29].
This is a classic example of stigmergy, and the basis for

1 In the field of artificial intelligence, stigmergy is considered an example
of swarm intelligence.
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an optimization algorithm proposed by Dorigo et al. [30],
which was eventually termed ant colony optimization
(ACO).

3.1.1. ABC
The first truly stigmergy-based routing algorithm in

publication was Ant-based control (ABC) [31], an ACO-
based algorithm designed for routing in circuit-switched
telephone networks. In brief, ABC makes use of active
probing of the paths in the network to allow routing tables
to be traffic-aware. Traffic awareness is a basic tenet of
most ACO-based algorithms. It is worth exploring the
ABC algorithm in some depth, as all ACO-based routing
algorithms work in a similar fashion.

ABC models destinations as food sources, and routing
tables are called pheromone tables. Each possible destina-
tion has a unique pheromone associated with it, so in an
n-node network, ABC uses n different pheromones. At
any node x, each entry ðd; x ! yÞ in the pheromone table
is the probability that an ant leaving node x will use link
x ! y to reach destination d. Thus, each node needs to
store a pheromone level for each possible destination on
each of its links, so a node with m neighbors will have a
pheromone table of size ðn# 1Þ $m. This is essentially
the same storage requirement as in distance vector
protocols.

In order to update the pheromone tables, ants are sent
at regular intervals from each node in the network. Ants
update the pheromone table at each node they visit, but
they update the entry for the source node of the ant, not
the destination. To be precise, when an ant originated by
node s traverses some link p ! q, it updates the phero-
mone table entry ðs; q ! pÞ at node q. Thus, ABC assumes
a symmetric cost on all links.

When updating pheromone tables, ABC will increase
the probability of entry ðs; q ! pÞ using a reinforcement
learning technique. To ensure calls are set up on less con-
gested paths, ants traveling on congested paths get de-
layed, and ants that have been in the network longer lay
less pheromone. The amount of delay is based on the num-
ber of calls currently using the link in question. Ants select
a path based on the probabilities in the pheromone table,
with some random noise. Calls, however, are always set
up on the links with the highest probabilities (there is no
randomness involved).

One drawback specific to ABC is its winner-takes-all call
setup scheme, which means that if the best route to s is
congested, no call can be placed to s until the ants can
change the probability distribution. ACO-based algorithms
for packet-switched networks tend to exploit the multiple
paths provided in the pheromone table for load balancing.

3.1.2. Packet-switched networks
Two pioneering works for ACO-based routing in packet-

switched networks were developed in parallel. One was
developed by Subramanian et al. [32], who adapted the
ABC algorithm for use in packet-switched networks fairly
faithfully. Additionally, the authors describe what they
term the uniform ant algorithm, where ants take all paths
with equal probability. This essentially amounts to a ran-
dom walk, and thus has little to do with ants or stigmergy.

The other pioneering effort was by Di Caro and Dorigo,
the original author of the ACO algorithm. Their algorithm is
called AntNet [33]. AntNet has probably been the most
influential ACO-based routing algorithm, and a number of
improvements, studies, and AntNet-based algorithms have
been published.2 AntNet introduces the concept of forward
ants and backward ants. As in ABC, forward ants stochasti-
cally follow the pheromone tables from a source to a desti-
nation. Forward ants record their path, as well as the actual
time that they arrive at each node. This is how AntNet mea-
sures network congestion, since forward ants may be de-
layed like any other packets.

When a forward ant reaches its destination, it becomes
a backward ant, and returns to the source on the reverse
path of the forward ant, updating pheromone tables along
the way. Pheromone levels are increased by an amount
based on the time it took the forward ant to traverse each
link. This forward-and-backward-ant scheme allows Ant-
Net to support asymmetric link costs.

Unlike ABC, AntNet uses stochastic forwarding for data
packets as well. This results in load balancing over multiple
paths, which is one of the primary goals of AntNet. The
authors’ evaluation shows it to outperform a number of
standard routing algorithms for constant bit rate traffic.

There are two drawbacks specific to the AntNet algo-
rithm. It can require long delays to propagating routing
information, since routing tables are only updated by back-
ward ants. The authors do not discuss how ants acquire
accurate timing information, but presumably all nodes in
the network will need to have synchronized clocks for
the timing information to be accurate.

In general, ACO-based routing algorithms appear
advantageous for load balancing, but this feature comes
at a cost. They are not guaranteed to be loop-free. The
use of multiple paths concurrently may cause out-of-order
packets and increased jitter in stable networks. ACO-based
routing algorithms generate quite a lot of control traffic,
even when the network is stable. Like ABC in circuit-
switched networks, both ACO-based schemes discussed
above do not deal well with link failures – before failures
can be avoided, ants must first stochastically decrease
the probabilities on broken links. This problem can only
be avoided if nodes are able to detect link failures and
explicitly notify the routing system [35].

3.2. Recent trends

Two recent trend in social insect-inspired routing are
applying ACO principles to routing in mobile, ad-hoc wire-
less networks (MANETs) and taking inspiration from in-
sects other than ants.

3.2.1. Ant-inspired routing for MANETs
Perhaps the most influential ant-based routing algo-

rithm for MANETs is AntHocNet [36], a modified version
of AntNet from the same authors. Since the large amount
of control traffic generated by AntNet would be unaccept-
able in a MANET scenario, AntHocNet forgoes the use of

2 See Farooq and Di Caro’s 2008 survey [34] for a comprehensive review.
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forward ants except for paths that are in active use.
AntHocNet bears a strong resemblance to the ad-hoc on-
demand distance vector (AODV) protocol [37], except with
the addition of active probing of paths that have active
data connections (via proactive forward ants), and stochas-
tic routing of data packets over multiple paths with a dis-
tribution based on the pheromone tables. It uses hello
packets to detect link failures. Unlike the original AntNet
scheme, AntHocNet actually has a significant advantage
in failure handling, since it can take advantage of the avail-
ability of multiple, active paths. In their evaluation,
AntHocNet performs better than AODV for constant bit
rate traffic, presumably due to the use of multiple paths,
though variable bit rate traffic is not evaluated.

AntHocNet was not the first ant-inspired MANET rout-
ing algorithm to appear in the literature. The first appears
to have been GPS/Ant-Link Algorithm (GPSAL) [38],
though, along with some other early efforts [39,40], it is
modeled after ants only in name – their protocols do not
make use of any concepts from stigmergy.

The first MANET routing algorithm in the literature to
take inspiration from ants more than just in name was
Ant-Colony Based Routing Algorithm (ARA) [41]. ARA is
an on-demand protocol, also resembling AODV. It waits
until a node needs to send data, at which point it broad-
casts AntNet-style forward ants. When a forward ant
reaches the destination, the destination node prevents
the forward ant from propagating further and responds
with a backward ant. After this route discover phase, ARA
then uses only data packets to update pheromone tables.
ARA decreases all pheromone values periodically using
an exponential decay factor. It also adds loop prevention
and explicit failure notification. Their evaluation showed
ARA’s performance was slightly worse than the dynamic
source routing (DSR) protocol [42], but with significantly
less overhead.

3.2.2. Other insects
Increasingly, researchers have also begun exploring the

behavior of other social insects as inspiration for routing
algorithms. One such effort is Termite [43], a termite-in-
spired routing algorithm for MANETs.3

Like ants, termites also coordinate their actions via
pheromones left in their environment. In fact, it was the
study of termite behavior that led to the development of
the original theory of stigmergy [27].

Despite the fact that the authors’ inspiration came from
a different insect, the Termite routing protocol [43] is quite
similar to ARA [41], with two main differences. First, Ter-
mite has no loop prevention or explicit failure notification.
Second, while ARA floods route requests (which ARA calls
forward ants) and requires them to travel all the way to
the destination, Termite route requests perform a random
walk through the network until they discover a node with
some pheromone for their destination. This triggers a route
reply packet to be sent from the discovered node back to
the source. This method has more in common with the

behavior of real termites than ARA’s method does with real
ants, but it is also less efficient. Though the Termite meth-
od could theoretically reduce control traffic volume, the
authors of Termite had to include another type of control
packet to spread pheromones through the network in or-
der to compensate for its inefficiency. This particular
choice may be a case where the authors used too literal a
mapping from the biology to the technology.

3.2.3. Ongoing work
As of the time of writing, some researchers are still

developing new and improved ant-based routing algo-
rithms for MANETs. One example is a new algorithm by
Woo et al. [46], which is based on AntHocNet. This algo-
rithm is intended to use significantly fewer forward and
backward ants, thus improving efficiency. According to
their simulations, this new algorithm does, in fact, have
significantly less overhead than AntHocNet while main-
taining comparable performance.

Another example is HOPNET [47], which combines ant-
inspired routing with the Zone Routing Protocol (ZRP) [48].
In HOPNET (as in ZRP), each node has a zone, which con-
sists of all nodes within a specified number of hops from
the node. Within a node’s zone, HOPNET is a proactive pro-
tocol – AntNet-style forward ants are used to actively
probe and maintain each path. When routing between
zones, HOPNET is a reactive protocol – nodes use AntNet-
style forward ants to find paths on demand. The authors
compared HOPNET to AODV, ZRP, and AntHocNet in simu-
lation with mixed results. HOPNET generally performs
favorably in highly dense networks, but poorly in sparser
networks.

3.3. Summary

A number of ant colony-inspired routing protocols were
developed for wired networks, perhaps the most promi-
nent of which is AntNet [33]. Though AntNet and other,
similar algorithms showed promise, real implementations
have not gone far. This may be due to practical consider-
ations (some assumptions made in simulation were unre-
alistic), and/or simply due to the fact that the existing
routing protocols are fairly mature and firmly entrenched.

Recent social insect-inspired routing research has
turned to MANETs, as well as to insects other than ants.
These algorithms appear quite promising, but they also
tend to resemble existing MANET routing protocols. This
may be due to a convergence between technology and nat-
ure. That is to say, existing MANET routing protocols,
although not biologically inspired in their design, bear a
strong resemblance to a deterministic version of social in-
sect behavior. For example, AODV and DSR both send
probe packets from the source to discover a roundtrip path
to the destination, after which the rest of the data packets
can follow that path. Compare this to ant behavior, where
the first ant to make a roundtrip from nest to food source
successfully marks out a path for the remaining ants.

Readers interested in other social insect-inspired rout-
ing protocols (of which there are many) should consult
survey papers specific to the area [34,49,50].

3 Other notable efforts are BeeHive [44] and BeeAdHoc [45], see Section
8.
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4. Artificial immune systems

One parallel between computers and biology is so well-
known that it has made it into common parlance: the com-
puter virus. The term was launched into the public vernac-
ular in November of 1988, when Robert T. Morris, Jr. made
national headlines by releasing the so-called Morris worm
on the early Internet [51]. Since then, the evolution of the
computer virus and other types of malicious code has coin-
cided with the evolution of the Internet. Just as globaliza-
tion has facilitated the spread of human disease, the
interconnection of an increasing population of personal
computers has enabled the spread of computer viruses
on a global scale. This is a perfect example of a problem
that was new to computer networks, but for which biology
already had a solution: the immune system.

The vertebrate immune system has multiple levels of
defense. The first layer of defense has a simple purpose –
prevent pathogens (infectious agents) from entering the
body in the first place. This level includes the skin, which
is impenetrable to most pathogens, and bodily secretions,
such as saliva, which have antibiotic properties. If a patho-
gen manages to breach these barriers and enter the body, it
is next met by the innate immune system. The innate im-
mune system can tell the difference between the self and
the foreign – that is, cells that are part of the body and
those that are not. Foreign intruders that trigger an im-
mune response are called antigens. The innate immune re-
sponse involves a multitude of different cellular defenders
that can destroy or devour antigens. Some of these defend-
ers, which are called antigen presenting cells (APCs), keep
samples of the antigens they consume, and present them
to the last, most advanced level of defense – the adaptive
immune system.

Unlike the cells involved in the innate immune re-
sponse, each cell of the adaptive immune system, which
are a type of white blood cells called lymphocytes, will only
interact with specific antigens that they are compatible
with. Under the right conditions, if an APC presents one
of these lymphocytes with an antigen it recognizes, the
lymphocyte is sent into action. The cell rapidly clones it-
self, and attacks the recognized antigens directly, as well
as any ‘‘self” cells infected with them. This targeted attack
can be much more effective than the unspecific attacks of
the innate immune system. Furthermore, when an antigen
is successfully repelled, cells are programmed to remem-
ber it for an even more effective defense the next time it
is encountered. Note that, like most biological systems,
all of this happens with no central control. It is the aggre-
gate behavior of many independently acting cells that is
able to fight off infection.4

What if we were to summarize the description of the
vertebrate immune system above, but replace the biologi-
cal terms with networking ones? The result is as follows.
First, put up firewalls and the like to prevent intrusions
from getting into one’s network in the first place. Second,

in case an attacker gets in, detect and flag any suspicious
activity, regardless of whether it corresponds to a known
attack. Third, trigger a subsystem to examine the suspi-
cious activity more closely, taking swift action to combat
known attacks. For unknown attacks, try to figure out
how to combat them effectively. When successful in com-
bating the attack, remember the defense mechanism for
next time. This sounds like a respectable high-level
description for an intrusion detection system (IDS). In fact,
this is the primary domain in the computer networking
world where artificial immune systems (AIS) have been
applied.

4.1. Kephart’s immune system for computers

Artificial immune systems for computers were origi-
nally conceived as a defense mechanism for individual
hosts against computer viruses. In 1994, Jeffrey Kephart
of IBM Research proposed one of the two earliest designs
[53]. Its high-level description is similar to the immune
system-based IDS description above. An analog of the in-
nate immune response can detect an intrusion on the host
via two methods: integrity checking of its programs and
data, and an activity monitor that reacts to suspicious
activity. However, the notion of ‘‘self” is ill-defined for a
computer – users routinely modify files and install new
software. Integrity checkers and activity monitors can eas-
ily be triggered by these sorts of expected behaviors. Thus,
Kephart’s system does not take any defensive action at this
stage. Instead, a number of so-called decoy programs are
created. Decoy programs act a bit like APCs in the biologi-
cal immune system, but instead of destroying computer
viruses, they attract infection. This allows the equivalent
of the adaptive response to take over, examining the virus,
as well as how it infects. The goal is to find a byte sequence
to serve as a signature that can be used to recognize the
virus, but is unlikely to match normal programs. This is
done by comparing a number of candidate signatures to
a corpus of uninfected programs to determine which signa-
ture is least likely to result in false positives. This signature
is then added to the database of known viruses. Known
viruses can then be detected and removed using standard
anti-virus techniques.

Kephart also proposed a limited extension of his system
for networked machines. When a machine learned how to
defend against a new virus, it would tell all of its neighbors
how to do so as well. However, a neighbor would only fur-
ther propagate this information if, upon learning how to
detect the infection, it found that it was also infected with
the same virus.

When it came to the actual implementation, Kephart
took a proprietary approach. He focused on reusing code
that was already in use in IBM’s AntiVirus product, as well
as some code and procedures used in IBM’s virus lab. No
evaluation of the system appeared in the paper. Little fol-
lowup research appeared in publication, presumably be-
cause the system was destined for use in a commercial
product [54]. However, much of the design and discussion
in Kephart’s work foreshadowed the more detailed re-
search in the field that would follow in the coming years.

4 It is worth noting that this high-level description glosses over a great
amount of detail, some of which is still a matter of debate among
immunologists. The interested reader can find a more complete description
that is still understandable to non-biologists on Paul Bugl’s web page [52].
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4.2. Negative selection

The other of the two earliest artificial immune systems
was proposed by Forrest et al., published a few months
prior to Kephart’s work [55]. Rather than describing an en-
tire IDS, the authors focused on integrity checking – ensur-
ing that protected data has not been tampered with. The
integrity checker is based on one specific process in the
vertebrate immune system called negative selection.

Negative selection is the basis of much AIS research. To
understand this process, we must first delve into a bit more
detail about the adaptive immune system. Recall that the
defender cells of the adaptive immune system are called
lymphocytes. One particular type of lymphocyte, called
the killer T-cell, is responsible for killing bodily cells that
have become infected. Each T-cell has a particular set of
surface features on its cell wall, which only allow it to bind
to (and destroy) cells infected with a specific antigen.
These surface features are produced pseudo-randomly
when the T-cells are generated. This randomness has the
advantage of allowing the system to produce T-cells that
recognize antigens it has never seen before. However, it
has the disadvantage that it may produce T-cells that will
bind to (and destroy) healthy bodily cells. This is where
negative selection comes in. Before they can enter the
blood stream, T-cells are ‘‘sensitized” in the thymus, an or-
gan above the heart. Negative selection is the part of this
sensitizing process that destroys T-cells that would bind
to healthy bodily cells.

For their integrity checking scheme, Forrest et al. cre-
ated an artificial version of this process. Their system gen-
erates a fixed-size repertoire of random strings, deleting
any strings that occur in the data that the system is told
to protect. When asked to verify data, the integrity checker
looks for substrings that match the strings in the reper-
toire. Since all ‘‘self” strings were removed from the reper-
toire, any match implies a verification failure.

The result is a probabilistic integrity checker with stor-
age requirements that are independent of the size of the
data set to be protected. The probability of successfully
detecting an integrity failure (as well as the probabilities
of false positives and false negatives) can be adjusted in
two main ways: first, by adjusting the size of the reper-
toire, and second, by adjusting the length of substring re-
quired to constitute a match.

Forrest’s Adaptive Computation Group later published
the first implementation of a network intrusion detection
system (NIDS) based on the negative selection algorithm
[56] (though they were not the only researchers to propose
such a system at the time [57]). This work matured into a
NIDS that they called LISYS [58]. LISYS looks for intrusions
by monitoring the source IP, destination IP, and port of TCP
SYN packets on a LAN. The LISYS detection algorithm ex-
tends beyond negative selection into an intricate imitation
of the biological immune system, a description of which is
beyond the scope of this survey. Despite the increased
complexity, the authors argue that each detail serves to
improve the overall system defense. In simulation, LISYS
appears to perform excellently, although the paper [58]
does not contain any evaluation from a real-world deploy-
ment, despite the existence of an implementation.

4.3. Recent trends

Following more recent trends in networking research,
AIS research has also made its way into MANETs and sen-
sor networks in the form of misbehavior detection. In these
environments, the fact that each node could have an inex-
perienced or nonexistent administrator means that they
may require automated methods for detecting and/or
avoiding malfunctioning and malicious nodes.

The other major, recent trend in AIS research is based
on a relatively recent immunological theory called the dan-
ger theory [59]. The danger theory proposes that the im-
mune system does not, in fact, distinguish between the
self and the foreign, but rather between the safe and the
dangerous. Thus, the immune system may attack self cells
that appear dangerous, and may not attack foreign cells
that appear safe. Of course, this difference could simply
boil down to how one defines ‘‘self” and ‘‘foreign”, as Hof-
meyr and Forrest suggested [58]. However, there is one
functional difference between prior theory and the danger
theory – the danger theory suggests the existence of a dan-
ger signal emitted by cells, which is a prerequisite to activa-
tion of the adaptive immune response. The theory further
suggests that these signals are implicit, such as the pres-
ence of the detritus from a antigen-destroyed cell.

4.3.1. Misbehavior detection in wireless networks
Le Boudec and Sarafijanović were the first to propose an

AIS for misbehavior detection in MANETs [60]. Their
scheme is specifically designed to discover nodes that do
not correctly implement the MANET’s routing protocol;
in this case, the dynamic source routing (DSR) protocol
[42]. They used negative selection on packet traces to find
nodes that performed abnormal sequences of protocol
interactions. They also used an activation threshold to mit-
igate false positives (a technique that appeared in LISYS
[58]). Their preliminary simulations showed mixed results
– they found that their algorithm required a significant de-
lay before the false positive rate fell to a reasonable level.

Drozda et al. applied a negative selection algorithm to
misbehavior detection in sensor networks [61]. The
authors made a number of changes to reduce the computa-
tional overhead of the algorithm. They also considered
multiple levels in the protocol stack. Negative selection ap-
peared to be somewhat less appropriate in this case, as the
smaller repertoire used failed to match a number of
misbehaviors.

4.3.2. Danger signals
The use of a danger signal in AIS research was popular-

ized by Aickelin and Cayzer [62], despite a mention in Hof-
meyr and Forrest’s LISYS work two years earlier [58], and
Burgess’ notice of it two years prior still [63]. The useful-
ness of the danger signal concept in AIS is that suspicious
activities, such as a spike in network traffic, can be used
to influence the artificial immune response. It is worth not-
ing that, without any reference to danger theory, Kephart
also saw the usefulness of recognizing evidence of an at-
tack, which he implemented in the form of activity moni-
tors in his 1994 work [53].
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In one example of an application of danger theory, Sara-
fijanović and Le Boudec published a followup to the work
described above in which they augmented their MANET
misbehavior detection scheme with a danger signal.
According to their evaluation, the danger signal greatly re-
duced the number of false positives [64]. However, the
majority of publications on the use of the danger theory
in AIS have been produced by its most outspoken propo-
nents, Aickelin et al. [62,65,66].

4.3.3. Ongoing work
A more recent paper by Sarafijanović and Le Boudec

proposes an AIS for collaborative spam filtering [67]. In this
scheme, each mail server runs an instance of the AIS, which
generates signatures from e-mail messages using a novel
technique. These signatures undergo negative selection,
where signatures appearing in non-spam messages are re-
moved. Different instances of the AIS, running on different
servers, can exchange the signatures of high-volume spam
messages that they have detected. The receiver treats these
signatures as danger signals – it uses them to trigger more
intensive/active filtering, rather than simply assuming
messages with these signatures are spam. This allows an
instance of the AIS to collaborate with other instances,
even when they are untrusted. Their evaluation results
are quite sparse, making it nearly impossible to judge the
effectiveness of the system as a whole. However, the re-
sults do show that collaboration can help improve filtering
accuracy.

4.4. Summary

The vertebrate immune system is so complex that even
immunologists do not fully understand it. It involves mul-
tiple organs and systems, and complex interactions and co-
stimulations between many different types of cells. Many
of the research efforts discussed here have attempted to
create artificial immune systems that closely resemble
one or multiple features of the biological version, but they
necessarily have an incomplete view. For example, the
largest class of research efforts is based on an algorithm
by Forrest et al. [55] that latched onto a particular process
called negative selection, which plays a small part in allow-
ing the vertebrate immune system to attack never-before-
seen foreign invaders without attacking the body’s own
cells.

Though there is little evidence from which to judge his
scheme’s efficacy, Kephart’s pioneering 1994 work [53]
seems to touch upon most of the concepts that appear in
later work. Yet, his work was the most loosely coupled to
the biological implementation.

This would seem to support the idea that networking
research should take advantage of its freedom from the
physical constraints of biology. We may find more success
in extrapolating the big ideas without constraining our-
selves to following the biological implementation.

For more detail on AIS approaches to intrusion detec-
tion, the interested reader may consult Kim et al.’s excel-
lent survey paper [68].

5. Emergent services

As the Internet has grown, so has the complexity of its
application services. Today, running a popular Internet ser-
vice requires the use of multiple, complex data centers
scattered throughout the globe. These services, as well as
their corresponding data centers, require careful and con-
stant human design, configuration, and management. As
the network continues to grow, these services will con-
tinue to increase in complexity, requiring even more hu-
man effort to keep them running.

In networks of highly mobile nodes, including embed-
ded sensors and personal wireless devices, what applica-
tion services will look like remains an open question.
Mobile wireless devices in widespread use today, such as
‘‘smart” phones, rely on Internet-based application ser-
vices. This service model is not appropriate for all types
of wireless devices and networks, particularly when fixed
infrastructure is unreliable or nonexistent. Even when
fixed infrastructure is available, this service model, when
combined with skyrocketing data usage among smart
phone customers, has already resulted in serious scalabili-
ty issues [69].

Though some existing application services for wireless
networks do not rely on fixed infrastructure, they tend to
be designed for a specific type of network with specific de-
vices and configurations. In order to develop effective
applications for these networks, new abstractions for the
application layer are needed [70]. Furthermore, some
researchers believe that the entire Internet protocol stack
needs to be re-evaluated for these types of networks,
resulting in new, cross-layer designs where the boundaries
of the individual layers, including the application layer, are
intentionally blurred [71].

All in all, these challenges suggest that a new paradigm
for the design and implementation of application services
is needed. Whether due to the increasing complexity of
infrastructure-based services, or the highly dynamic,
unstructured nature of infrastructure-less mobile net-
works, this new paradigm must allow application services
to organize and configure themselves.

Complex biological systems exhibit the desirable prop-
erty of self-organized emergence of beneficial, large-scale
behaviors based upon the highly localized decisions of
independent, autonomous components. A number of re-
search efforts have looked to this behavior for inspiration
in the design of self-organizing services.

5.1. The Bio-Networking architecture

One such research effort is the Bio-Networking Archi-
tecture project at the University of California, Irvine,
headed by Tatsuya Suda. Initial work by Wang and Suda
described an alternative architecture for Internet services
based on the life cycle of a collection of bio-inspired cy-
ber-entities [72]. Cyber-entities can reproduce, die, and mi-
grate across the network topology, which contains
multiple nodes, called platforms, where the cyber-entities
can reside. Cyber-entities’ actions consume energy, which
they can receive by providing a service to a user, such as
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serving a web page. They expend energy when they use
their platforms’ resources, such as CPU power or memory,
or migrate to a different platform. Wang and Suda evalu-
ated this bio-inspired design via simulation, which showed
promising but slightly mixed results. The results also seem
to suggest that the system is somewhat sensitive to initial
parameter values. The group later produced an implemen-
tation, which had about the same performance as the non-
bio-inspired ‘‘distributed object platforms” they compared
it to in their evaluation [73].

More recent work by Nakano and Suda has given cyber-
entities the ability to mate, both sexually and asexually,
and therefore, evolve [74]. Nakano and Suda performed a
feasibility study and comparison of various initial parame-
ter settings using a custom simulator, which showed that
evolution could help mitigate the sensitivity of the system
to its initial conditions. However, they did not evaluate
their model’s performance in comparison to other, more
traditional, distributed Internet service models.

5.2. BIONETS

The BIONETS research project has similar goals and
inspirations to the Bio-Networking Architecture project,
but with a focus on pervasive computing rather than dis-
tributed Internet services [75,76]. The BIONETS project
takes the biological organism analogy a step further by
considering networks that can operate without global con-
nectivity. The architectural details of this design were
fleshed out by Carreras et al. [6] They describe a two-tiered
architecture: the first tier consists of U-nodes, user nodes
with ample storage capacity and computing power, while
the second tier consists of T-nodes, very simple sensor
nodes that can interact with U-nodes, but not with each
other. This is a deviation from earlier models of sensor net-
works, where the sensor nodes communicate with each
other to relay data. The U-nodes implement message ferry-
ing [77] for data transit, which the authors describe as
store-carry-and-forward – the mobility of U-nodes through
the real world (along with their users) is the process by
which data propagates through the network. No traditional
routing protocol is used by either type of node, they do not
even have a notion of addressing. The group has also devel-
oped a theoretical model of their system to show its feasi-
bility for effective data transport under high-mobility
conditions [78].

5.3. Recent trends

Recently, Meisel et al., have taken a somewhat different
approach to self-organizing services for mobile networks
[79]. In this preliminary work, the authors present a set
of design guidelines derived from a careful examination
of the properties exhibited by self-organizing biological
systems. One unique guideline is the use of identically pro-
grammed nodes. Each node in the network runs identical
algorithms that enable it to self-adapt to provide services
needed by other nodes. However, this does not imply that
all nodes have the same behavior at all times – rather, the
nodes’ program contains a set of possible roles for the node,
only a subset of which are activated at any given time. The

program also contains the logic to adjust a node’s role
automatically based on the changing state of the node’s
environment and the overall service goals.

Furthermore, Meisel et al., take a different approach to
the design process, which they refer to as a reverse engi-
neering approach. They claim that other self-organizing
service designs start by proposing an architecture, then ob-
serve the consequent behavior. Their reverse engineering
scheme, on the other hand, involves starting with the de-
sired results for a given service, and then trying to deter-
mine how to design the components to achieve that result.

The authors present a simulation of a design based on
their guidelines. Little evaluation is provided, but the sim-
ulation shows that the design does indeed produce the de-
sired result for the scenario considered.

5.4. Summary

Despite the various results in the area of emergent ser-
vices, we believe that the research community is still in the
early stages of exploring this new research direction. The
efforts discussed in this section investigated the approach
of building distributed systems using self-organizing enti-
ties with biologically inspired properties. Such systems are
quite thought provoking, and the preliminary results show
potential.

6. Information epidemics

A number of research efforts have taken notice of a
parallel between the opportunistic spread of infection in
human populations and the opportunistic spread of infor-
mation in computer networks. These efforts are aided by
the long history of mathematical epidemiology, a field
which has produced a number of mathematical models
for the spread of disease [80]. Two of the most common
models, the susceptible-infective-susceptible (SIS) and sus-
ceptible-infective-removed (SIR) models, have been used
extensively by network researchers to model the spread
of information in computer networks, and are therefore
worth describing in some detail.

In the SIS model, nodes are divided into two groups: the
susceptible group S and the infective group I. A node from
the susceptible group S can acquire the infection from a
node in the infective group I with some probability. This
probability can be determined in any number of ways, as
we will discuss in the following section. Once a node be-
comes infective, it can recover from the disease, but it does
not acquire any immunity, meaning it moves back to the
susceptible group S. The recovery time is a random number
that follows a certain probability distribution based on the
characteristics of the disease. When a node moves from the
infective group I to the susceptible group S, it can once
again contract the disease from any of the remaining nodes
in the infective group I. Thus, nodes can repeatedly move
from one group to the other, and, under the right condi-
tions, the disease may never die out.

In contrast, in the SIR model, a node cannot transition
back and forth between the susceptible group S and the
infective group I. Once a node contracts the disease, it
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can recover from it, again after a random period of time.
When a node recovers (or is removed from the population,
e.g., through death), it moves to the removed group R and
cannot contract the disease again. In addition, nodes in the
susceptible group S cannot contract the disease from any of
the nodes of the removed group R. Thus, in the SIR model, a
disease will eventually die out, assuming the population of
the nodes does not increase over time.

6.1. Epidemiology of computer viruses

There is one particularly obvious connection between
epidemiology and computer networks: the spread of com-
puter viruses. In 1988, just as the term ‘‘computer virus”
was first entering the public vernacular, Murray spelled
out this connection in detail [81]. However, with their
1991 study, Kephart and White are generally credited as
the first to apply mathematical epidemiological models
to the spread of computer viruses [82].

Kephart and White applied the SIS model to directed
graphs where each edge can have a different probability
of transmitting infection. At the time, this was quite differ-
ent from the models commonly used in mathematical epi-
demiology. Though some models incorporated some
unidirectionality between population groups or took prox-
imity into account, the most commonly used model as-
sumed any susceptible node had the same probability of
infection. This is equivalent to a fully connected, undi-
rected graph where all edges have the same probability
of transmitting infection. In the Kephart–White directed-
graph model, susceptible nodes can only become infected
by an infective node if the nodes have an edge connecting
them, and the directionality of the edge is from infective
node to susceptible node.

Using this model, Kephart and White discovered that
the topology of the directed graph (that is, the network),
as well as where the infection starts on that topology,
has a significant effect on how far the virus will spread.
This issue has since attracted a great deal of mathematical
study, which is outside the scope of this survey.5

Along with the rapid growth of the Internet came a sim-
ilarly rapid growth in the spread of computer viruses. In
2002, Zou et al., published an in-depth analysis of the
spread of one of the most famous computer viruses, the
Code Red worm [86]. As a result of their investigations,
the authors developed a new epidemiological model called
the two-factor worm model. It was designed specifically to
model the spread of a single worm via the Internet. This
is in opposition to the Kephart–White model, which was
designed to model the spread of an arbitrary number of
viruses, and developed at a time when viruses primarily
spread through the exchange of physical media. This
meant basing the two-factor worm model on the SIR epi-
demiological model (instead of the SIS model) since, once
a human discovers and removes the worm from a machine,
they are likely to install countermeasures against a repeat
infection. The ‘‘two factors” of the model refer to the two

main reasons for modifying the basic SIR model: an in-
crease in human awareness and deployment of counter-
measures over time, and a decrease in the infection rate
over time due to worm-induced network congestion.

6.2. Epidemic routing

In 1987, Alan Demers et al., recognized that epidemio-
logical models are also applicable to the spread of desirable
information. Inspired by the SIS and SIR models, they de-
signed epidemic algorithms as a method to disseminate up-
dates throughout a distributed, replicated database [87].
Yet, it was not until 2000, once mobile, ad-hoc networks
(MANETs) had began to draw the attention of the research
community, that Demers et al.’s epidemic algorithms were
applied to computer network research.

There are clear topological similarities between MAN-
ETs and human networks – the mobility of nodes in a
MANET is not only similar to, but often governed by, the
movements of their human owners. Just as humans can
only transmit infection to others within a small range of
their physical location, their ad-hoc wireless devices can
often only communicate with other wireless devices with-
in a similarly small range. As a result, a MANET may never
be fully connected at any particular instant in time. Yet, it
is quite possible that a sender would wish to reach a des-
tination that it does not currently have a path to. Neverthe-
less, routing protocols for MANETs typically only allow a
sender to reach a destination if there is a path to that des-
tination at the particular instant when the data is sent.

Vahdat and Becker developed epidemic routing, a rout-
ing protocol based on epidemic algorithms, as a solution
to this problem [88]. As opposed to Demers et al.’s epi-
demic algorithms, which attempt to propagate any mes-
sage to all nodes in the network, epidemic routing simply
attempts to propagate a message to a single destination
node. Taking advantage of node mobility, nodes opportu-
nistically forward messages to ‘‘susceptible” nodes that
happen to be in close proximity. Those nodes are then
‘‘infective,” and can carry the message towards the in-
tended destination.

Vahdat and Becker evaluated their protocol through
simulation on a set of random topologies, showing that
the protocol can reach a 100% delivery rate between source
and destination without unreasonable overhead. However,
as discussed in Section 6.1, later results showed that the
spread of an epidemic is highly dependent on the network
topology. Thus, it is unclear whether these results would
generalize to vastly different types of network topologies
than those simulated. In fact, recent work has shown that
different nodes have varying success in creating an epi-
demic in a mobile network [89,90].

6.3. Recent trends

With a few exceptions [89,91–93], more recent work on
computer viruses and worms has focused on detection and
prevention, rather than modeling their spread. This work
does not focus on epidemiological models, and it is there-
fore outside the scope of this survey.

5 The interested reader may consult Section 7.2. of Newman’s compre-
hensive, 2003 article on complex networks [83], as well as more recent
work in computer science [84,85].
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Multiple variations of the basic concept of epidemic
routing for MANETs have appeared in the literature in re-
cent years [94–96]. All of them can be considered as special
cases of a larger class of message delivery protocols for dis-
connected and intermittently connected networks, includ-
ing MANETs and delay-tolerant networks (DTNs) [97]. For
a detailed discussion of these message delivery protocols,
we refer the interested reader to Al-Hanbali et al. [98].

6.4. Summary

The connection between epidemiology and the study of
information propagation in computer networks may be the
strongest of all the biological connections covered in this
survey. Epidemics have long been studied through ab-
stract, mathematical models. These models have already
abstracted away the biological details, leaving computer
scientists free to apply them to the study of computer net-
works with little modification and much success. As a re-
sult, mathematical modeling of epidemics has enabled
the analytical understanding of many processes that take
place in computer networks, including the spread of com-
puter viruses and the spread of information in mobile, ad-
hoc networks and delay-tolerant networks.

7. New inspirations

7.1. Datataxis

In biology, a taxis is the innate movement response of
an organism to a stimulus. Chemotaxis describes the phe-
nomenon that bacteria will innately move towards a
higher concentration of certain chemicals in their
environment [99]. Datataxis is a term coined by Lee
et al. [100], to describe the movement of routed agents
(vehicles, in this case) towards a higher concentration
of data.

In their work, Lee et al., present datataxis as an algo-
rithm for routing vehicular agents through metropolitan
areas. The connection to computer networks is through
vehicular ad-hoc networks (VANETs) – the agents guided
by datataxis communicate wirelessly with other vehicles.
The goal of the agents is to collectively harvest as much
data as possible. However, this data is stored only in partic-
ular groups of moving vehicles at unknown and potentially
divergent locations.

Rather than being imitative of chemotaxis alone, data-
taxis is inspired by multiple biological processes in combi-
nation. The agents choose a small region to harvest data
from a large area based on foraging patterns of larger ani-
mals. Vehicles switch to a chemotaxis-inspired local search
only when they are in an area with a data concentration
above a certain threshold. Datataxis also makes use of con-
cepts from stigmergy (see Section 3). When agents harvest
data from another vehicle, they leave behind negative pher-
omones in that vehicle’s data storage. If another agent at-
tempts to harvest the same data, it will learn from the
presence of the negative pheromones that this data has al-
ready been harvested, thus preventing multiple agents
from uselessly harvesting the same data.

According to their simulations, the datataxis scheme
proves significantly more effective than two random
walk-based schemes. In fact, it is about as effective as
when the agents followed a preset pattern based on an
omniscient knowledge of the mobility patterns of the
groups of vehicles with the highest data density.

The idea of bringing multiple biological inspirations to
bear on a single research problem seems a promising
one. This is one good example of how networking
researchers need not apply real-world constraints when
applying real-world biological concepts. Unfortunately,
the authors did not evaluate the effectiveness of each of
the three biologically inspired techniques in isolation, so
we cannot be sure that all three are necessary in order to
achieve the performance seen in their simulations. How-
ever, the authors did evaluate the effect of varying the
parameters that determine when the agents switch be-
tween the animal foraging and chemotaxis modes. That
evaluation showed almost no difference when the param-
eters were changed. The authors claim this means data-
taxis is robust to changes in protocol parameters.
However, this could also be a sign that one of the two
modes is sufficient on its own.

7.2. Firefly oscillators

Many wireless networks, particularly sensor networks,
require all of their sensors to perform actions that are coor-
dinated in time. This may be simply to synchronize duty
cycles to save power, or because the sensors are measuring
time-sensitive events. This is an example of a problem nat-
ure has solved – some biological systems, such as the beat-
ing of a heart and synchronized flashing of fireflies, can
maintain a globally synchronous oscillation based only
on local observations. In the case of fireflies, this can be
over significant distances. In 1990, Mirollo and Strogatz
developed a formal mathematical model of this phenome-
non, which is called a pulse-coupled oscillator [101].

The Mirollo and Strogatz model has some limitations
when applied to real-world wireless networks. In particu-
lar, it assumes no propagation delays, no lossy links, and
a fully connected network. Nevertheless, it has inspired a
number of synchronization schemes for wireless networks.
One of the earliest of these schemes was designed for ul-
tra-wide bandwidth wireless networks where it is feasible
for each node to hear every other node [102]. This avoids
one of the major limitations in applying the Mirollo and
Strogatz model. The authors then modified the model to
account for propagation delay and loss.

Later work by Lucarelli and Wang extended this work,
showing that, in theory, the modified Mirollo and Strogatz
model can be applied over multi-hop topologies [103].
Researchers at Harvard University further extended this
result into an actual protocol implementation for sensor
networks [104]. After some further modifications to the
theoretical model, they initial results were inconclusive
but promising. Upon further refinement, they were able
to implement a TDMA protocol which significantly outper-
forms existing TDMA protocols for sensor networks,
according to their evaluation [105].
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7.3. Physiological networks

Physiology is the study of the internal workings of the
body. At least one recent work in the area of wireless and
sensor networks has developed a network structure in-
spired by physiological networks. Pappas et al. [106], have
designed a network structure for wireless sensor networks
where information flows inside the network in a way sim-
ilar to the flow of blood inside the circulatory system. This
constrains information to always flow in one direction on
every link. No such constraint exists in most current wire-
less sensor network designs. Surprisingly, these circulatory
system-inspired structures have a number of benefits. For
example, backup links are available without the need of
route recalculations, and the connectivity degree for each
node is reduced, resulting in greater energy efficiency for
certain types of applications.

8. Other work

As we have mentioned previously, biologically inspired
network research covers a broad variety of fields and top-
ics. Several of these topics are not covered in this survey,
but still deserve mention. In this section, we provide a list
of such topics, as well as some related references for the
interested reader.

An emerging category of social insect-inspired routing
research, which is not covered in Section 3, is bee-inspired
algorithms. The two most prominent bee-inspired algo-
rithms, both developed by Wedde et al., are BeeHive [44]
and BeeAdHoc [45], the former for traditional packet-
switched networks, and the latter for MANETs.

A number of research efforts have attempted to design
self-organizing mobile networks based on the interaction
of individual cells [107–111].

An emerging class of networks, termed nanonetworks,
involve the communication of nanoscale devices. These
networks operate at a cellular scale, and so, in fact, need
to communicate in a manner that very closely resembles
biological cell communication [112].

Beygelzimer et al. [113], have proposed the use of net-
work topologies for wireless ad-hoc networks inspired by
the structure of small-world social networks [114,115],
which have the distinct characteristic that most of the
nodes in the network are connected only with their neigh-
boring nodes, while a small number of nodes have a few
connections with very distant nodes.

9. Conclusion

A great deal of successful research in the field of com-
puter networks has been inspired by biological systems.
Yet, we believe biologically inspired networking still has
much room to grow. In particular, there are great opportu-
nities in exploring a new approach. Whether successful or
not, current research tends to follow the same general
philosophy:

% Observe some high-level behavior in nature which has a
direct parallel to a desirable behavior for computer
networks.

% Explore the basic biology of this behavior – what indi-
vidual components make up the system, the processes
these components perform, what mathematical models
have been used to describe this behavior, and so on.

% Look for components, processes, or models that seem
like they could map well to the computer networking
domain.

% Turn these components, processes, or models into algo-
rithms, new mathematical models, or software imple-
mentations. Generally attempt to stay as close as
possible to the biological implementation.

This approach can and has produced intriguing and use-
ful results, as evidenced by the research surveyed in this
article. And it is understandable that this has been the
dominant approach to date – it is based on the way that
biologists have studied biological systems. The classical ap-
proach to biology is reductionism – study a system by
breaking it down into its individual components, which
are more readily amenable to rigorous scientific examina-
tion [116].

However, as others have recognized [14,117], the next
generation of bio-inspired research will be most successful
if it takes a more conceptual, systems-level approach. This
means studying not just the behavior of individual compo-
nents of the system, but their interactions, and the charac-
teristics of the system that forms as a result. Approaches
that too closely mimic the machinery of biological systems
risk inheriting their quirks and constraints, imposed upon
them by the randomness of evolution and the limits of
the physical world. Therefore, the goal of bio-inspired re-
search should be to find broader lessons and principles in
the way large biological systems are built, then determine
how to apply these lessons and principles to the design of
networked systems. This goal requires a new high-level
approach:

% Work with biologists to understand the organization
and interactions of complex biological systems, from
the component level all the way up to the systems level.

% Identify systems-level, organizational principles that
can be applied to specific problems in the computer net-
working domain.

% Determine how to apply these principles to solve the
problem at hand, using them to guide the development
of new architectures, algorithms, and software.

Recognizing and understanding these higher-level prin-
ciples requires a strong grasp of biology, as well as an
awareness of current biological research. Thus, one of the
major tenets of this approach is a need to work more clo-
sely with biologists. Luckily, a systems-level approach to
biology, appropriately termed systems biology, has been
gaining in popularity among biologists in recent years
[116,118]. Not only can systems biologists help network-
ing researchers to develop better biologically inspired
techniques, but networking research can help them to bet-
ter understand biological networks. More broadly, such
collaborations can improve our understanding of the fun-
damental science of complex, dynamic, networked systems
that underlies the two fields.
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[67] S. Sarafijanović, J.-Y. Le Boudec, Artificial immune system for

collaborative spam filtering, in: Proceedings of NISCO 2007, 2008,
pp. 39–51. doi:10.1007/978-3-540-78987-1.

[68] J. Kim, P. Bentley, U. Aickelin, J. Greensmith, G. Tedesco, J. Twycross,
Immune system approaches to intrusion detection – a review,
Natural Comput. 6 (4) (2007) 413–466, doi:10.1007/s11047-006-
9026-4.

[69] M. Peers, Demands on network are an iPhone hang-up, 2009.
<http://online.wsj.com/article/SB124200303430005275.html>.

[70] I.F. Akyildiz, T. Melodia, K.R. Chowdhury, A survey on wireless
multimedia sensor networks, Computer Networks 51 (4) (2007)
921–960, doi:10.1016/j.comnet.2006.10.002.

[71] V. Srivastava, M. Motani, Cross-layer design: a survey and the road
ahead, IEEE Commun. Mag. 43 (12) (2005) 112–119, doi:10.1109/
MCOM.2005.1561928.

[72] M. Wang, T. Suda, The bio-networking architecture: a biologically
inspired approach to the design of scalable, adaptive, and
survivable/available network applications, In: IEEE/IPSJ
International Symposium on Applications and the Internet, 2001,
p. 43, doi:10.1109/SAINT.2001.905167.

[73] J. Suzuki, T. Suda, Design and implementation of a scalable
infrastructure for autonomous adaptive agents, in: Proceedings of
15th IASTED International Conference on Parallel and Distributed
Computing and Systems, 2003.

[74] T. Nakano, T. Suda, Self-organizing network services with
evolutionary adaptation, IEEE Trans. Neural Networks 16 (5)
(2005) 1269–1278, doi:10.1109/TNN.2005.853421.

[75] I. Chlamtac, I. Carreras, H. Woesner, From internets to bionets:
biological kinetic service oriented networks, Adv. Pervasive
Comput. Networking (2005) 75–95, doi:10.1007/0-387-23466-7.

[76] I. Carreras, I. Chlamtac, H. Woesner, C. Kiraly, BIONETS: BIO-
inspired NExt generaTion networkS, Autonomic Commun. (2005)
245–252.

[77] M. Mukarram Bin Tariq, M. Ammar, E. Zegura, Message ferry route
design for sparse ad hoc networks with mobile nodes, in:
Proceedings of 7th ACM International Symposium on Mobile Ad
hoc Networking and Computing, ACM, New York, NY, USA, 2006,
pp. 37–48. doi:10.1145/1132905.1132910.

[78] I. Carreras, I. Chlamtac, F. De Pellegrini, D. Miorandi, Bionets: bio-
inspired networking for pervasive communication environments,
IEEE Trans. Vehicular Technol. 56 (1) (2007) 218–229, doi:10.1109/
TVT.2006.883762.

[79] M. Meisel, V. Pappas, P. Zerfos, L. Zhang, Emergent mobile services,
Technical Report 090015, UCLA Computer Science Department,
June 2009.

[80] H.W. Hethcote, The Mathematics of Infectious Diseases, vol. 42,
2000, pp. 599–653.

[81] W.H. Murray, The application of epidemiology to computer viruses,
Computers Security 7(2) (1988) 139–145. doi:10.1016/0167-
404(88)90327-6.

[82] J. Kephart, S. White, Directed-graph epidemiological models of
computer viruses, in: Proceedings of IEEE Computer Society
Symposium on Research in Security and Privacy, 1991, pp. 343–
359. doi:10.1109/RISP.1991.130801.

[83] M.E.J. Newman, The structure and function of complex networks,
SIAM Review 45.

[84] A. Ganesh, L. Massoulié, D. Towsley, The effect of network topology
on the spread of epidemics, in: Proceedings of IEEE INFOCOM, vol.
2, 2005, pp. 1455–1466.

[85] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, C. Faloutsos,
Epidemic thresholds in real networks, ACM Trans. Inf. Syst. Secur.
10 (4) (2008) 1–26, doi:10.1145/1284680.1284681.

[86] C.C. Zou, W. Gong, D. Towsley, Code red worm propagation
modeling and analysis, in: CCS ’02: Proceedings of the 9th ACM
Conference on Computer and Communications Security, 2002, pp.
138–147. doi:10.1145/586110.586130.

[87] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H.
Sturgis, D. Swinehart, D. Terry, Epidemic algorithms for replicated
database maintenance, in: PODC ’87: Proceedings of the Sixth
Annual ACM Symposium on Principles of Distributed Computing,
1987, pp. 1–12. doi:10.1145/41840.41841.

[88] A. Vahdat, D. Becker, Epidemic routing for partially-connected ad
hoc networks, Technical Report CS-2000-06, Duke University, 2000.
<http://www.cs.duke.edu/vahdat/ps/epidemic.pdf>.

[89] J.W. Mickens, B.D. Noble, Modeling epidemic spreading in mobile
environments, in: Proceedings of 4th ACM Workshop on Wireless
Security, 2005, pp. 77–86. doi:10.1145/1080793.1080806.

[90] I. Carreras, D. Miorandi, G.S. Canright, K. Engo-Monsen,
Understanding the spread of epidemics in highly partitioned
mobile networks, in: BIONETICS ’06: Proceedings of the 1st
International Conference on Bio Inspired Models of Network,
Information and Computing Systems, 2006. doi:10.1145/
1315843.1315846.

[91] Z. Chen, L. Gao, K. Kwiat, Modeling the spread of active worms, in:
Proceedings of IEEE INFOCOM, vol. 3, 2003, pp. 1890–1900.

M. Meisel et al. / Computer Networks 54 (2010) 901–916 915



[92] Y. Wang, D. Chakrabarti, C. Wang, C. Faloutsos, Epidemic spreading
in real networks: an eigenvalue viewpoint, 2003, pp. 25–34.

[93] G. Kesidis, I. Hamadeh, Y. Jin, S. Jiwasurat, M. Vojnović, A model of
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