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Absrracr-Web caching is generally acknowledged as an important ser- 
vice for alleviating focused overloads when certain web servers’ contents 
suddenly become popular. Cooperative caching systems are more effective 
than independent caches due to the larger collective backing store that co- 
operation creates. One such system currently being developed at UCLA, 
Adaptive Web Caching (AWC), uses an application-level forwarding table to 
locate the nearest copy of a requested URL’s contents. This paper describes 
one specific design in AWC, a simple URL table compression algorithm 
allowing efficient content information sharing among neighboring caches. 
The compression algorithm is based on a hierarchical URL decomposition 
to aggregate URLs sharing common prefixes and an incremental hashing 
function to minimize collisions between prefixes. The algorithm’s collision 
rate is derived analytically and verified by five sets of Web trace data. The 
results demonstrate that the collision rate is bounded and has little impact 
on page fetching latency. Finally, this compression method is compared to 
the Summary Cache method. 

Keyworak- Active networks, application-level forwarding and routing, 
web caching, hashing, cyclical redundancy checks, URL compression 

I. INTRODUCTION 
EB caching is generally recognized as an important ser- W vice for alleviating focused overloads when certain web 

servers’ contents become popular. A cooperative Web caching 
system has many design parameters, ranging from the infras- 
tructure architecture to individual cache’s backing store man- 
agement algorithms. Above all, it must be effective in the face 
of user browsing behavior. Measurement data shows that user 
browsing behavior contains characteristics such as diurnal be- 
havior [ l ]  and “90-10” behavior, where 90% of the total re- 
quests account for 10% of the cached content [2]. Hot spots 
develop from time to time where user browsing behavior cre- 
ates network congestion in the topological vicinity of and sus- 
tained workload at a particular Web server. The NASNJPL 
Mars Pathfinder landing, the well-publicized Stan Report, and 
downloads of updated Netscape Communicator and Microsoft 
Internet Explorer browsers are several examples of activity that 
generated Internet-wide hot spot events. A more recent phe- 
nomenon analogous to geologic geyser activity is the traffic gen- 
erated by portal sites, news and sports services, where the Web 
server’s content is periodically updated during the course of the 
day causing users to periodically refresh their copy of the con- 
tent. 

The Adaptive Web Caching project (AWC) [3] starts from the 
premise that hot spot and geyser events will become the norm, 
not the exception. Rapid content dissemination through a scal- 
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able caching infrastructure is the key to absorb and dissipate 
these events. The AWC design builds such a caching infrastruc- 
ture in two steps. First, caches form localized groups (neighbor- 
hoods) with overlap points between adjacent groups. Viewing 
cache groups as “subnets”, and overlapping points as “routers”, 
AWC creates an application-level topology where the caching in- 
frastructure connects the Web servers at one end to the clients at 
the other. AWC then builds data dissemination trees on demand 
over this topology, thus enabling efficient delivery of popular 
contents to large numbers of clients. 

Rapid content dissemination in the AWC system is accom- 
plished by the Content Routing Protocol (CRP) which populates 
a URL forwarding table at each cache. When a Web server expe- 
riences heavy demand for some subset of its content, that subset 
will be stored in a set of caches’ backing stores. Other caches 
forward requests received for the same content subset toward 
caches storing it. These other caches require a protocol that lo- 
cates where this content is most likely to be stored, which is 
either along the Web server’s data dissemination tree or within 
the confines of the searching cache’s neighborhood. 

CRP fulfills this role by propagating content reachability in- 
formation throughout the cache topology, similar to the way 
popular network routing protocols such as RIP and OSPF prop- 
agate network reachability information. An I P  router maintains 
a packet forwarding table by collecting and managing associa- 
tions between network addresses and next-hop routers. Analo- 
gously, individual caches maintain a URL forwarding table by 
collecting content reachability information, represented by as- 
sociations between full URLs or URL prefixes and a next-hop 
cache. Two CRP protocols propagate these associations: 

The source information protocol propagates a Web server’s 
URL namespace prefix throughout the cache topology. This 
namespace prefix is used to construct the Web server’s data dis- 
semination tree. 

The local content state protocol propagates the URLs cur- 
rently stored in a particular cache’s backing store to its neighbor- 
hood. This maximizes cache sharing within the neighborhood. 

Upon receiving a Web page request, a cache first checks to 
see if a forwarding table entry for the request’s UFU points to a 
cache in the local neighborhood, when the requested content is 
not available from a cache’s own backing store. If no neighbor- 
hood entry exists, it checks to see if a forwarding entry exists 
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that leads toward the Web server’s data dissemination tree. If 
the forwarding entry exists, the request is relayed to the speci- 
fied next-hop cache. 

Conceptually, the above request handling algorithm describes 
a two step search process. A longest matching prefix algorithm 
is applied to the URL forwarding table lookup process, unifying 
the local and remote content search. Full URLs are preferred 
over URL prefixes because they represent locally cached con- 
tent whereas URL prefixes point to the direction of the content’s 
Web server. The longest prefix matching algorithm blurs the dis- 
tinction between the two content searches, combining both into 
a single step. 

The difference between IP and URL forwarding is a matter 
of address space size: the I P  address space is finite whereas the 
cardinality of URLs is infinite. An IP router’s forwarding ta- 
ble reflects the current reachability of the underlying network’s 
topology. An AWC cache’s URL forwarding table does not re- 
flect reachability to all URLs currently stored within the caching 
system. Rather, it only reflects the forwarding state with respect 
to URLs corresponding to hot spot and geyser events to achieve 
bounds on scale. 

Three tightly coupled issues must be resolved to make the 
longest prefix matching algorithm work efficiently. The first is 
URL decomposition such that the URL name space is amenable 
to longest prefix matching. The second is scaling the URL for- 
warding table to accommodate a large number of forwarding 
entries while maintaining desirable longest prefix match algo- 
rithm performance. The third issue is compression of large sets 
of full URLs down to a reasonable size with minimal collision 
rate to enable efficient local content state updates. 

11. APPROACH 

A uniform resource locator (URL) defines a hierarchical 
namespace that identifies a resource by its primary access 
mechanism [4]. A simple decomposition parses URLs into 
a scheme, a network location, and individual path compo- 
nents to the resource. For example, http://www.$-ibbles.org/- 
interesting/index. html decomposes to http, www.fribbles.org, in- 
teresting, and index. html. While this simple approach supports 
fine grained path component aggregation, it does not immedi- 
ately support network location prefix aggregation. Network lo- 
cation prefix aggregation is desirable when HTML documents 
contain URL references located on servers in the same DNS 
domain: consider an HTML page from the Web server www.- 
fribbles.org containing references to fribbles.org domain Web 
servers such as images.fribbles.org and search.fribbles.org. A 
single aggregated prefix for all hosts in the fribbles.org do- 
main consumes fewer forwarding table entries and permits the 
source information protocol to build domain-based data dissem- 
ination trees, when administratively useful or convenient. The 
network location is decomposed in reverse order and produces 
the fine-grained hierarchy supporting the desired prefix aggre- 

gation. Thus, the previous example URL decomposes to http, 
org, fribbles, www, interesting, and index. html. URL prefixes 
are distinguished from complete URLs by a single “*” wild- 
card which is decomposed as a special component. The URL 
prefix http://*.fiibbles. org represents the entire URL namespace 
for the fribbles. org domain, http:/hww.fiibbles. org/* represents 
a URL prefix for the www.fribbles.org Web server, whereas 
http://www. fribbles. org/interesting/index. html represents a com- 
plete URL. In the present scheme, http://www.fribbles.org/- 
interesting/p is not recognized as a URL prefix. 

It might be argued that this particular URL decomposition is 
too fine grained. A misbehaved or insecure CRP source informa- 
tion routing protocol variant could potentially hijack a large part 
of the cache system by advertising the URL prefix http://*.org, 
or worse, http:L*, thereby creating a different kind of focused 
overload. This problem can be solved by filtering the URL pre- 
fixes, by adding authentication and validation to the routing pro- 
tocol, or by requiring that all URL prefixes contain at least three 
components (scheme, top-level and second-level DNS names.) 
There are circumstances where these rogue prefixes are useful. 
The http://* prefix is analogous to an IP default route and could 
be used as the basis for a client-side AWC cache discovery pro- 
tocol, assuming clients maintain their own URL forwarding ta- 
bles. The http://*.org prefix could be used to engineer part of 
an AWC cache infrastructure for load-balancing based on top- 
level domain name. Nevertheless, the URL parser could merge 
the scheme and the DNS top level domain name components 
together as a single component without loss of generality. 

A collection of decomposed URLs naturally forms a tree 
structure, as illustrated in figure 1. A large fan-out from the 
DNS top level domain nodes to the DNS second level domain 
nodes and from the second level domain nodes to the third level 
domain nodes is observed as more URLs are stored in this struc- 
ture. The longest matching prefix algorithm’s performance be- 
comes O(nm) in the average case, where n is the number of 
decomposed URL components and m is the average number of 
children per node. The approach adopted in the forwarding ta- 
ble’s current implementation is a hash table where each node in 
a given bucket maintains a pointer to its parent component, pre- 
serving URL component relationships and tree semantics. This 
reduces the longest prefix matching algorithm’s performance to 
O(na!), where n is the number of components in the decom- 
posed URL and a! is the hash table’s loading factor’. Forwarding 
data is stored in the tree’s “leaves” which are always a decom- 
posed URLs last component. The last component will either 
be the final element of the UFU‘s path or a wildcard. The for- 
warding data minimally includes the next-hop cache and an ex- 
piration timer that detects when a forwarding entry is no longer 
valid and should be removed. Forwarding entries are assumed 
to be periodically refreshed, which causes an entry’s expiration 

’A hash table’s loading factor is defined as g, where N is the total number 
of elements stored in the hash table and B is the number of buckets. 
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Fig. 1. An example URL decomposition tree 

timer to be reset. figure 1 produces the hash chain sequence: 
Decomposed complete and prefix URLs are inserted by com- 

puting incremental hash codes. Given a list of components, U, (0, h0) 7 (1, hl,O) I (2, h2,O) 1 (3, h3,O) 1 

(4, h4,O) 1 (51 h5,O) Y ( 5 ,  h5,l) 1 (4, h4,l) I 

(1, h , i )  , (2, h2,i) (3, h3,i) , (4, h4,2) 

The receiving caches insert the tuple sequence directly into their 
respective forwarding tables using place holding nodes. Rela- 
tionships between nodes are derived from the hash chain se- 
quence and preserved by the receiver. A receiver may recon- 
struct an individual hash chain such as 

U = (scheme, n~ , n e , .  . . , ni, P I ,  p e ,  . , pj) 

where n1, 122, . . ., ni are network location components, pl, pa, 
. . ., pj are path components, and a hash function, ~ ( h ,  s), the 
hash codes for the URL are computed as follows: 

Incremental hashing minimizes the collision probability be- 
tween URL prefixes. This property is exploited by the local 
content update protocol when a cache transmits the current set 
of URLs stored in its backing store to its neighborhood. As- 
sume that the cache's backing store's meta-data is organized as 
a URL decomposition tree. The sending cache transmits a list of 
(depth, hash code) tuples (a hash chain sequence) produced by 
a depth first, left-to-right traversal of the tree. The tree shown in 

from more than one sender. In general, the routing protocol is 
the final arbiter with respect to which sender is chosen as the 
forwarding table's next-hop cache and whether alternative next- 
hops are kept or discarded. The current implementation of the 
local content state update protocol chooses the first sender as 
the next-hop cache. Subsequent senders are stored as alterna- 
tive next-hops and used when the first sender's forwarding entry 
expires. 

Hash chain sequences doubles the longest prefix matching al- 
gorithm's worst-case performance because comparisons include 
both exact matches against strings and inexact matches against 
the place holding nodes. The principal benefit of this encoding 
scheme is that it achieves a simple form of compression which 
imposes little processing overhead at the receiver. The primary 
source of compression in this forwarding table derives from its 
tree structure. The tree consolidates common URL prefixes, 
based on the observation that URLs from a single Web server 
often share a common path or small set of common paths. 
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A hash chain’s imprecision can create forwarding loops. Con- 
sider the case where both caches A and B store URL Ul in their 
respective backing stores. U1 produces the same hash chain, 7f, 
as U2. Cache c receives the hash chain 7f from both caches A 
and B during the next local content state update and chooses to 
insert a forwarding entry that points to cache A. Cache A will 
insert a forwarding entry for ‘H that points to cache B. Cache 
B will insert a forwarding entry for 7f which points to cache A. 
Cache c receives a request for U,, does not find it in its backing 
store, and sends the request to cache A. Cache A does not find 
U2 in its backing store and sends the request to cache B. Cache 
B examines its backing store, sends U2 back to cache A, and 
creates a forwarding loop. This particular loop is easy to detect 
and break by restricting caches from forwarding a request back 
to the previous sender. When a one hop forwarding loop is de- 
tected, the cache fetches the requested URL‘s contents directly 
from the appropriate Web server. ” b o  or more hop forwarding 
loops are more difficult to detect and break without adding more 
information to the local content state updates. 

An alternative to detecting a one-hop loop is to prevent it from 
happening in the first place. The receiving cache modifies the 
hash chain insertion process by verifying that its backing store 
won’t produce the same hash chain. A forwarding entry is not 
inserted if the same hash chain would be produced by the re- 
ceiver’s backing store. In the previous example, caches A and 
B will never point at each other and the forwarding loop will 
never be created. This modification requires additional CPU 
overhead to traverse the backing store’s URL decomposition tree 
and meta-data for each reconstructed hash chain and may be ex- 
pensive for large local content state update messages. Moreover, 
this modification may be overkill if one-hop loops are the only 
kind of loops observed in practice. 

111. RESULTS 

Hash chains are a compressed and imprecise representation 
of URLs present in one cache’s backing’ store that are easy for 
another cache to directly insert into its forwarding table. Impre- 
cision makes it  necessary to calculate the hash chain collision 
probability, when two distinct URLs with the same number of 
decomposed components generate the same hash chain. This 
probability, also known as the false positive rate, determines 
how often a URL will be incorrectly forwarded to a cache where 
its contents are not stored. The false positive rate is shown to 
have a negligible impact on request latency. 

A. Current Implementation Properties 

A 19-bit CRC function is used in the current CRP forwarding 
table’s implementation. This particular size for the hash func- 
tion is a trade-off between the hash collision probability and the 
memory footprint of the hash table. A 19-bit cRC requires a 
minimum of 2MB of memory to hold the the hash table’s bucket 
pointers, assuming a 32-bit pointer model. Additional bits in 

the CRC code increase the size of the bucket pointer array by 
corresponding factors of 2, increasing the table’s capacity and 
reducing the collision probability and the average search time. 
This memory footprint should be balanced with the cache appli- 
cation’s overall memory needs. It is common practice to dedi- 
cate a pool of memory to transient URLs in order to eliminate 
disk accesses. Increasing the hash table’s footprint and stealing 
from the transient object pool when real, not virtual, memory is 
a premium may not be desirable. 

B. Methodology 

Five URL collections were used in this analysis to simulate 
two common cache configurations. ’ h o  URL collections repre- 
sent edge caches, the first cache that a user’s request encounters 
at the edge of the AWC caching system. The remaining three 
collections represent caches in the middle of the caching infras- 
tructure. The characteristics of these collections are as follows: 
1. uclacs-fall: These URLs were snooped from a single UCLA 
Computer Science Department’s subnetwork between Septem- 
ber 12, 1998 and October 11, 1998. A total of 634,702 URLs 
were captured in this trace. 
2. uclacsspr: These URLs were snooped from the UCLA 
Computer Science Department’s egress router’s link to the cam- 
pus backbone network between April 1, 1999 and May 1, 1999. 
A total of 1,485,317 unique URLs were captured in this trace. 
3. canetii: This is an aggregation of the log files from 
the CA*netII Squid root cache between May 21, 1999 
and May 31, 1999. A total of 1,073,302 unique 
URLs were extracted from these log files. Other sani- 
tized log files for a 21 day window are available from 
http://ardnoc4I. caned. net/cache/squid/rawlogs/. 
4. ircachedo: This is an aggregation of the log files from the 
NCAR (Boulder, CO) Squid root cache between June 3, 1999 
and June 9, 1999. It contains 2,495,449 unique URLs. 
5 .  ircachesj: This is an aggregation of the log files from the 
MAE West (San Jose, CA) exchange point between June 4,1999 
and June 9, 1999. It contains 556,214 unique URLs. 
ircachebo and ircachesj traces were created from the sanitized 
log files provided atftp://ftp. ircache. net/rraces/. This particular 
repository only keeps a week’s worth of sanitized logs. 

C. Hash Chain Collision Probability 

The hash code generated for each decomposed URL compo- 
nent is related to its predecessor’s hash code via the recurrence 
relation: 

ho = H(0,Uo) 
hn = H(hn-1,Un) (2) 

where U0 is the URL‘s scheme and U,, is the n-th URL compo- 
nent following the scheme. This is particularly well suited for 
cyclical redundancy check codes where the remainder of poly- 
nomial division performed in the GF(2) field is computed. CRCs 
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can be computed by a shift-register with feedback [ 5 ] .  Thus, 
each h, corresponds to the value found in the shift register at 
the end of the n-th component. The polynomial, in this case, 
is the bit string that results from concatenating successive URL 
components together. The probability, Pcoll, that a polynomial 
f of degree m will generate the same remainder z as polyno- 
mials f i ‘  of degree m 2 i 2 1, where 1 is the degree of the 
generator polynomial, is given by: 

Pcoll = Pr [fi’ mod g = x 1 f mod g = x] 

(3) 

Pcoll defines the probability that two distinct URLs will generate 
the same hash code for the n-th component, independent of the 
number of characters by which they differ in that component. 

A hash chain collision occurs when two distinct URLs, U, 
and U,, with the same number of components generate the same 
tuple sequence for all components. The probability that this 
event occurs, P h c  is calculated in the general case from the prob- 
ability that all n components produce the same hash codes, i.e. 

n 

i= 1 

= P,“,ll (4) 

This is an optimistic lower bound. For example, if the URL 
namespace is restricted to the same scheme, then all URL de- 
compositions will share the same first hash code, ho. Thus, if 
two URLs share a common prefix of j < n components, Phc  

becomes: 

= Pc:ij 

Thus, the hash chain collision probability is bounded by Pcoll 

on the left and PgTll on the right. The current implementation’s 
19 bit CRC function yields Pcoll = 2-l’ for the upper bound for 

Table I shows the results from the five URL collections, where 
the URLs were decomposed and inserted into a forwarding ta- 
ble. Each bucket in the forwarding table was scanned for pairs of 
last URL components (leaf nodes) having the same tree depth. 
If both URL‘s parental relationships (parent, grandparent, great- 
grandparent, etc.) encountered the same sequence of hash buck- 
ets, a hash chain collision was noted. The collision rates are 
one and two orders of magnitude higher than the expected 2-l’ 

p h c  . 

(1.91 x in all five collections. It is suspected that the rea- 
son for this is similar to that pointed out in [6]: the CRC func- 
tion’s input is not random but highly regular text. 

Two distinct types of hash chain collisions were observed: 
“Last Component’’ and “Whole UIU”. Last component colli- 
sions occurred when the two URLs differed only in the last com- 
ponent whereas whole URL collisions occurred when the pair 
of URLs were disjoint in every component except the scheme. 
No definite conclusion can be drawn beyond the fact that hash 
chains are not suitable for advertising a Web server’s URL pre- 
fix, e.g. http://www.fribbles.org/*, in the CRP source informa- 
tion protocol. This would result in a cache forwarding requests 
up the incorrect source rooted tree, adding an indeterminate 
amount of delay to the request before the error is discovered. On 
the other hand, a hash chain collision has a negligible impact on 
per-group request forwarding performance in the absence of for- 
warding loops and the assumption that no URLs are removed the 
cache’s backing store. The average hash chain collision rate for 
all five collections is 0.00902% or 1 incorrectly forwarded URL 
every 11,087 requests. Putting this into perspective, assuming 
it takes a cache lOOms to probe its backing store, forward, and 
transmit a request to a next-hop cache, the collision rate adds 
9 . 0 2 ~ s  additional average request delay per cache group. More- 
over, the incorrectly forwarded request is delayed by a single 
cache, which would subsequently forward the request up the ap- 
propriate Web server’s tree, if the Web server’s URL prefix ex- 
ists in its forwarding table, or request the URL directly from the 
Web server. 

The hash chain collision rates observed in this experiment are 
worst case collision rates. Each collection is an aggregation, 
e.g. the uclacsspr collection represents a month’s aggregation 
of user activity. No URLs were removed or expired from the 
cache’s backing store during the experiment. It is expected that 
a deployed AWC caching system would have a backing store 
manager which periodically reaps unused URL’s contents. All 
1,485,317 URLs would not be present in the uclacsspr cache’s 
backing store, only a working set of the most frequently ac- 
cessed URLs would be present. It would be reasonable to con- 
clude that a smaller URL working set would produce fewer hash 
chain collisions, as the uclucsfull and ircuchesj results bear 
out. 

D. Compression 

Table I1 shows the forwarding table’s characteristics for each 
of the five URL collections and illustrates the compression 
achieved by the hash chain method. “Total URL Components’’ 
designates the total number of nodes stored in the forwarding ta- 
ble and the total number of nodes in the equivalent URL decom- 
position tree. Assuming that each generated (depth, hash code) 
pair is encoded in a 32-bit quantity, the hash chain’s size in 
bytes is computed by multiplying the total URL components 
by 4. The hash chain’s size is compared to the number of 
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TABLE I 
OBSERVED HASH CHAIN COLLISIONS 

Collection 
uclacs fall  
uclacssvr 

Total Collision Last 
Total URLs Collisions Rate Component Whole URL 

634702 37 0.00583% 19 18 
1485317 174 I 0.0117% 132 42 

I I canetii I 1073302 I 111 1 0.0103% 1 62 1 49 I 
ircachebo 
ircachesi 

2495499 336 0.0135% 166 170 
556214 21 0.00378% 18 3 

Collection 
uclacsfall 
uclacsspr 
canetii 
ircachebo 
ircachesj 

bytes required to transmit all of the strings generated by a left- 
to-right, depth first traversal of the equivalent URL decompo- 
sition tree. Each node in the decomposition tree is encoded 
as (depth, length, string), where depth and length are single 
byte quantities. Thus, the decomposition tree’s size is computed 
as 2 x Total URL Components + Total String Length. To- 
tal String Length is the sum of the decomposition tree nodes’ 
string lengths. The compression achieved is computed as 1 - 
Hash Chain/ Tree size. 

The relatively uniform compression indicates that many 
URLs in a given collection share common network location and 
path prefixes. The low ratio between total URL components and 
total URLs per collection shown in table I11 indicates that the 
URL decomposition tree is relatively flat, with most of its nodes 
at the leaves. Adding URLs from an existing Web server with 
common path components increases the number of nodes in the 
URL decomposition tree by one to three nodes on the average. 
This is based on the assumption that five out of a possible eight 
nodes (the average depth from the uclacsspr collection) already 
exist in the tree. They correspond to the URL’s scheme, three 
components in the Web server’s name (i.e. www.fribbles.org), 
and one common path component. The number of nodes in the 
tree grows faster and results in a larger ratio when URLs from 
disjoint Web servers are inserted into the tree, resulting in six or 
more nodes per addition (the U W s  scheme and the DNS top 
level domains are omnipresent.) The fact that the ratio is low is 
not an unexpected result: an HTML page often contains refer- 
ences to images that are kept in the same file system directory 
as the HTML page itself. 

The hash chain’s transmission size presents some concern 

Total URL Total Hash Chain n e e  size 
Components String Length (bytes) (bytes) Compression 

839,196 9,248,351 3,356,676 10,926,689 69.28% 
2,008,462 22,569,995 8,033,848 26,586,9 19 69.78% 
1,421,787 15,660,725 5,687,148 18,504,299 69.27% 
3,652,747 38,512,997 14,610,988 45,818,491 68.11% 

767,685 8,286,134 3,070,740 9,821,504 68.73% 

when used outside of a simulation. For example, one cache con- 
taining the ircachebo collection’s URLS in its backing store 
would transmit 13.93MB of data to the other members of its 
cache group. Multicasting the update packets would reduce the 
network resources consumed versus replicated unicast to indi- 
vidual cache group members. However, the receiving caches 
could stall user requests while processing approximately 9,926 
UDP packets created by the hash chain generation. Update 
packets from the generated hash chain could made independent 
of each other by repeating the path from the root to the current 
leaf at the start of a new update packet, thus eliminating user 
request stalling. Additionally, missing update packets only im- 
pact the snapshot accuracy from the perspective of an individual 
cache. 

Minimizing user request latency should be balanced with the 
snapshot accuracy of the group members’ backing stores. This 
suggests that a local content state update protocol’s implementa- 
tion should adopt incremental transmission or only transmit the 
most frequently accessed URLs in its backing store. Results pre- 
sented in [2], [7] indicate that many URLs in a cache’s backing 
store are “read-once” and would not be useful in a local content 
state update. A more refined but CPU intensive approach might 
utilize the data mining technique presented in [8] that would 
reduce the number of URLs transmitted during a local content 
state update to those most likely to be traversed. The transmis- 
sion sizes presented in this paper are also likely to be unrealis- 
tic because no backing store management policy is assumed, as 
previously noted. 
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TABLE 111 
RATIO OF COMPONENTS TO URLS FOR EACH COLLECTION - 

Collection 
uclacs-fall 
uclacsspr 
canetii 
ircachebo 

Component to URL Average Tree Maximum Tree Standard 
Ratio Depth Depth Deviation 

1.32 8.40 54 2.29 
1.35 8.94 58 2.57 
1.32 8.48 177 3.21 
1.46 9.63 32 1 4.25 

f ircachesi I 1.38 I 9.15 I 356 I 8.15 I 

IV. COMPARISON TO Summary Cache 

Summary Cache is a proposed mechanism which allows one 
cache to implicitly probe other caches’ backing stores for a re- 
quested URL‘s content. The Squid cache system is an example 
system which motivated the Summary Cache research. Squid is 
a hierarchical caching infrastructure, using the Internet Cache 
Protocol (IcP) for inter-cache communication. Without a Sum- 
mary Cache-like mechanism, each Squid cache first sends an 
ICP query to a set of local sibling caches when a request is not 
satisfied from its backing store. If the local ICP query fails as 
the result of a time out waiting for a positive acknowledgment, 
the cache sends the request to its parent who repeats the process. 
The principal problem with this approach is the implied negative 
acknowledgment. The timeout value is adaptive with an initial 
value of 2 seconds. Explicit probing of the siblings’ backing 
store consumes a non-negligible amount of network bandwidth 
and increases client request latency; a detailed description of the 
problem can be found in [9]. 

Hash chains and Summary Cache digests perform the same 
fundamental function: propagating a snapshot of the URLs cur- 
rently present in one cache’s backing store to members of a local 
cache group. Summary Cache utilizes a Bloom filter to create a 
backing store digest where the filter’s hash codes are extracted 
from each URLs MD5 signature. The principal difference be- 
tween the two methods is how the decision to send the request 
to the next-hop cache is made. A Squid cache enhanced by the 
Summary Cache mechanism examines the digests received from 
its siblings and determines which ones are likely to have the re- 
quest’s contents stored. When the request is sent to a sibling 
incorrectly due to a false positive, the cache must still time out 
before sending the request to its parent. The AWC application- 
level forwarding approach does not require an implied negative 
acknowledgment: an incorrectly forwarded request is simply re- 
forwarded. The longest matching prefix algorithm combines the 
two step “local versus dissemination tree” decision process into 
a single step. 

Both mechanisms share a common trade-off in the number 
of bits used in the hash codes and the memory required. Sum- 
mary cache’s memory requirements scale in terms of the size of 
the filter, a function of the average number of URLs the back- 
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ing store can manage times a constant load factor. Hash chains 
scale in terms of the number of bits in the CRC function and the 
number of decomposed UFU components. Using the ircachebo 
URL collection for comparison purposes, a Summary Cache us- 
ing load factor of 32 transmits approximately 9,981,996 bytes 
versus 14,610,988 bytes for hash chains or 32% less data. The 
Summary Cache false positive rate, based on figure 5 in [9], ap- 
pears to be in the range 0.005 to 0.01, comparable to what the 
hash chain approach achieves. Summary Cache can reduce the 
false positive rate either by increasing the load factor and in- 
creasing the hash function’s range or by using more hash func- 
tions. Hash chains reduces its false positive rate by increasing 
the number of bits in the CRC function, a single parameter. 

Hash chain sequences are cheaper to compute than Summary 
Cache MD5 signatures. While MD5 signatures produce distinct 
128-bit hash codes, their computation is difficult to optimize 
[lo]. If lines of code can be used as a rough complexity met- 
ric, the FREEBSD kernel’s MD5 implementation is 212 lines 
whereas the CRCcomputation as implemented is only 3 lines. 
Computing a component’s hash code involves two shift opera- 
tions, two XOR operations, and an AND operation per character. 
The hash code is not computed from the successive concatena- 
tions of URL components; the CRC code from the last compo- 
nent serves as the seed for the next component’s code. Hash 
chains also assume that the backing store’s meta-data is orga- 
nized as a URL decomposition tree, which reduces hash chain 
sequence generation to traversing the tree. Summary Cache, as 
described, initially computes the Bloom filter from scratch for 
each URL and maintains slight additional overhead to keep the 
filter consistent as URLs are added and deleted from the back- 
ing store. Thus, it can incrementally update its neighbors with 
the filter’s changed bit positions since the last update. An AWC 
cache must transmit the entire hash chain sequence in order to 
refresh its neighbor’s forwarding entries. 

Incremental hashing and the hash chain mechanism achieve 
an advantage over Summary Cache in request processing, de- 
spite its additional protocol and memory overhead. Assume, for 
the sake of simplicity, that the time taken to process a request by 
either a type of cache is characterized by three quantities: 

t p y o b e ,  the time it takes to probe the backing store, 
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tdecide,  the time it takes to decide where to send the request 
next, and 

tnetwork, the time it takes to send the request to the next re- 
cipient. 
Further assume that t p m b e  and tnetwork are equal for both 
caching systems and there are no false positives. The remain- 
ing difference between the two systems is tdecide.  AWC’S tdecide 
consists of computing the CRC code for the decomposed URL 
and inspecting at most O(na) hash table nodes. Computing 
an MD5 signature, extracting hash codes from the signature, 
and inspecting a bit vector dominates ~ummary Cache’s tdecide.  
Again, the CRC’s computational cheapness leads to the expecta- 
tion that AWC per-request processing can handle higher request 
loads than Summary Cache, an assertion to be verified by de- 
ployment and measurement. 

V. CONCLUSION 

A common problem in cooperative Web caching systems is 
locating a proximate copy of a requested URL’s contents. Adap- 
tive Web Caching solves this problem by a per-cache URL for- 
warding table which maintains associations between full URLs 
and URL prefixes and next-hop caches. A full URL indicates 
that the requested URL’s content is stored within a cache’s 
neighborhood; a URL prefix indicates the parent cache on 
U W s  Web server’s data dissemination tree. Full UIUs are pre- 
ferred over URL prefixes to maximize local cache sharing. De- 
ciding whether the requested URL’s contents are located in the 
cache’s neighborhood or along the web server’s data dissemina- 
tion tree is conceptually a two step decision process. A longest 
prefix matching algorithm is used whenever a cache looks up the 
forwarding entry corresponding to a requested URL because it 
combines the two searches into a single step. 
URLs are hierarchically decomposed to support both network 

location and path aggregation, resulting in a list of components. 
Collections of hierarchically decomposed URLs naturally form 
a tree. The URL forwarding table is implemented as a hash table 
to achieve O(no) search performance. URL components stored 
in the hash table keep their relationship with their parent com- 
ponent to preserve the tree-like semantics. URL components are 
inserted into the URL forwarding table using incremental hash- 
ing. Incremental hashing indirectly preserves relationships be- 
tween successive URL components and is also used to encode 
the list of URLs stored in a cache’s backing store. Assuming 
the cache’s backing store’s meta-data is organized as a URL de- 
composition tree, a left-to-right, depth-first traversal of the tree 
produces a sequence of hash chains that are subsequently trans- 
mitted by the cache to its neighborhood. The hash chains are re- 
constructed and inserted directly into the receiving caches’ URL 
forwarding tables. 

Incremental hashing in the current implementation of AWC’s 
URL forwarding table is done via 19-bit CRC codes. The prob- 
ability of a hash chain collision, where two disjoint URLs pro- 

duce the same sequence of hash codes, is analytically shown to 
be 2-’, where 1 is the degree of the CRC generator polynomial. 
Observations from five different data sets show that the collision 
rate can be two order of magnitudes higher because the input to 
the CRC function is highly regular text. Nonetheless, the average 
observed collision rate would cause 1 out of 11,087 requests to 
be forwarded incorrectly to a cache where the requested URL’s 
contents were not stored in its backing store. Assuming that a 
cache takes lOOms to process a request, this collision rate adds 
9 .70~s  average additional per-request latency. 

The hash chain sequences provide a simple compression 
mechanism which disseminates an imprecise snapshot of a sin- 
gle cache’s backing store. This is compared with the Sum- 
mary Cache mechanism. Summary Cache and hash chain se- 
quences provide caching systems with the ability to implicitly 
probe other caches’ backing stores. While Summary Cache 
achieves smaller backing store snapshots with a comparable col- 
lision rate, the hash chain approach has the distinct advantage 
that the CRC codes are easier to compute than Summary Cache’s 
MD5 signatures and it is expected that AWC caches can forward 
requests faster when under load. 

Application-level forwarding and routing is a successful 
mechanism for URL request processing in the context of Adap- 
tive Web Caching. The approach can be extended to a more gen- 
eral application framework and applied to different name spaces 
other than URLs for application areas such as service discovery, 
naming services, file replication, and dynamic code dependency 
resolution in active networks. Forwarding facilitates construct- 
ing an integrated infrastructure connecting clients, application 
“routers” or “gateways”, and servers. This approach also en- 
courages experimentation with routing protocols which supply 
application-specific properties without disrupting the underlying 
Internet routing infrastructure at large. Further research in this 
topic will focus on the development and understand the bene- 
fits of a general application-level forwarding and routing frame- 
work. 

VI. MOTIVATIONS, INSPIRATIONS, AND 
ACKNOWLEDGMENTS 

The motivations and inspirations for application-level for- 
warding and routing in AWC came from numerous design dis- 
cussions in addition to the literature. The authors would like to 
thank Adam Rosenstein and Khoi Nguyen, of the UCLA Com- 
puter Science Department, for their input and participation. 

From the literature, it suffices to mention two papers which 
helped mold the AWC forwarding table into what it has become. 
The Cache Array Routing Protocol (CARP) [ 1 11 proposed client- 
side URL hashing as the basis for forwarding a request within 
an array of caches. Each cache in the array is responsible for 
a segment of the hash function’s range; locating where con- 
tent is likely to be cached becomes deterministic in this sys- 
tem. This algorithmic simplicity was desired in AWC’S local 
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neighborhood search. Incremental hashing was motivated by 
recursive n-gram hashing [12]. Given a sequence of symbols, 
S = (sl, s2, sg, . . . , S N + ( ~ - ~ ) ) ,  an n-gram of the sequence is 
an n-long subsequence of consecutive symbols. [12, p. 2911. 
The attractive feature of n-gram hashing functions is that they 
produce distinct hash code sequences codes when applied to the 
first through ith n-gram. Polynomial division in the GF(2) field, 
also the basis of CRC codes, is one of the recursive hashing 
techniques discussed and has desirable computational charac- 
teristics, being composed of shift and XOR operations. The fast 
computation and the generally low collision rates of these func- 
tions were the main factors for adopting CRC functions in the 
AWC forwarding table’s implementation. 
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