
URL Forwarding and Compression in Adaptive
Web Caching

B. Scott Michel, Konstantinos Nikoloudakis, Peter Reiher, Lixia Zhang
University of California, Los Angeles

{ scottm, nikolud, reiher, lixia} @cs.ucla.edu

Absrracr-Web caching is generally acknowledged as an important ser-
vice for alleviating focused overloads when certain web servers’ contents
suddenly become popular. Cooperative caching systems are more effective
than independent caches due to the larger collective backing store that co-
operation creates. One such system currently being developed at UCLA,
Adaptive Web Caching (AWC), uses an application-level forwarding table to
locate the nearest copy of a requested URL’s contents. This paper describes
one specific design in AWC, a simple URL table compression algorithm
allowing efficient content information sharing among neighboring caches.
The compression algorithm is based on a hierarchical URL decomposition
to aggregate URLs sharing common prefixes and an incremental hashing
function to minimize collisions between prefixes. The algorithm’s collision
rate is derived analytically and verified by five sets of Web trace data. The
results demonstrate that the collision rate is bounded and has little impact
on page fetching latency. Finally, this compression method is compared to
the Summary Cache method.

Keyworak- Active networks, application-level forwarding and routing,
web caching, hashing, cyclical redundancy checks, URL compression

I. INTRODUCTION
EB caching is generally recognized as an important ser- W vice for alleviating focused overloads when certain web

servers’ contents become popular. A cooperative Web caching
system has many design parameters, ranging from the infras-
tructure architecture to individual cache’s backing store man-
agement algorithms. Above all, it must be effective in the face
of user browsing behavior. Measurement data shows that user
browsing behavior contains characteristics such as diurnal be-
havior [l] and “90-10” behavior, where 90% of the total re-
quests account for 10% of the cached content [2]. Hot spots
develop from time to time where user browsing behavior cre-
ates network congestion in the topological vicinity of and sus-
tained workload at a particular Web server. The NASNJPL
Mars Pathfinder landing, the well-publicized Stan Report, and
downloads of updated Netscape Communicator and Microsoft
Internet Explorer browsers are several examples of activity that
generated Internet-wide hot spot events. A more recent phe-
nomenon analogous to geologic geyser activity is the traffic gen-
erated by portal sites, news and sports services, where the Web
server’s content is periodically updated during the course of the
day causing users to periodically refresh their copy of the con-
tent.

The Adaptive Web Caching project (AWC) [3] starts from the
premise that hot spot and geyser events will become the norm,
not the exception. Rapid content dissemination through a scal-

0-7803-5880-5/00/$10.00 (c) 2000 IEEE

able caching infrastructure is the key to absorb and dissipate
these events. The AWC design builds such a caching infrastruc-
ture in two steps. First, caches form localized groups (neighbor-
hoods) with overlap points between adjacent groups. Viewing
cache groups as “subnets”, and overlapping points as “routers”,
AWC creates an application-level topology where the caching in-
frastructure connects the Web servers at one end to the clients at
the other. AWC then builds data dissemination trees on demand
over this topology, thus enabling efficient delivery of popular
contents to large numbers of clients.

Rapid content dissemination in the AWC system is accom-
plished by the Content Routing Protocol (CRP) which populates
a URL forwarding table at each cache. When a Web server expe-
riences heavy demand for some subset of its content, that subset
will be stored in a set of caches’ backing stores. Other caches
forward requests received for the same content subset toward
caches storing it. These other caches require a protocol that lo-
cates where this content is most likely to be stored, which is
either along the Web server’s data dissemination tree or within
the confines of the searching cache’s neighborhood.

CRP fulfills this role by propagating content reachability in-
formation throughout the cache topology, similar to the way
popular network routing protocols such as RIP and OSPF prop-
agate network reachability information. An I P router maintains
a packet forwarding table by collecting and managing associa-
tions between network addresses and next-hop routers. Analo-
gously, individual caches maintain a URL forwarding table by
collecting content reachability information, represented by as-
sociations between full URLs or URL prefixes and a next-hop
cache. Two CRP protocols propagate these associations:

The source information protocol propagates a Web server’s
URL namespace prefix throughout the cache topology. This
namespace prefix is used to construct the Web server’s data dis-
semination tree.

The local content state protocol propagates the URLs cur-
rently stored in a particular cache’s backing store to its neighbor-
hood. This maximizes cache sharing within the neighborhood.

Upon receiving a Web page request, a cache first checks to
see if a forwarding table entry for the request’s UFU points to a
cache in the local neighborhood, when the requested content is
not available from a cache’s own backing store. If no neighbor-
hood entry exists, it checks to see if a forwarding entry exists

670 IEEE INFOCOM 2000

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on October 24, 2009 at 01:27 from IEEE Xplore. Restrictions apply.

mailto:cs.ucla.edu

that leads toward the Web server’s data dissemination tree. If
the forwarding entry exists, the request is relayed to the speci-
fied next-hop cache.

Conceptually, the above request handling algorithm describes
a two step search process. A longest matching prefix algorithm
is applied to the URL forwarding table lookup process, unifying
the local and remote content search. Full URLs are preferred
over URL prefixes because they represent locally cached con-
tent whereas URL prefixes point to the direction of the content’s
Web server. The longest prefix matching algorithm blurs the dis-
tinction between the two content searches, combining both into
a single step.

The difference between IP and URL forwarding is a matter
of address space size: the I P address space is finite whereas the
cardinality of URLs is infinite. An IP router’s forwarding ta-
ble reflects the current reachability of the underlying network’s
topology. An AWC cache’s URL forwarding table does not re-
flect reachability to all URLs currently stored within the caching
system. Rather, it only reflects the forwarding state with respect
to URLs corresponding to hot spot and geyser events to achieve
bounds on scale.

Three tightly coupled issues must be resolved to make the
longest prefix matching algorithm work efficiently. The first is
URL decomposition such that the URL name space is amenable
to longest prefix matching. The second is scaling the URL for-
warding table to accommodate a large number of forwarding
entries while maintaining desirable longest prefix match algo-
rithm performance. The third issue is compression of large sets
of full URLs down to a reasonable size with minimal collision
rate to enable efficient local content state updates.

11. APPROACH

A uniform resource locator (URL) defines a hierarchical
namespace that identifies a resource by its primary access
mechanism [4]. A simple decomposition parses URLs into
a scheme, a network location, and individual path compo-
nents to the resource. For example, http://www.$-ibbles.org/-
interesting/index. html decomposes to http, www.fribbles.org, in-
teresting, and index. html. While this simple approach supports
fine grained path component aggregation, it does not immedi-
ately support network location prefix aggregation. Network lo-
cation prefix aggregation is desirable when HTML documents
contain URL references located on servers in the same DNS
domain: consider an HTML page from the Web server www.-
fribbles.org containing references to fribbles.org domain Web
servers such as images.fribbles.org and search.fribbles.org. A
single aggregated prefix for all hosts in the fribbles.org do-
main consumes fewer forwarding table entries and permits the
source information protocol to build domain-based data dissem-
ination trees, when administratively useful or convenient. The
network location is decomposed in reverse order and produces
the fine-grained hierarchy supporting the desired prefix aggre-

gation. Thus, the previous example URL decomposes to http,
org, fribbles, www, interesting, and index. html. URL prefixes
are distinguished from complete URLs by a single “*” wild-
card which is decomposed as a special component. The URL
prefix http://*.fiibbles. org represents the entire URL namespace
for the fribbles. org domain, http:/hww.fiibbles. org/* represents
a URL prefix for the www.fribbles.org Web server, whereas
http://www. fribbles. org/interesting/index. html represents a com-
plete URL. In the present scheme, http://www.fribbles.org/-
interesting/p is not recognized as a URL prefix.

It might be argued that this particular URL decomposition is
too fine grained. A misbehaved or insecure CRP source informa-
tion routing protocol variant could potentially hijack a large part
of the cache system by advertising the URL prefix http://*.org,
or worse, http:L*, thereby creating a different kind of focused
overload. This problem can be solved by filtering the URL pre-
fixes, by adding authentication and validation to the routing pro-
tocol, or by requiring that all URL prefixes contain at least three
components (scheme, top-level and second-level DNS names.)
There are circumstances where these rogue prefixes are useful.
The http://* prefix is analogous to an IP default route and could
be used as the basis for a client-side AWC cache discovery pro-
tocol, assuming clients maintain their own URL forwarding ta-
bles. The http://*.org prefix could be used to engineer part of
an AWC cache infrastructure for load-balancing based on top-
level domain name. Nevertheless, the URL parser could merge
the scheme and the DNS top level domain name components
together as a single component without loss of generality.

A collection of decomposed URLs naturally forms a tree
structure, as illustrated in figure 1. A large fan-out from the
DNS top level domain nodes to the DNS second level domain
nodes and from the second level domain nodes to the third level
domain nodes is observed as more URLs are stored in this struc-
ture. The longest matching prefix algorithm’s performance be-
comes O(nm) in the average case, where n is the number of
decomposed URL components and m is the average number of
children per node. The approach adopted in the forwarding ta-
ble’s current implementation is a hash table where each node in
a given bucket maintains a pointer to its parent component, pre-
serving URL component relationships and tree semantics. This
reduces the longest prefix matching algorithm’s performance to
O(na!), where n is the number of components in the decom-
posed URL and a! is the hash table’s loading factor’. Forwarding
data is stored in the tree’s “leaves” which are always a decom-
posed URLs last component. The last component will either
be the final element of the UFU‘s path or a wildcard. The for-
warding data minimally includes the next-hop cache and an ex-
piration timer that detects when a forwarding entry is no longer
valid and should be removed. Forwarding entries are assumed
to be periodically refreshed, which causes an entry’s expiration

’A hash table’s loading factor is defined as g, where N is the total number
of elements stored in the hash table and B is the number of buckets.

0-7803-5880-5/00/$10.00 (c) 2000 IEEE 671 IEEE INFOCOM 2000

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on October 24, 2009 at 01:27 from IEEE Xplore. Restrictions apply.

http://www.$-ibbles.org
http://www.fribbles.org
http://fribbles.org
http://fribbles.org
http://images.fribbles.org
http://search.fribbles.org
http://fribbles.org
http://*.fiibbles
http:/hww.fiibbles
http://www.fribbles.org
http://www
http://www.fribbles.org
http://*.org
http:L
http://*.org

0 2 . 0 frlbbles yahoo z:
Fig. 1. An example URL decomposition tree

timer to be reset. figure 1 produces the hash chain sequence:
Decomposed complete and prefix URLs are inserted by com-

puting incremental hash codes. Given a list of components, U, (0, h0) 7 (1, hl,O) I (2, h2,O) 1 (3, h3,O) 1

(4, h4,O) 1 (51 h5,O) Y (5 , h5,l) 1 (4, h4,l) I

(1, h , i) , (2, h2,i) (3, h3,i) , (4, h4,2)

The receiving caches insert the tuple sequence directly into their
respective forwarding tables using place holding nodes. Rela-
tionships between nodes are derived from the hash chain se-
quence and preserved by the receiver. A receiver may recon-
struct an individual hash chain such as

U = (scheme, n~ , n e , . . . , ni, P I , p e , . , pj)

where n1, 122, . . ., ni are network location components, pl, pa,
. . ., pj are path components, and a hash function, ~ (h , s), the
hash codes for the URL are computed as follows:

Incremental hashing minimizes the collision probability be-
tween URL prefixes. This property is exploited by the local
content update protocol when a cache transmits the current set
of URLs stored in its backing store to its neighborhood. As-
sume that the cache's backing store's meta-data is organized as
a URL decomposition tree. The sending cache transmits a list of
(depth, hash code) tuples (a hash chain sequence) produced by
a depth first, left-to-right traversal of the tree. The tree shown in

from more than one sender. In general, the routing protocol is
the final arbiter with respect to which sender is chosen as the
forwarding table's next-hop cache and whether alternative next-
hops are kept or discarded. The current implementation of the
local content state update protocol chooses the first sender as
the next-hop cache. Subsequent senders are stored as alterna-
tive next-hops and used when the first sender's forwarding entry
expires.

Hash chain sequences doubles the longest prefix matching al-
gorithm's worst-case performance because comparisons include
both exact matches against strings and inexact matches against
the place holding nodes. The principal benefit of this encoding
scheme is that it achieves a simple form of compression which
imposes little processing overhead at the receiver. The primary
source of compression in this forwarding table derives from its
tree structure. The tree consolidates common URL prefixes,
based on the observation that URLs from a single Web server
often share a common path or small set of common paths.

0-7803-5880-5/00/$10.00 (c) 2000 IEEE 672 0-7803-5880-5/00/$10.00 (c) 2000 IEEE

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on October 24, 2009 at 01:27 from IEEE Xplore. Restrictions apply.

A hash chain’s imprecision can create forwarding loops. Con-
sider the case where both caches A and B store URL Ul in their
respective backing stores. U1 produces the same hash chain, 7f,
as U2. Cache c receives the hash chain 7f from both caches A
and B during the next local content state update and chooses to
insert a forwarding entry that points to cache A. Cache A will
insert a forwarding entry for ‘H that points to cache B. Cache
B will insert a forwarding entry for 7f which points to cache A.
Cache c receives a request for U,, does not find it in its backing
store, and sends the request to cache A. Cache A does not find
U2 in its backing store and sends the request to cache B. Cache
B examines its backing store, sends U2 back to cache A, and
creates a forwarding loop. This particular loop is easy to detect
and break by restricting caches from forwarding a request back
to the previous sender. When a one hop forwarding loop is de-
tected, the cache fetches the requested URL‘s contents directly
from the appropriate Web server. ” b o or more hop forwarding
loops are more difficult to detect and break without adding more
information to the local content state updates.

An alternative to detecting a one-hop loop is to prevent it from
happening in the first place. The receiving cache modifies the
hash chain insertion process by verifying that its backing store
won’t produce the same hash chain. A forwarding entry is not
inserted if the same hash chain would be produced by the re-
ceiver’s backing store. In the previous example, caches A and
B will never point at each other and the forwarding loop will
never be created. This modification requires additional CPU
overhead to traverse the backing store’s URL decomposition tree
and meta-data for each reconstructed hash chain and may be ex-
pensive for large local content state update messages. Moreover,
this modification may be overkill if one-hop loops are the only
kind of loops observed in practice.

111. RESULTS

Hash chains are a compressed and imprecise representation
of URLs present in one cache’s backing’ store that are easy for
another cache to directly insert into its forwarding table. Impre-
cision makes it necessary to calculate the hash chain collision
probability, when two distinct URLs with the same number of
decomposed components generate the same hash chain. This
probability, also known as the false positive rate, determines
how often a URL will be incorrectly forwarded to a cache where
its contents are not stored. The false positive rate is shown to
have a negligible impact on request latency.

A. Current Implementation Properties

A 19-bit CRC function is used in the current CRP forwarding
table’s implementation. This particular size for the hash func-
tion is a trade-off between the hash collision probability and the
memory footprint of the hash table. A 19-bit cRC requires a
minimum of 2MB of memory to hold the the hash table’s bucket
pointers, assuming a 32-bit pointer model. Additional bits in

the CRC code increase the size of the bucket pointer array by
corresponding factors of 2, increasing the table’s capacity and
reducing the collision probability and the average search time.
This memory footprint should be balanced with the cache appli-
cation’s overall memory needs. It is common practice to dedi-
cate a pool of memory to transient URLs in order to eliminate
disk accesses. Increasing the hash table’s footprint and stealing
from the transient object pool when real, not virtual, memory is
a premium may not be desirable.

B. Methodology

Five URL collections were used in this analysis to simulate
two common cache configurations. ’ h o URL collections repre-
sent edge caches, the first cache that a user’s request encounters
at the edge of the AWC caching system. The remaining three
collections represent caches in the middle of the caching infras-
tructure. The characteristics of these collections are as follows:
1. uclacs-fall: These URLs were snooped from a single UCLA
Computer Science Department’s subnetwork between Septem-
ber 12, 1998 and October 11, 1998. A total of 634,702 URLs
were captured in this trace.
2. uclacsspr: These URLs were snooped from the UCLA
Computer Science Department’s egress router’s link to the cam-
pus backbone network between April 1, 1999 and May 1, 1999.
A total of 1,485,317 unique URLs were captured in this trace.
3. canetii: This is an aggregation of the log files from
the CA*netII Squid root cache between May 21, 1999
and May 31, 1999. A total of 1,073,302 unique
URLs were extracted from these log files. Other sani-
tized log files for a 21 day window are available from
http://ardnoc4I. caned. net/cache/squid/rawlogs/.
4. ircachedo: This is an aggregation of the log files from the
NCAR (Boulder, CO) Squid root cache between June 3, 1999
and June 9, 1999. It contains 2,495,449 unique URLs.
5 . ircachesj: This is an aggregation of the log files from the
MAE West (San Jose, CA) exchange point between June 4,1999
and June 9, 1999. It contains 556,214 unique URLs.
ircachebo and ircachesj traces were created from the sanitized
log files provided atftp://ftp. ircache. net/rraces/. This particular
repository only keeps a week’s worth of sanitized logs.

C. Hash Chain Collision Probability

The hash code generated for each decomposed URL compo-
nent is related to its predecessor’s hash code via the recurrence
relation:

ho = H(0,Uo)
hn = H(hn-1,Un) (2)

where U0 is the URL‘s scheme and U,, is the n-th URL compo-
nent following the scheme. This is particularly well suited for
cyclical redundancy check codes where the remainder of poly-
nomial division performed in the GF(2) field is computed. CRCs

0-7803-5880-5/00/$10.00 (c) 2000 IEEE 673 IEEE INFOCOM 2000

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on October 24, 2009 at 01:27 from IEEE Xplore. Restrictions apply.

http://ardnoc4I

can be computed by a shift-register with feedback [5] . Thus,
each h, corresponds to the value found in the shift register at
the end of the n-th component. The polynomial, in this case,
is the bit string that results from concatenating successive URL
components together. The probability, Pcoll, that a polynomial
f of degree m will generate the same remainder z as polyno-
mials f i ‘ of degree m 2 i 2 1, where 1 is the degree of the
generator polynomial, is given by:

Pcoll = Pr [fi’ mod g = x 1 f mod g = x]

(3)

Pcoll defines the probability that two distinct URLs will generate
the same hash code for the n-th component, independent of the
number of characters by which they differ in that component.

A hash chain collision occurs when two distinct URLs, U,
and U,, with the same number of components generate the same
tuple sequence for all components. The probability that this
event occurs, P h c is calculated in the general case from the prob-
ability that all n components produce the same hash codes, i.e.

n

i= 1

= P,“,ll (4)

This is an optimistic lower bound. For example, if the URL
namespace is restricted to the same scheme, then all URL de-
compositions will share the same first hash code, ho. Thus, if
two URLs share a common prefix of j < n components, Phc

becomes:

= Pc:ij

Thus, the hash chain collision probability is bounded by Pcoll

on the left and PgTll on the right. The current implementation’s
19 bit CRC function yields Pcoll = 2-l’ for the upper bound for

Table I shows the results from the five URL collections, where
the URLs were decomposed and inserted into a forwarding ta-
ble. Each bucket in the forwarding table was scanned for pairs of
last URL components (leaf nodes) having the same tree depth.
If both URL‘s parental relationships (parent, grandparent, great-
grandparent, etc.) encountered the same sequence of hash buck-
ets, a hash chain collision was noted. The collision rates are
one and two orders of magnitude higher than the expected 2-l’

p h c .

(1.91 x in all five collections. It is suspected that the rea-
son for this is similar to that pointed out in [6]: the CRC func-
tion’s input is not random but highly regular text.

Two distinct types of hash chain collisions were observed:
“Last Component’’ and “Whole UIU”. Last component colli-
sions occurred when the two URLs differed only in the last com-
ponent whereas whole URL collisions occurred when the pair
of URLs were disjoint in every component except the scheme.
No definite conclusion can be drawn beyond the fact that hash
chains are not suitable for advertising a Web server’s URL pre-
fix, e.g. http://www.fribbles.org/*, in the CRP source informa-
tion protocol. This would result in a cache forwarding requests
up the incorrect source rooted tree, adding an indeterminate
amount of delay to the request before the error is discovered. On
the other hand, a hash chain collision has a negligible impact on
per-group request forwarding performance in the absence of for-
warding loops and the assumption that no URLs are removed the
cache’s backing store. The average hash chain collision rate for
all five collections is 0.00902% or 1 incorrectly forwarded URL
every 11,087 requests. Putting this into perspective, assuming
it takes a cache lOOms to probe its backing store, forward, and
transmit a request to a next-hop cache, the collision rate adds
9 . 0 2 ~ s additional average request delay per cache group. More-
over, the incorrectly forwarded request is delayed by a single
cache, which would subsequently forward the request up the ap-
propriate Web server’s tree, if the Web server’s URL prefix ex-
ists in its forwarding table, or request the URL directly from the
Web server.

The hash chain collision rates observed in this experiment are
worst case collision rates. Each collection is an aggregation,
e.g. the uclacsspr collection represents a month’s aggregation
of user activity. No URLs were removed or expired from the
cache’s backing store during the experiment. It is expected that
a deployed AWC caching system would have a backing store
manager which periodically reaps unused URL’s contents. All
1,485,317 URLs would not be present in the uclacsspr cache’s
backing store, only a working set of the most frequently ac-
cessed URLs would be present. It would be reasonable to con-
clude that a smaller URL working set would produce fewer hash
chain collisions, as the uclucsfull and ircuchesj results bear
out.

D. Compression

Table I1 shows the forwarding table’s characteristics for each
of the five URL collections and illustrates the compression
achieved by the hash chain method. “Total URL Components’’
designates the total number of nodes stored in the forwarding ta-
ble and the total number of nodes in the equivalent URL decom-
position tree. Assuming that each generated (depth, hash code)
pair is encoded in a 32-bit quantity, the hash chain’s size in
bytes is computed by multiplying the total URL components
by 4. The hash chain’s size is compared to the number of

0-7803-5880-5/00/$10.00 (c) 2000 IEEE 674 IEEE INFOCOM 2000

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on October 24, 2009 at 01:27 from IEEE Xplore. Restrictions apply.

http://www.fribbles.org

TABLE I
OBSERVED HASH CHAIN COLLISIONS

Collection
uclacs fall
uclacssvr

Total Collision Last
Total URLs Collisions Rate Component Whole URL

634702 37 0.00583% 19 18
1485317 174 I 0.0117% 132 42

I I canetii I 1073302 I 111 1 0.0103% 1 62 1 49 I
ircachebo
ircachesi

2495499 336 0.0135% 166 170
556214 21 0.00378% 18 3

Collection
uclacsfall
uclacsspr
canetii
ircachebo
ircachesj

bytes required to transmit all of the strings generated by a left-
to-right, depth first traversal of the equivalent URL decompo-
sition tree. Each node in the decomposition tree is encoded
as (depth, length, string), where depth and length are single
byte quantities. Thus, the decomposition tree’s size is computed
as 2 x Total URL Components + Total String Length. To-
tal String Length is the sum of the decomposition tree nodes’
string lengths. The compression achieved is computed as 1 -
Hash Chain/ Tree size.

The relatively uniform compression indicates that many
URLs in a given collection share common network location and
path prefixes. The low ratio between total URL components and
total URLs per collection shown in table I11 indicates that the
URL decomposition tree is relatively flat, with most of its nodes
at the leaves. Adding URLs from an existing Web server with
common path components increases the number of nodes in the
URL decomposition tree by one to three nodes on the average.
This is based on the assumption that five out of a possible eight
nodes (the average depth from the uclacsspr collection) already
exist in the tree. They correspond to the URL’s scheme, three
components in the Web server’s name (i.e. www.fribbles.org),
and one common path component. The number of nodes in the
tree grows faster and results in a larger ratio when URLs from
disjoint Web servers are inserted into the tree, resulting in six or
more nodes per addition (the U W s scheme and the DNS top
level domains are omnipresent.) The fact that the ratio is low is
not an unexpected result: an HTML page often contains refer-
ences to images that are kept in the same file system directory
as the HTML page itself.

The hash chain’s transmission size presents some concern

Total URL Total Hash Chain n e e size
Components String Length (bytes) (bytes) Compression

839,196 9,248,351 3,356,676 10,926,689 69.28%
2,008,462 22,569,995 8,033,848 26,586,9 19 69.78%
1,421,787 15,660,725 5,687,148 18,504,299 69.27%
3,652,747 38,512,997 14,610,988 45,818,491 68.11%

767,685 8,286,134 3,070,740 9,821,504 68.73%

when used outside of a simulation. For example, one cache con-
taining the ircachebo collection’s URLS in its backing store
would transmit 13.93MB of data to the other members of its
cache group. Multicasting the update packets would reduce the
network resources consumed versus replicated unicast to indi-
vidual cache group members. However, the receiving caches
could stall user requests while processing approximately 9,926
UDP packets created by the hash chain generation. Update
packets from the generated hash chain could made independent
of each other by repeating the path from the root to the current
leaf at the start of a new update packet, thus eliminating user
request stalling. Additionally, missing update packets only im-
pact the snapshot accuracy from the perspective of an individual
cache.

Minimizing user request latency should be balanced with the
snapshot accuracy of the group members’ backing stores. This
suggests that a local content state update protocol’s implementa-
tion should adopt incremental transmission or only transmit the
most frequently accessed URLs in its backing store. Results pre-
sented in [2], [7] indicate that many URLs in a cache’s backing
store are “read-once” and would not be useful in a local content
state update. A more refined but CPU intensive approach might
utilize the data mining technique presented in [8] that would
reduce the number of URLs transmitted during a local content
state update to those most likely to be traversed. The transmis-
sion sizes presented in this paper are also likely to be unrealis-
tic because no backing store management policy is assumed, as
previously noted.

0-7803-5880-5/00/$10.00 (c) 2000 IEEE 6 75 IEEE INFOCOM 2000

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on October 24, 2009 at 01:27 from IEEE Xplore. Restrictions apply.

TABLE 111
RATIO OF COMPONENTS TO URLS FOR EACH COLLECTION -

Collection
uclacs-fall
uclacsspr
canetii
ircachebo

Component to URL Average Tree Maximum Tree Standard
Ratio Depth Depth Deviation

1.32 8.40 54 2.29
1.35 8.94 58 2.57
1.32 8.48 177 3.21
1.46 9.63 32 1 4.25

f ircachesi I 1.38 I 9.15 I 356 I 8.15 I

IV. COMPARISON TO Summary Cache

Summary Cache is a proposed mechanism which allows one
cache to implicitly probe other caches’ backing stores for a re-
quested URL‘s content. The Squid cache system is an example
system which motivated the Summary Cache research. Squid is
a hierarchical caching infrastructure, using the Internet Cache
Protocol (IcP) for inter-cache communication. Without a Sum-
mary Cache-like mechanism, each Squid cache first sends an
ICP query to a set of local sibling caches when a request is not
satisfied from its backing store. If the local ICP query fails as
the result of a time out waiting for a positive acknowledgment,
the cache sends the request to its parent who repeats the process.
The principal problem with this approach is the implied negative
acknowledgment. The timeout value is adaptive with an initial
value of 2 seconds. Explicit probing of the siblings’ backing
store consumes a non-negligible amount of network bandwidth
and increases client request latency; a detailed description of the
problem can be found in [9].

Hash chains and Summary Cache digests perform the same
fundamental function: propagating a snapshot of the URLs cur-
rently present in one cache’s backing store to members of a local
cache group. Summary Cache utilizes a Bloom filter to create a
backing store digest where the filter’s hash codes are extracted
from each URLs MD5 signature. The principal difference be-
tween the two methods is how the decision to send the request
to the next-hop cache is made. A Squid cache enhanced by the
Summary Cache mechanism examines the digests received from
its siblings and determines which ones are likely to have the re-
quest’s contents stored. When the request is sent to a sibling
incorrectly due to a false positive, the cache must still time out
before sending the request to its parent. The AWC application-
level forwarding approach does not require an implied negative
acknowledgment: an incorrectly forwarded request is simply re-
forwarded. The longest matching prefix algorithm combines the
two step “local versus dissemination tree” decision process into
a single step.

Both mechanisms share a common trade-off in the number
of bits used in the hash codes and the memory required. Sum-
mary cache’s memory requirements scale in terms of the size of
the filter, a function of the average number of URLs the back-

0-7803-5880-5/00/$10.00 (c) 2000 IEEE

ing store can manage times a constant load factor. Hash chains
scale in terms of the number of bits in the CRC function and the
number of decomposed UFU components. Using the ircachebo
URL collection for comparison purposes, a Summary Cache us-
ing load factor of 32 transmits approximately 9,981,996 bytes
versus 14,610,988 bytes for hash chains or 32% less data. The
Summary Cache false positive rate, based on figure 5 in [9], ap-
pears to be in the range 0.005 to 0.01, comparable to what the
hash chain approach achieves. Summary Cache can reduce the
false positive rate either by increasing the load factor and in-
creasing the hash function’s range or by using more hash func-
tions. Hash chains reduces its false positive rate by increasing
the number of bits in the CRC function, a single parameter.

Hash chain sequences are cheaper to compute than Summary
Cache MD5 signatures. While MD5 signatures produce distinct
128-bit hash codes, their computation is difficult to optimize
[lo]. If lines of code can be used as a rough complexity met-
ric, the FREEBSD kernel’s MD5 implementation is 212 lines
whereas the CRCcomputation as implemented is only 3 lines.
Computing a component’s hash code involves two shift opera-
tions, two XOR operations, and an AND operation per character.
The hash code is not computed from the successive concatena-
tions of URL components; the CRC code from the last compo-
nent serves as the seed for the next component’s code. Hash
chains also assume that the backing store’s meta-data is orga-
nized as a URL decomposition tree, which reduces hash chain
sequence generation to traversing the tree. Summary Cache, as
described, initially computes the Bloom filter from scratch for
each URL and maintains slight additional overhead to keep the
filter consistent as URLs are added and deleted from the back-
ing store. Thus, it can incrementally update its neighbors with
the filter’s changed bit positions since the last update. An AWC
cache must transmit the entire hash chain sequence in order to
refresh its neighbor’s forwarding entries.

Incremental hashing and the hash chain mechanism achieve
an advantage over Summary Cache in request processing, de-
spite its additional protocol and memory overhead. Assume, for
the sake of simplicity, that the time taken to process a request by
either a type of cache is characterized by three quantities:

t p y o b e , the time it takes to probe the backing store,

676 IEEE INFOCOM 2000

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on October 24, 2009 at 01:27 from IEEE Xplore. Restrictions apply.

tdecide, the time it takes to decide where to send the request
next, and

tnetwork, the time it takes to send the request to the next re-
cipient.
Further assume that t p m b e and tnetwork are equal for both
caching systems and there are no false positives. The remain-
ing difference between the two systems is tdecide. AWC’S tdecide
consists of computing the CRC code for the decomposed URL
and inspecting at most O(na) hash table nodes. Computing
an MD5 signature, extracting hash codes from the signature,
and inspecting a bit vector dominates ~ummary Cache’s tdecide.
Again, the CRC’s computational cheapness leads to the expecta-
tion that AWC per-request processing can handle higher request
loads than Summary Cache, an assertion to be verified by de-
ployment and measurement.

V. CONCLUSION

A common problem in cooperative Web caching systems is
locating a proximate copy of a requested URL’s contents. Adap-
tive Web Caching solves this problem by a per-cache URL for-
warding table which maintains associations between full URLs
and URL prefixes and next-hop caches. A full URL indicates
that the requested URL’s content is stored within a cache’s
neighborhood; a URL prefix indicates the parent cache on
U W s Web server’s data dissemination tree. Full UIUs are pre-
ferred over URL prefixes to maximize local cache sharing. De-
ciding whether the requested URL’s contents are located in the
cache’s neighborhood or along the web server’s data dissemina-
tion tree is conceptually a two step decision process. A longest
prefix matching algorithm is used whenever a cache looks up the
forwarding entry corresponding to a requested URL because it
combines the two searches into a single step.
URLs are hierarchically decomposed to support both network

location and path aggregation, resulting in a list of components.
Collections of hierarchically decomposed URLs naturally form
a tree. The URL forwarding table is implemented as a hash table
to achieve O(no) search performance. URL components stored
in the hash table keep their relationship with their parent com-
ponent to preserve the tree-like semantics. URL components are
inserted into the URL forwarding table using incremental hash-
ing. Incremental hashing indirectly preserves relationships be-
tween successive URL components and is also used to encode
the list of URLs stored in a cache’s backing store. Assuming
the cache’s backing store’s meta-data is organized as a URL de-
composition tree, a left-to-right, depth-first traversal of the tree
produces a sequence of hash chains that are subsequently trans-
mitted by the cache to its neighborhood. The hash chains are re-
constructed and inserted directly into the receiving caches’ URL
forwarding tables.

Incremental hashing in the current implementation of AWC’s
URL forwarding table is done via 19-bit CRC codes. The prob-
ability of a hash chain collision, where two disjoint URLs pro-

duce the same sequence of hash codes, is analytically shown to
be 2-’, where 1 is the degree of the CRC generator polynomial.
Observations from five different data sets show that the collision
rate can be two order of magnitudes higher because the input to
the CRC function is highly regular text. Nonetheless, the average
observed collision rate would cause 1 out of 11,087 requests to
be forwarded incorrectly to a cache where the requested URL’s
contents were not stored in its backing store. Assuming that a
cache takes lOOms to process a request, this collision rate adds
9 .70~s average additional per-request latency.

The hash chain sequences provide a simple compression
mechanism which disseminates an imprecise snapshot of a sin-
gle cache’s backing store. This is compared with the Sum-
mary Cache mechanism. Summary Cache and hash chain se-
quences provide caching systems with the ability to implicitly
probe other caches’ backing stores. While Summary Cache
achieves smaller backing store snapshots with a comparable col-
lision rate, the hash chain approach has the distinct advantage
that the CRC codes are easier to compute than Summary Cache’s
MD5 signatures and it is expected that AWC caches can forward
requests faster when under load.

Application-level forwarding and routing is a successful
mechanism for URL request processing in the context of Adap-
tive Web Caching. The approach can be extended to a more gen-
eral application framework and applied to different name spaces
other than URLs for application areas such as service discovery,
naming services, file replication, and dynamic code dependency
resolution in active networks. Forwarding facilitates construct-
ing an integrated infrastructure connecting clients, application
“routers” or “gateways”, and servers. This approach also en-
courages experimentation with routing protocols which supply
application-specific properties without disrupting the underlying
Internet routing infrastructure at large. Further research in this
topic will focus on the development and understand the bene-
fits of a general application-level forwarding and routing frame-
work.

VI. MOTIVATIONS, INSPIRATIONS, AND
ACKNOWLEDGMENTS

The motivations and inspirations for application-level for-
warding and routing in AWC came from numerous design dis-
cussions in addition to the literature. The authors would like to
thank Adam Rosenstein and Khoi Nguyen, of the UCLA Com-
puter Science Department, for their input and participation.

From the literature, it suffices to mention two papers which
helped mold the AWC forwarding table into what it has become.
The Cache Array Routing Protocol (CARP) [1 11 proposed client-
side URL hashing as the basis for forwarding a request within
an array of caches. Each cache in the array is responsible for
a segment of the hash function’s range; locating where con-
tent is likely to be cached becomes deterministic in this sys-
tem. This algorithmic simplicity was desired in AWC’S local

0-7803-5880-5/00/$10.00 (c) 2000 IEEE 677 IEEE INFOCOM 2000

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on October 24, 2009 at 01:27 from IEEE Xplore. Restrictions apply.

neighborhood search. Incremental hashing was motivated by
recursive n-gram hashing [12]. Given a sequence of symbols,
S = (sl, s2, sg, . . . , S N + (~ - ~)) , an n-gram of the sequence is
an n-long subsequence of consecutive symbols. [12, p. 2911.
The attractive feature of n-gram hashing functions is that they
produce distinct hash code sequences codes when applied to the
first through ith n-gram. Polynomial division in the GF(2) field,
also the basis of CRC codes, is one of the recursive hashing
techniques discussed and has desirable computational charac-
teristics, being composed of shift and XOR operations. The fast
computation and the generally low collision rates of these func-
tions were the main factors for adopting CRC functions in the
AWC forwarding table’s implementation.

REFERENCES
S.D. Gribble and E. Brewer, “System Design Issues for Internet Middle-
ware Services: Deductions from a Large Client Trace,” in Proceedings
of the I997 USENIX Symposium on Internet Technolgoies and Systems
(USITS), Monterey, CA, USA, Dec. 1997.
P. Cao, L. Fan, G. Phillips, S. Shenker, and L. Breslau, “Web Caching and
Zipf-like Distributions: Evidence and Implications,” in INFOCOM. 1999.
S. Floyd, L. Zhang, and V. Jacobson, “Adaptive Wzb Caching,”
http://irl.cs.ucla.edu/awc.html, May 1997, DARPA-funded Research
Project.
T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform Resource Identi-
fiers (URI): Generic Syntax,” Internet standards track RFC, August 1998,
Updates RFC 1738.
W. Wesley Peterson and E. J. Weldon, Jr., Error-Correcting Codes, The
MIT Press, Second edition, 1972.
Craig Partridge, Jim Hughes, and Jonathan Stone, “Performance of check-
sums and CRCs over real data,” SIGCOMM ’95. vol. 25, no. 4, pp. 68 -
76. October 1995, Proceedings of the conference on Applications, tech-
nologies, architectures, and protocols for computer communication.
D.N. Serpanos and W.H. Wolf, “Caching Web objects using Zipf‘s law,” in
SPIE - The International Society for Optical Engineering. SPIE-lnt. Soc.
Opt. Eng, 1998, vol. 3527, pp. 320-6, (Multimedia Storage and Archiving
Systems 111. Boston, MA, USA, 2-4 Nov. 1998.).
Ming-Syan Chen, Jon So0 Park, and Phillip S. Yu, “Efficient Data Mining
for Path Traversal Patterns:’ IEEE Transactions on Knowledge and Data
Engineering, vol. 10, no. 2. pp. 209-221, MarchlApril 1998.
Li Fan, Pei Cao, Jussara Alameida, and Andrei Broder, “Summary Cache:
A Scalable Wide-Area Cache Sharing Protocol,” in ACM SIGCOMM’98,
1998, pp. 245-265, Technical Report 1361, Computer Sciences Depart-
ment, Univ. of Wisconsin-Madison, Feb 1998.
J.D. Touch, “Performance analysis of MD5,” Computer Communication
Review, vol. 25, no. 4, pp. 77-86, Oct. 1995, (ACM SIGCOMM ’95,
Cambridge, MA, USA, 28 Aug.- 1 Sept. 1995.).
K. W Ross, “Hash routing for collections of shared Web caches,” IEEE
Network, vol. 11, no. 6, pp. 37-44, Nov.-Dec. 1997.
J.D. Cohen, “Recursive Hashing Functions for n-grams,” ACM Transac-
tions on Information Systems, vol. 15, no. 3, pp. 291-320, July 1997.
A. Chankhunthod. P. Danzig, C. Neerdaels, M.F. Schwartz, and K:J. Wor-
rell, “A Hierarchical Internet Object Cache,” Technical Report 95-61 1,
Computer Science Department, University of Southern California, Los
Angeles, California, March 1995.
National Laboratory for Applied Network Research, Squid Internet Object
Cache, http://squid.nlanr.net/Squid/.
N.G. Smith, “The UK national Web cache-the state of the art,” Computer
Nerworkr and ISDN Systems, vol. 28, no. 7-11, pp. 1407-14. May 1996,
(Fifth International World Wide Web Conference, Paris, France, 6-10 May
1996.).
D. Neal, “The Harvest object cache in New Zealand.,” Computer Networks
and ISDN Systems, vol. 28, no. 7-11, pp. 1415-30, May 1996, (Fifth In-
ternational World Wide Web Conference, Paris, France, 6-10 May 1996.).

0-7803-5880-5/00/$10.00 (c) 2000 IEEE 678 IEEE INFOCOM 2000

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on October 24, 2009 at 01:27 from IEEE Xplore. Restrictions apply.

http://irl.cs.ucla.edu/awc.html
http://squid.nlanr.net/Squid

