
Observations from the DNSSEC Deployment∗

Eric Osterweil

UCLA

eoster@cs.ucla.edu

Dan Massey

Colorado State University

massey@cs.colostate.edu

Lixia Zhang

UCLA

lixia@cs.ucla.edu

Abstract

DNS Security Extensions have been developed to add

cryptographic protection to the Internet name resolution

service. In this paper we report the results from our

monitoring effort with early DNSSEC deployment trials

and the lessons learned.

1 Introduction

Cryptography can provide an effective step to-
ward securing critical Internet protocols. The DNS
Security Extensions (DNSSEC) [5, 7, 6] are one of
the first attempts to deploy cryptography in a large-
scale distributed system that is collectively oper-
ated by millions of autonomous administrative do-
mains. In this paper, we present the first measure-
ment study of the DNSSEC deployment by early
adopters. Our study shows that the challenges in
the DNSSEC deployment arise from difficulties in
coordinating millions of diverse administrative do-
mains as required by the cryptographic mechanisms,
and from a lack of understanding and experience
with cryptographic techniques. Our results also
show the importance of a monitoring system to aug-
ment the DNSSEC deployment.

After a brief introduction to DNSSEC in Section
2, we report our measurement results in Section 3,
and provide an analysis of the implications in Sec-
tions 4 and 5. We conclude the paper with a dis-
cussion of lessons learned.

2 Background

The Domain Name System (DNS) maps host-
names such as “www.ucla.edu” to IP addresses and
provides a wide range of other mapping services
ranging from email to geographic location. Virtu-
ally every Internet application relies on looking up
certain DNS data. In this section we introduce a
basic set of DNS terminology which is used through-

∗This work is partially supported by the National Science
Foundation under Contract No. CNS-0524854. Opinions and
findings expressed in this paper are those of the authors and
do not necessarily reflect the views of NSF.

out the text, including resource records (RRs), re-
source record sets (RRsets), and zones, followed by
an overview of the DNS Security Extensions.

All DNS data is stored in the same data structure
called Resource Records (RRs), and each RR has an
associated name, class, and type. For example, an
IPv4 address for www.ucla.edu is stored in an RR
with name www.ucla.edu, class IN (Internet), and
type A (IPv4 address). A host with several IPv4
addresses will have several RRs, each with the same
name, class, and type but its own IPv4 address. The
set of all resource records associated with the same
name, class, and type is called an Resource Record
Set (RRset). DNS resolvers query for RRsets. For
example, a browser will query for 〈www.ucla.edu,
IN, A〉, the reply will be the RRset for www.ucla.edu
with all the IPv4 addresses for that name. Note
that the smallest unit that can be requested in a
query is an RRset, and all DNS actions including
cryptographic signatures, discussed later, apply to
RRsets instead of individual RRs.

The DNS is a distributed database organized in
a tree structure. At the top of the tree, the root
zone delegates authority to generic top level do-
mains (such as com, net, org, and edu), and coun-
try code top level domains (such as uk, cn, and
jp). The domain “com” then delegates authority
to create google.com, “edu” delegates authority to
create “ucla.edu”, and so forth. In the resulting
DNS tree structure, each node corresponds to a
zone. Each zone is served by multiple authorita-
tive nameservers to provide name resolution ser-
vices for all the names in the zone. Every RRset in
the DNS is owned by a particular zone and stored
at the nameservers of that zone. For example, the
RRset for 〈www.ucla.edu, IN, A〉 is owned by the
ucla.edu zone and stored in the ucla.edu name-
servers; while the RRset for 〈www.colostate.edu,
IN, A〉 is owned by the colostate.edu zone and stored
in the colostate.edu nameservers.

2.1 DNSSEC Overview

Security was not a primary objective when the
DNS was designed in mid 80’s and a number of well

1



known vulnerabilities have been identified [1, 2].
DNSSEC provides a cryptographic solution to the
problem, which seems pretty simple and intuitive.
To prove that data in a DNS reply is authentic, each
zone creates public/private key pairs. It then uses
the private portions of its key(s) to sign data. Its
public keys are stored in a new type of RR called
“DNSKEY”, and all the signatures are stored in an-
other new type of RR called “RRSIG”. In response
to a query, an authoritative server returns both the
requested data and its associated RRSIG RRset. A
resolver that has learned the DNSKEY of the re-
quested zone can verify the origin authenticity and
integrity of the reply data. To resist replay attacks,
each signature carries a definitive expiration time.

In order to learn the DNSKEY for a given zone,
the resolver constructs a chain of trust that follows
the DNS hierarchy down from a trusted root. For
example, the DNS root public key would be used to
authenticate the public key of edu; the public key of
edu would be used to authenticate the public key of
ucla.edu; and so forth. To build the chain of trust
with its parent, one key at the zone must correspond
to a matching record, called the DS RR, stored at
its parent. The DS record is signed by the parent’s
private key to create an authentication link from
the parent to child zone. It is the child’s responsi-
bility to request an update to the DS RR anytime
the child’s public key changes. Since the child zone
must request a DS RR update at its parent zone
every time the child’s public key changes, the child
zone can gain added flexibility by using two pub-
lic keys. A key signing key (KSK) is a public key
that matches the DS RR stored at the parent. It is
then used to sign one or more public keys called the
zone signing keys (ZSK). These ZSKs can then be
changed locally without notifying the parent.

3 Monitoring DNSSEC Deployment

The latest DNSSEC specifications were pub-
lished in March 2005 and our monitoring project,
SecSpider, began collecting data a few months later
in October 2005. The first challenge is to find zones
that have deployed DNSSEC. Once a secure zone
is found, SecSpider performs periodic checks on the
zone and records the details about how DNSSEC is
being managed at that zone. Our data collection
provides both a glimpse at how widely DNSSEC is
being deployed as well as insights into design is-
sues, cryptographic assumptions versus practices,
and open challenges for both DNSSEC design and
operations.

3.1 Tracking the Number of Secure Zones

Our first objective is to monitor how many zones
have deployed DNSSEC and observe the deploy-

Figure 1. Number of Secure Zones

ment trends over time. The total number of DNS
zones is vast (tens of millions) and is constantly
changing. Any of these zones may deploy (or dis-
able) DNSSEC at any time. SecSpider uses a combi-
nation of DNS crawling (searching the DNS names-
pace) and user submissions to find zones that have
deployed DNSSEC. SecSpider started after initially
crawling over 18 million zones and continually ex-
pands its search. However due to the vast size of
DNS, some DNSSEC zones can take a long time to
be found.

At this early stage of deployment, user submis-
sions are the most effective vehicle for learning new
DNSSEC zones. SecSpider has been prominently
featured in the community with links on several
websites and mailing lists. In addition to submitting
their own secure zones, users may also submit the
name of any zone that is important to them (even
insecure zones such as google.com). SecSpider vis-
its all the submitted zones frequently, so when they
choose to deploy DNSSEC, they will immediately
benefit from the additional monitoring discussed be-
low. SecSpider also automatically finds and moni-
tors the parent of each secure zone, to verify the
authentication chain correctness if the parent zone
is secure. If the parent zone is not secure, SecSpi-
der still tracks it and looks for the moment when
the parent enables DNSSEC.

Figure 1 shows the number of zones that have
deployed DNSSEC. The bottom bars show whether
the newly found secure zones were found by the
crawler or submitted by users. Currently, SecSpi-
der monitors 1,767 zones. Of these, 871 are clas-
sified as secure. The crawler continues to search
for additional secure zones and users continue to
submit new (both secure and not yet secure) zones
for monitoring. Although the number of DNSSEC-
enabled zones is small and represents no meaningful
percentage of the DNS at this time, some promising

2



trends are emerging. Several country code top level
domains (ccTLDs) have deployed DNSSEC and are
attracting more production quality zones in those
regions. At the time this data was compiled, the
ccTLD bg has secure delegations to 69 secure zones
under it and the ccTLD se has secure delegations
to 40 secure zones.

3.2 Secure Zones Monitoring

Once a zone name is identified by either crawling
or user submission, it is relatively straightforward
to detect whether the zone has deployed DNSSEC.
First, a secure zone must have at least one DNSKEY
RR for its name, to hold its public key. By sim-
ply querying for RRset 〈zonename, IN, DNSKEY〉,
one can determine if DNSSEC is being used. The
DNSKEY RRset holds the set of public keys and
all other RRsets in the zone must be signed by one
of the corresponding private keys. If a resolver sig-
nals support for DNSSEC, an RRset returned by
the zone’s nameservers should be accompanied by
corresponding RRSIG resource record(s). The com-
bination of DNSKEY (public key) and RRSIG (sig-
nature by the private key) allows the resolver to
authenticate the RRset data.

In addition to the DNSKEY and RRSIG records,
a secure zone also contains NSEC records. To
prove that a particular name or RRset does not ex-
ist, DNSSEC introduces a canonical ordering of all
names in a zone and uses the NSEC RRs to enu-
merate them. An NSEC record specifies the “next”
conically ordered name that occurs in the zone. One
unintended side effect of the controversial NSEC
RRs is that they make zone monitoring much easier.
By starting with the zone name and using the NSEC
record, one can find the first name in the zone, then
use the NSEC record associated with the first name
to find the second name in the zone and so forth.
This allows one to “walk the zone” to discover all
the records, including all delegated zones. The use
of NSEC records raises privacy concerns which are
beyond the scope of this paper, we simply point out
that the “zone walking” can be exploited both for
finding other secure zones and for tracking changes
as discussed later in this section.

By querying for a DNSKEY RR and then using
NSEC RRs to enumerate secure zones, SecSpider
can find all records and check for proper signatures
and responses for all nameservers associated with a
zone. SecSpider monitors secure zones once a day
and posts the summary information on the SecSpi-
der website http://secspider.cs.ucla.edu/. The mon-
itoring data has enabled zone administrators to de-
tect and correct a number of configuration errors. In
the remainder of this paper, we focus on key man-
agement practices and challenges seen by SecSpider.

4 Findings from Monitoring

Up to now the main focus of DNSSEC tool-set
development has centered around signing zones. A
number of tool-sets exist to help administrators:
generate key pairs, sign zones, insert public keys
into DNSKEY RRs, insert NSEC RRs, and sign
all the RRsets with RRSIGs. Most recent DNS
servers load the resulting signed zone and apply the
DNSSEC rules when answering queries. DNSSEC-
aware resolvers thus receive signed responses.

However the data collected by SecSpider shows
that the challenge in DNSSEC deployment goes far
beyond signing a zone. In this section we briefly
describe three major issues we have identified.

4.1 Islands of Security

The DNSSEC design leverages DNS’ tree struc-
ture to build a public key hierarchy. Although the
concept is simple, its implementation turns out to
be challenging in practice. Secure delegations in-
volve coordination across different administrative
domains, each of which may have different goals and
priorities regarding DNSSEC deployment. When a
zone enables DNSSEC, it is often the case that its
parent zone still does not support DNSSEC. There-
fore there is no authentication chain leading down
from the root, resulting in an “island of security”.

More formally, an island of security is a subtree
where every zone in the subtree is signed; if this sub-
tree contains more than one zone, every zone below
the subtree’s root has also established an authen-
tication chain with its parent. Islands of security
play an important role in DNSSEC deployment be-
cause client resolvers need to be configured with the
public keys belonging to the roots of all of the is-
lands of security in order to authenticate DNSSEC
replies to queries. If DNSSEC were fully deployed,
the entire DNS would form a single island of secu-
rity and resolvers would only need to be configured
with the root zone’s public key and could then build
an authentication chain to any zone in the DNS.

However the root zone and most top level do-
mains have not deployed DNSSEC. As a result, the
current DNSSEC deployment consists of individual
islands of security. When SecSpider began monitor-
ing, very few zones had either a secure parent or
child zone, thus essentially every zone made its own
island of security. Over time, bigger islands began
to occur, and a few islands began to grow noticeably
at the beginning of this year. Figure 2 shows the size
distribution of the current islands of security: the
x-axis indicates the number of zones in each island,
and the y-axis shows how many islands have that
size. Currently, the ccTLD bg. is the largest known
island with 69 zones; a few other islands have a size
less than 10, but the vast majority of islands still

3



Figure 2. Islands of Security.

have a size of 1.

4.2 Key Management Practices

For those zones that do have a secure parent,
they need to maintain the corresponding authenti-
cation chain. For this, the child zone must request
a DS RR update at its parent zone every time the
child’s key changes, and the parent must sign the
new DS RR. As described in Section 2.1, a child
zone can gain added flexibility by using a key sign-
ing key (KSK) to sign one or more zone signing keys
(ZSK), which in turn are used to sign data RRs in
the zone. The KSK matches the DS RR stored at
the parent zone to maintain the chain of trust, and
ZSKs can be changed locally without notifying the
parent. Even zones that don’t have a secure parent
(i.e. islands of security) benefit by using a KSK and
ZSK: their KSKs need to be configured into secure
resolvers, thus would be difficult to change; however
they can freely change the ZSKs. For zones using
both KSK and ZSK, one would expect the former
to have a much longer lifetime than the latter.

Of the 871 secure zones currently known by Sec-
Spider, 711 of them use both a KSK and ZSK. Fig-
ure 3 show the average key lifetime graphed over
time. Most of the DNSSEC zone signing tools use
a default 30-day key lifetime. Prior to early 2006,
the average lifetime for both KSK and ZSK pub-
lic keys was 30 days. Figure 4 shows the maximum
observed KSK (and ZSK) lifetime and minimum ob-
served KSK (and ZSK) lifetime. The graph shows
the very first early adopters selected the default key
lifetimes and variations became apparent starting in
early 2006. However, the largest ZSK lifetime still
closely tracks the largest KSK lifetime, defeating the
purpose of having a long lasting KSK key that re-
quires external coordination and shorter lived ZSK
whose change requires no external coordination.

Figure 3. Average Key Lifetimes.

Figure 4. Maximum and Minimum Key Lifetimes

4.3 Lifetimes and Replay Attacks

The Lifetime of signatures plays an important
role in DNSSEC because there is no revocation
mechanism. Although recent work [3] has suggested
mechanisms to address this need, the absence of
any accepted practice underscores the importance
of DNSSEC’s signature dates. In DNSSEC, each
signature over an RRset contains inception and ex-
piration dates. These dates are often on the order
of months, and 30 days is a typical default value.
By contrast, the time to live (TTL) value used for
DNS caching is on the order of minutes or hours.
If an RRset happens to change before its signature
expires, the old RRset and its corresponding signa-
ture (RRSIG) is replaced by a new RRset and new
RRSIG at the authoritative server. Resolvers who
have the old copy cached will discard the old value
after the TTL expires and fetch a new copy from the
authoritative server if the RRset is needed again.

This assumes the resolver will fetch the new copy
from a valid authoritative server. If an attacker
can replay the old value, resolvers will continue to
consider the old data to be valid until the signa-

4



Figure 5. RRsets Vulnerable to Replay Attack

ture expires (days or months!). This incongruity
between signature lifetimes of days or months and
cache lifetimes of minutes or hours is largely due to
the overhead and complexity associated with sign-
ing records. The net result is a potentially very
long replay window in which an attacker can replay
old records and resolvers believe the records to be
authentic.

We say an RRset is vulnerable if the RRset
currently stored at the authoritative server has
changed, but the signature on the previous RRset
has yet to expire. An attacker can replay this old
data until the signature expires, effectively block-
ing any intended change from occurring. For exam-
ple, a web server under DDoS attack may change
its IP address. However an attacker could replay
the RRset with the old address and old signature,
falsely proving to resolvers that web server did not
change its address. Note it is trivial for the attacker
to retain old data since (s)he can simply not delete
the old RRset when the TTL expires.

Figure 5 shows that for a protracted period in the
past, there were a significant number of zones whose
signing behaviors left over 100 vulnerable RRsets at
any given time. However, in the more recent past
we can see that zones have increasingly chosen non-
default signature lifetimes. We believe this partly
due to the vulnerable RRset tracking provided by
SecSpider; some zone administrators have also dis-
cussed vulnerable RRset issues with us.

5 Key Management Revisited

The DNSSEC standard has undergone major re-
visions and one of the major changes involved key
management between parent and child zones. This
revision introduced the DS RR to help decouple par-
ent and child key management and it is believed the
protocol is now stable. However our monitoring re-
sults suggest that much work has yet to be done.
These remaining challenges and open issues are pri-

marily operational in nature. Although they may
not require a change in the protocol, they do re-
quire new operational practices at a minimum and
ideally new supporting mechanisms and protocols
to make the system truly effective.

5.1 Experience with Cryptography

DNSSEC and cryptographic techniques are a new
addition to DNS administration. Our results show
that the very early adopters followed the default
rules settings, almost without any modification.
Nearly all zones use both the KSK and ZSK and
nearly all keys had the default lifetime on their as-
sociated signatures. Recently, more divergence has
occurred, but some fundamental concerns remain.
For example, how effective is the use of KSK and
ZSK if both keys have identical lifetimes and expire
at the same time? How well are signature lifetimes
being chosen for data records? Are the implications
of these choices well understood? Our results gave
mixed reports. It is clear that the operators for
the majority of the zones being monitored are yet
to master the practice of cryptographic techniques.
On the other hand, zones are beginning to make
their own choices instead of copying the defaults,
and there does appear to be improvement in vul-
nerable RRsets.

5.2 Parent and Child Coordination

To maintain a secure delegation, the DS record at
the parent must match the DNSKEY record at the
child or the authentication chain will fail. The anal-
ogous procedure in DNS is a parent and child must
coordinate nameserver (NS) records. Ideally the NS
RRset at the parent should match the child’s, how-
ever our previous work [4] shows that mismatches
are common. This is largely due to the facts that:
parent and child zones belong to different organiza-
tions, operator coordination is required every time
the child zone makes changes, and manual config-
urations inevitably introduce human errors. Fortu-
nately DNS is resilient to such errors as long as at
least one NS record at the parent matches an NS at
the child.

Unfortunately cryptographic checking is much
less tolerant to errors. Ideally, the parent zone
should have only one DS record that exactly
matches the DNSKEY RR at the child. However
given that DNS has not shown a history of strong
coordination between parent and child, it is likely
that human errors will lead to DNSSEC key mis-
matches, which can result in secure resolvers dis-
carding all answers from the child zone, since they
fail the DNSSEC authentication checks. Relying
on manual coordination is a recipe for disaster.
We believe that protocols to automate the mainte-

5



nance of DS/DNSKEY consistency and monitoring
efforts such as SecSpider are essential components in
DNSSEC deployment, in order to catch errors be-
fore end users report loss of service. Furthermore,
the degree to which a resolver requires perfect au-
thentication needs to be reconsidered. Rigid appli-
cation of authentication checks provides clear and
provable statements about whether data will or will
not be accepted, but may reject valid data due to in-
evitable configuration errors in practice. More flex-
ible choices can tolerate such inevitable errors, but
can also open doors for attacks.

5.3 Incremental Deployment

Our monitoring thus far shows that DNSSEC de-
ployment does not follow the DNS tree hierarchy.
Parent and child zones have different interests for
enabling DNSSEC, and experience different levels
of difficulty doing so. Fundamentally, DNS is a dis-
tributed system and a child zone cannot make its
parent to turn on DNSSEC. The result is a large
number of small islands of security. In the cur-
rent scenario, a secure resolver would need to be
manually configured with the public keys for all the
islands of security in order to securely resolve data
from all the secure DNS zones. It would also need to
update its set of public keys whenever KSKs change,
and our results show the average KSK lifetime is 34
days. At best, this presents a major configuration
challenge for resolvers.

Efforts to secure the root and other top level
domains are important and being pursued, how-
ever the different interests between parent and child
zones suggest that the large number of islands of
security will remain a reality in the foreseeable fu-
ture. Hence we must be able to successfully roll out
DNSSEC in the face of this reality.

6 Discussion and Future Work

SecSpider has been running for over a year and
we have learned a great deal from its monitoring
results. Our major observations can be summa-
rized as follows. First, our measurement showed
the lack of understanding in cryptographic manage-
ment, such as the implication of key lifetime and
signature lifetime. Since the TCP/IP specification
publication in 1981, we have accumulated 26 years
of operational experience with running the Internet.
However the experience using cryptographic tech-
niques is much shorter and limited. If one aims to
quickly roll cryptographic protection into the Inter-
net’s operations, the design must work well without
requiring all operators to be cryptographically lit-
erate.

Second, DNSSEC deployment requires coordina-
tion across administrative domain boundaries, er-

rors will inevitably occur in this process, as seen by
observing DNS operations [4]. The damage from NS
RRset mismatches between parent and child zones
mostly leads to degraded performance, however the
damage by DS RR mismatches can lead to unavail-
ability. Since it is impossible to eliminate human
errors, we feel strongly that monitoring should be
an integral part of the DNSSEC deployment. Our
measurements also show that the DNSSEC opera-
tors have reacted to our measurement results and
changed their practice accordingly. This is an en-
couraging sign showing that a monitoring system
can provide effective feedback to correct or improve
the operations, further underscoring the important
role of a monitoring system as a first-class compo-
nent of the DNSSEC deployment.

Finally, our measurements also highlight one fun-
damental need in the DNSSEC rollout: supporting
DNSSEC deployment by isolated islands. Due to
the distributed nature of the DNS system, a child
cannot make its parent turn on DNSSEC when the
child needs its key validation. Thus to enable ev-
eryone who needs DNSSEC, we must provide key
verification for isolated islands of security.

We are extending SecSpider to be a distributed
monitoring system, that will probe DNSSEC zones
from multiple locations. This helps to substantially
reduce the impact of (1) network failures on our
monitoring results, and (2) potential damage to our
monitoring results due to man-in-middle (MIM) at-
tacks, as it would be difficult, if not impossible, for
MIM attackers to insert themselves into the paths
of all our monitor probes located in different con-
tinents and ASes. As SecSpider becomes a dis-
tributed monitoring system and its monitoring re-
sults become more trustworthy, we plan to evolve it
towards a key lookup system, as a viable solution to
support isolated islands of DNSSEC deployment.

References

[1] S. M. Bellovin. Using the domain name system for system
break-ins. pages 199–208.

[2] D. A. D. Atkins. Threat Analysis of the Domain Name
System (DNS). RFC 3833, August 2004.

[3] E. Osterweil, V. Pappas, D. Massey, and L. Zhang. Zone
state revocation for dnssec. In LSAD ’07: Proceedings
of ACM Sigcomm Workshop on Large Scale Attack De-
fenses, 2007.

[4] V. Pappas, Z. Xu, S. Lu, D. Massey, A. Terzis, and
L. Zhang. Impact of Configuration Errors on DNS Ro-
bustness. In ACM SIGCOMM, 2004.

[5] M. L. D. M. S. R. R. Arends, R. Austein. DNS Security
Introduction and Requirement. RFC 4033, March 2005.

[6] M. L. D. M. S. R. R. Arends, R. Austein. Protocol Mod-
ifications for the DNS Security Extensions. RFC 4035,
March 2005.

[7] M. L. D. M. S. R. R. Arends, R. Austein. Resource
Records for the DNS Security Extensions. RFC 4034,
March 2005.

6


