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ABSTRACT
DNS Security Extensions (DNSSEC) are designed to add cryp-

tographic protection to the Internet’s name resolution service.

However the current design lacks a key revocation mechanism. In

this paper we present Zone State Revocation (ZSR), a lightweight

and backward compatible enhancement to DNSSEC. ZSR enables

zones to explicitly revoke keys using self-certifying certificates,

and enables DNS name-servers to opportunistically inform dis-

tributed caching resolvers of key revocations via lightweight con-

trol messages. Further, ZSR allows resolvers to distinguish be-

tween legitimate key changes and potential attacks when authen-

tication chains are broken. ZSR is designed to work well with

global-scale DNS operations, where millions of caches may need

to be informed of a revocation, and where time is critical.

1. INTRODUCTION
The Domain Name System (DNS) [4] provides name res-

olution service for the global Internet and is collectively op-
erated by millions of autonomous administrative domains.
To secure this critical service, the DNS Security Extensions
(DNSSEC) [6, 8, 7] have been developed to add crypto-
graphic protection to DNS. DNSSEC uses public-key cryp-
tography to authenticate DNS data. It leverages the existing
DNS delegation hierarchy to create a Public-Key Infrastruc-
ture (PKI) where each zone signs the public keys of all of
its children. However, after years of development efforts, a
number of DNSSEC deployment issues remain open.

One of the remaining issues is emergency key revocation.
DNSSEC has well defined procedures to let each zone change
its public-private key pairs periodically under normal opera-
tions, but has no procedure to handle emergency situations,
such as when a zone’s private key is lost or compromised.
With a zone’s private key, an adversary (Eve) could hijack
a zone’s webservers, name-servers, or even create fictitious
child zones. One could simply remove the compromised pub-
lic key from the authoritative DNS servers, but this does not
revoke the compromised key.

The fundamental challenges in implementing emergency
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key revocation come from DNS’ heavy reliance on caching
and its global scale. Due to caching, DNS data records,
including essential DNSSEC keys and signatures, may be
stored at multiple caching resolvers even after they have
been removed from the authoritative servers. The unfortu-
nate fact is that, due to the scale of DNS, there is no way
to know how many and which DNS resolvers have cached
the old keys and corresponding signatures that authenticate
the old keys. Thus, there is no way to notify them about
the key changes. Eve can replay stale public keys and stale
authentication chains until their definitive lifetimes expire.
The affected zones can be in a vulnerable state for weeks or
months. What is needed is a revocation mechanism that can
immediately revoke a zone’s key(s), revoke the signatures
generated by these keys, and inform DNS caching resolvers
throughout the Internet to flush stale entries and re-fetch
affected data.

In this paper, we develop the Zone State Revocation (ZSR)
mechanism for handling emergency key revocations and re-
voking obsolete signatures at the Internet-scale. ZSR makes
a simple observation about the current operation of DNSSEC
that all signature lifetimes are temporal (based on an incep-
tion date and an expiration date), but emergencies reflect
unplanned events that are not able to be captured by pre-
set date ranges. In ZSR, the idea of a zone’s state is for-
malized and used to augment DNSSEC’s signing practices.
Specifically, signatures include state-lease information in ad-
dition to dates, thus they can be invalidated if a zone’s state
changes beyond the specified lease. Additionally, ZSR de-
fines a new revocation key resource record (REVKEY) that
enables a DNS server to definitively revoke a key. We show
that ZSR is a simple, incrementally deployable, and a back-
wards compatible enhancement to DNSSEC. ZSR offers the
ability to i) let a server mark a public key as being revoked,
ii) efficiently disseminate the information of a revoked key
to the potentially large-scale number relevant resolvers, and
iii) enable resolvers to distinguish between attacks and emer-
gency key changes.

The remainder of this paper is organized as follows: Sec-
tions 2 and 3 describe the background and threat model.
Section 4 describes the details of ZSR, Section 5 follows with
the analysis that supports it, and Section 6 concludes.

2. BACKGROUND
DNS and DNSSEC: The DNS name space is divided

into multiple sub-spaces called zones that represent sub-trees
in the DNS name hierarchy. Each zone is identified by its
“Start of Authority” (SOA) data record, which identifies a



zone’s namespace and its meta-data. A zone’s data records
are replicated in multiple authoritative name-servers. Typ-
ically, one authoritative server that holds a master copy of
a zone resource records (RRs) and several other secondary
servers replicate this zone data from the master server. Af-
ter a data update, a serial number in the SOA record is
incremented to signal to secondary servers that they should
initiate a replication. The SOA record also plays an impor-
tant role in our revocation scheme.

The DNS Security Extensions (DNSSEC) [6, 8, 7] use a
public-key based cryptographic system to add origin authen-
tication and data integrity to DNS services. The basic idea
is relatively simple, but the process of adding cryptography
to an existing large scale distributed system is non-trivial
and DNSSEC’s design has undergone several major revisions
over the last decade. Below we review DNSSEC’s central
concepts, the current DNSSEC key management practices,
and the revocation problem.

To prove that the data records in a DNS reply are authen-
tic, each zone creates public/private key pairs to verify and
sign each data record. The public key of a zone is stored in
a record called a DNSKEY, and the signatures are stored
in RRSIG records. In response to a query, an authoritative
server returns both the requested data and its associated
RRSIG records. A resolver that has learned the DNSKEY
of the requested zone can use it to verify the origin authen-
ticity and integrity of the reply data. To resist replay at-
tacks, each signature carries a definitive expiration time. In
order to accommodate the additional space needed for cryp-
tographic signatures and keys, DNSSEC requires the use of
Extension mechanisms for DNS (EDNS0 [10]). EDNS0 uses
a meta record (called an OPT record) to allow DNS name-
servers and resolvers to negotiate options such as packet
sizes.

A zone’s DNSKEYs can be retrieved via standard DNS re-
quests, but their authenticity (i.e. if the key returned indeed
belongs to the zone it claims) needs to be vouched by a par-
ent zone’s DNSKEY. This is called a secure delegation. In
order to check the validity of a secure delegation, DNSSEC
expects a resolver to construct a chain of trust that follows
the DNS hierarchy from a trusted root to the zone in ques-
tion. For example, the public key of the DNS root would be
used to authenticate the public key of edu zone; the public
key of edu zone would in turn be used to authenticate the
public key of ucla.edu zone; and so forth. Although this
key hierarchy seems simple in concept, managing it is chal-
lenging in practice, due to the necessary coordination across
different administrative domains.

Secure delegations are implemented by storing only the
hash (or finger-print) of a zone’s public key at its parent
zone. These records are called Delegation Signing (DS)
records, and are signed by the parent’s key. When a child
zone changes its public key, it must request an update to the
DS record in its parent’s zone so that the parent can sign
the new DS record.

Conceptually, each secure zone has a single public key-
pair. The private key signs the zone data, the public key
verifies signatures, and the public key matches a signed DS
record at the zone’s parent. Cryptographic keys should be
changed periodically to reduce the chance of compromise,
but any coordination across administrative boundaries is po-
tentially slow, which makes key changes harder to manage.
For this reason, zone operators are encouraged to use two
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Figure 1: Here target.sec’s DS record is stored at its parent

(sec). Resolvers can query sec for target.sec’s DS record, and

then target.sec for its KSK. Confirming the DS record verifies

the KSK completes the secure delegation from sec to target.sec.

Resolvers can then verify that target.sec’s KSK has signed

for the ZSK, and that the ZSK has signed for each resource

record (RR) in the zone.

distinct public key-pairs. One public key is called the Key
Signing Key (KSK). The KSK is created by the zone admin-
istrator and should match the DS record, signed and stored
at the parent zone. This is how a secure delegation is imple-
mented. Anytime the KSK changes, the zone must notify
its parent zone so the DS record can be changed accordingly.
This KSK could be used to sign the zone’s data records, but
the addition of a second public key pair will greatly simplify
operations.

In order to reduce coordination with the parent zone, ad-
ministrators are encouraged to generate a second public key
pair and use this second private key to sign the zone data.
Since this second public key is used to sign the all the zone
data, it is called the Zone Signing Key (ZSK). A resolver
must first authenticate the KSK and then use the KSK to
authenticate the ZSK and finally use the ZSK to authenti-
cate the actual zone data. Figure 1 shows a portion of the
authentication chain leading from a fictional top level do-
main (TLD), sec to a zone target.sec’s KSK and ZSK. The
duality of having 2 keys complicates matters conceptually,
but operationally it reduces coordination requirements be-
tween parent and child. KSKs are used less frequently (they
only sign ZSKs) and are, thus, allowed to change less fre-
quently. The ZSKs are not verified by zones’ parents (like
the KSKs are) but rely on a signatures produced by KSKs
instead. Since zone operators control all of their own keys,
ZSKs can be changed at any time without notifying the par-
ent zone (only a KSK change requires a DS update at the
parent).

DNSSEC Key Management: The DNS (and by ex-
tension, DNSSEC) relies heavily on caching for scalability
and performance, but does not have any type of cache-
coherence control. It is, therefore, not surprising that, at
any given moment, some caching resolvers may hold stale
records. This fact has greater implications in a secure sys-
tem than in the current DNS. In the case of DNSSEC, stale
DNSKEY records (those that a zone administrator would
like to revoke) can be exploited by an adversary.

DNSSEC does not have any mechanism for explicitly re-
voking keys. A zone’s administrator can remove the DNSKEY
record of a public key from the authoritative servers only
after it is no longer in use and its signatures should be no



longer present in caches according to the TTL value [5].
However removing this DNSKEY record from the authori-
tative servers does not revoke the key and does not assure
that it has been removed from the DNS system. The key
may still be present in some caches and an attacker can con-
tinue to replay the removed DNSKEY and repopulate the
caches until the signatures associated with the DNSKEY or
its authentication chain expires.

In cases when emergency key revocation is necessary (such
as the private portion of the key is compromised), DNSSEC
currently does not offer any good operational choices to han-
dle the situation. If the zone operator immediately removes
the compromised key, resolvers and caches that have cached
the old key would not be able to validate signatures, which
could create a great deal of collateral damage and result in
self-inflicted denial of service events.

DNSSEC’s signatures specify the period during which they
are valid. Forecasting this period is “optimistic,” but is
(arguably) used as a substitute for the missing revocation
system. By assigning inception and expiration dates (a spe-
cific lifetime) for its signatures, DNSSEC essentially assumes
that records will be valid in the future. Motivated by the
key management problems that DNSSEC faces, we devel-
oped a Zone State Revocation mechanism that allows zones
to rapidly revoke keys and to explicitly mark keys as re-
voked.

3. THREAT MODEL
DNSSEC’s cryptographic signatures protect users against

spoofing, assuming an adversary (Eve) is unable to produce
cryptographic signatures for data that she intends to pub-
lish, and these signatures are verified by a zone’s (such as
target.sec’s) DNSKEYs. However, if Eve is able to obtain
the private (or signing) portion of target.sec’s keys, then she
can spoof data and provide seemingly valid signatures. We
now enumerate several specific attack scenarios (what Eve
may do) and attack vectors (how she may do it).

3.1 Attack Scenarios
In the event that Eve has obtained the private portion of

a zone’s ZSK, she will be able to serve potentially malicious
data by injecting her own records, signed by a previously
valid key.

Eve may cause noticeable service disruptions by creating
signed:

1. End Host Records: Eve may create a new A record
such as www.target.sec, that points to a malicious host,
to get Alice to access it.

2. Nameserver Records: Eve may sign bogus NS+A records
that redirect all DNS queries to her own servers, and
cut the real target.sec out.

In addition, if Eve is able to compromise a zone’s KSK, she
can create new ZSKs at will and launch the above attacks.
This is because ZSKs are validated by signatures from KSKs.
Therefore, the ZSK attacks are a subsets of the possible
attacks that can be launched with a compromised KSK.

3.2 Attack Vectors
In order to attack, Eve must insert forged records about

target.sec in a caching server C. To do this, the relative loca-
tions of Eve, C, and target.sec’s name-servers in the network
influence the success of the attack. Next we enumerate the
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Figure 2: Figure (a) depicts a spoofing attack whereby Eve

returns a message to C before target.sec can. Figure (b) de-

picts a cache poisoning attack in which Eve inserts records

into C by piggy-backing on a valid request. Figure (c) shows

a man-in-the-middle attack in which Eve can intercept some

of the traffic bound for target.sec. Figure (d) shows a man-in-

the-middle attack in which Eve is able to intercept all of the

traffic bound for target.sec.

possible capabilities of Eve and her feasible attack vectors
(short of full control of all network traffic):

1. Spoofing Attack: Figure 2(a) shows the adversary spoof-
ing the DNS traffic between target.sec and C. This
attack can be successful only if the adversary can pre-
dict the IDs of the DNS packets[2]. Thus, Eve can
forge only some records of target.sec, and not all DNS
traffic.

2. Poisoning Attack: In Figure 2(b), Eve receives valid
DNS requests for her own data from C and replies by
appending forged records that belong to target.sec[3].
This can happen if Eve controls a server that C hap-
pens to use while resolving names, possibly names that
are not related to target.sec.

3. Man-In-The-Middle Attack (1): In Figure 2(c) Eve has
control over the DNS exchanges between target.sec and
C. She can snoop, block, and insert packets in the
communication pipe between C and target.sec. How-
ever, she can only control the communication pipes
between C and some of the name-servers of target.sec.

4. Man-In-The-Middle Attack (2): In Figure 2(d), Eve
again has control over the DNS exchanges between tar-
get.sec and C, but now she can control all the traffic
for (just) the name-servers of target.sec.



3.3 Attacks
The effectiveness of these attacks is illustrated by the fol-

lowing examples. Let us assume Eve has compromised the
private portion of target.sec’s ZSK.

If Eve is positioned in the same network as Alice, then it
may be possible for Eve to snoop Alice’s DNS requests, and
the subsequent resolver request. In such a case, Eve can use
attack vector 1.

Alternately, if Eve is an operator at any authoritative zone
(such as target.eve), any traffic to her servers (at any point
in time) will allow her to respond with additional records
(beyond the specified question), and Eve may include ficti-
tious records from target.sec. This optimistic caching policy
of DNS’ allows Eve to use attack vector 2.

If Eve is well positioned on a network that also hosts one
of target.sec’s name-servers, then she can try to intercept
requests from Alice, and respond with her own responses1.
While positioned in this way, Eve would be able to use attack
vector 3.

Finally, if Eve were able to intercept all outbound traffic
from Alice’s network (perhaps by being positioned at her
egress router), then Eve could disrupt all of Alice’s services
and effectively cut off queries to any of target.sec’s name-
servers (attack vector 4).

In Section 4 we demonstrate how ZSR combats these at-
tack vectors.

4. ZONE STATE REVOCATION
An emergency key revocation protocol for DNSSEC needs

to embody several qualities: i) it must be able to prove that a
key has been revoked, ii) it must be able to revoke signatures
from the revoked key, and iii) it must be able to rapidly
notify resolvers and caches that make use of the affected
zone’s data.

ZSR addresses these needs by: i) creating self-certifying
revocation certificates for revoked keys (called REVKEYs),
ii) bounding the validity of signatures so that they can be
invalidated at any time by dramatically changing the zone’s
state (represented by its SOA serial number), and iii) in-
cluding the zone’s serial number state in each DNS response
from its authoritative servers. The specific details are de-
scribed below in the next 3 subsections, respectively.

4.1 Proving Key Compromise
To provably indicate that a zone’s key has been revoked,

we introduce a new type of DNS resource record called the
REVKEY. The format of the REVKEY is identical to that
of the existing DNSKEY and thus uniquely identifies the
public key to be revoked. To ensure that only the valid
owner can revoke the public key, the REVKEY must be
signed by its corresponding private key.

The REVKEY records act as self-certifying revocation
certificates. Each REVKEY is a public key from the zone
that is served with the standard signature(s) that DNSSEC
attaches to all records. However, the REVKEY will also
have a signature from its own private portion attached. In
this way, any resolver that receives a REVKEY can use it to
verify its own attached signature. If the REVKEY verifies

1DNS best practices mandate that zones position their
name-servers in distributed locations, so it may be infeasible
for Eve to be located on all of networks that host target.sec’s
name-servers.

any of the attached signatures, the key must be considered to
be revoked. If the key cannot verify any of the attached sig-
natures, then nothing can be concluded and the REVKEY
must be ignored.

As an example: suppose a zone administrator, Alice wants
to revoke a DNSKEY Key1. She first creates a REVKEY
record for Key1 by simply replacing the type name“DNSKEY”
with “REVKEY”, then signing the REVKEY with its own
private portion, and storing the signature in an RRSIG. The
REVKEY and its corresponding signature records will be
served from the zone’s authoritative servers. Note that Eve
cannot revoke Key1 unless she has possessed the correspond-
ing private key. When a resolver obtains the REVKEY it
comes with its own signature and the resolver can do the
verification, without any further external queries.

4.2 Revoking Data
The mechanism by which DNSSEC validates resource records

is by creating companion signatures (RRSIGs) that have
both the standard DNS caching TTL, and inception and
expiration dates that create a lifetime during which the sig-
nature validates the resource records. In fact, DNSKEY life-
times are dictated by the RRSIGs attached to them. The
difficulty in managing emergency key revocation with this
mechanism is that emergencies tend to be unplanned, and
therefore, do not fit into pre-generated signature lifetimes.
In other words, if a zone operator (say, Alice) generates sig-
natures for her zone’s DNSKEY records that span a month,
and then must revoke her DNSKEY a week later, the signa-
tures will still appear to be valid.

This creates a logical dilemma for Alice, as she must now
weigh the costs and benefits of signing frequently and in-
curring larger computation overhead (and perhaps needing
to acquire more robust server hardware), or signing infre-
quently and leaving her zone vulnerable during emergencies.

ZSR augments the RRSIG inception/expiration values with
a numerical lease (a number that is based on the zone’s SOA
serial number) that compliments the lifetime. The lease sim-
ply adds a notion that indicates if the zone has not changed
its state by very much since the signature was generated,
then resolvers may use the RRSIG’s lifetime. If, however,
the zone’s state (serial number) has transitioned, and ex-
ceeded the lease specified by the signature, the record must
be flushed from the cache and re-fetched and the resolver
should query the zone for any REVKEYs.

In ZSR the RRSIG record format is modified to include
the serial number lease. This new field in the signature
record adds another dimension for validating a zone’s sig-
natures so that resolvers can confirm if any of their records
are dirty during an emergency. If an adversary (Eve) has
launched an attack using a zone’s ZSK, Alice may feel secure
by creating a REVKEY for the compromised key, breaking
the lease on her current signatures by immediately advanc-
ing her zone’ s serial number, and using a new key that is
signed by her zone’s KSK(s).

If Eve has compromised Alice’s KSK, it is important for
Alice to create a REVKEY (as above), and to break the
secure delegation from her parent zone (sec). For this rea-
son, we propose that DS records also include lease periods so
that Alice can break her DS lease when she needs to. With
a DS lease, resolvers who are walking the chain of trust can
decide if a secure delegation is still valid.

Whereas the signature lifetimes in RRSIGs are temporal,



this serial number lease can be broken at any time if an
operator wants to signal an emergency revocation.

Using ZSR, target.sec can use its current serial number
+ x to create RRSIG records with leases. Then the zone
can tell sec (its parent) to sign a DS record that includes a
serial number that is x larger than the current value in tar-
get.sec2. Operators should choose x in such a way so that
during typical operations of target.sec it is unlikely that the
serial number will exceed its current value + x before the
RRSIGs or the DS expire. For this reason, x should be a rel-
atively large value and as a result, when a zone does intend
to break its lease, it should increase its serial number by
231. We note that this is largest increase that is permissible
for a zone’s serial number at any given time. In Section 5.2
we provide evidence, through a sampling of active zones,
that over 99% of SOA serial number changes are below this
threshold. Thus, a large change of this kind is exceedingly
uncommon in modern DNS practices.

For example, suppose on April 28th target.sec’s SOA serial
number were 2007042801 and an operators (Bob) signed the
zone’s records with a expiration date of May 5th, 2007 and a
lease of 2008042801. If a day later Bob wished to revoke the
zone’s key, he would simply create a REVKEY and increase
the zone’s SOA serial to something large, such as 4154526449
(the zone’s serial number + 231). This signals caches that a
key revocation may be in progress, and they can then request
the REVKEY for target.sec and see this is the case.

4.3 Notifying Resolvers
Informing resolvers about a revoked key must be done as

quickly as possible in order to minimize the amount of time
that a zone is vulnerable to attacks.

ZSR disseminates revocation notifications via lightweight
control message that are embedded in every DNS response
that is sent only from a zone’s authoritative servers. By en-
suring that control messages are only sent from authoritative
servers (instead of intermediate caches), ZSR avoids attack
vector 2. The messages sent indicate the instantaneous state
of a zone and signal “revocation” state transitions.

In the event of a state transition message, caches should
verify which keys have been revoked (by requesting REVKEYs),
and then flush records that are now stale, and re-fetch any
affected records (such as DNSKEY records, NS records etc.).

One of the key benefits of this protocol is that it allows
name-servers to inform resolvers of emergency key revoca-
tions with every query. Without ZSR’s notification mes-
sages, resolvers may try to observe a zone’s state through
examining its SOA record. However, this approach has only
limited usefulness as caching can cause stale records to mask
revocation conditions. For example, during a revocation,
when target.sec is queried for its SOA record, the resolver
will be able to inspect the serial number and identify that it
has increased beyond the lease period of cached signatures.
In addition, whenever target.sec is queried for a record that
does not exist, it may return its SOA[3]. Unfortunately, a
resolver may be served a stale SOA from another resolver’s
cache and it may, therefore, be difficult to rely on getting
fresh SOAs in a timely fashion when their TTLs allow them
to remain cached during a revocation. For this reason, ZSR
uses the EDNS0 [10] OPT record.

The OPT record has 2 relevant requirements: i) caches are

2Alice may choose different lease periods for RRSIGs and
DS records because of their different implications.

not allowed to cache OPT records, so resolvers can be confi-
dent that they are fresh, and ii) servers can embed arbitrary
code/value pairs in them.

In ZSR, authoritative name-servers embed the following
information in the OPT record of all response traffic: soa-
serial-number and a 4-dimensional tuple value. The format
of this tuple is:

〈zone name, serial number, timestamp, signature〉

This signature is used by resolvers to verify a serial num-
ber that indicates a revocation. This requirement keeps Eve
from falsely signaling a revocation. During a revocation, this
signature must be from the compromised key (REVKEY).
This ensures that an adversary has not used a fictitious key
with either of attack vector 3 or 4 to falsely signal a revoca-
tion.

4.4 ZSR Examples
ZSR’s mechanisms are able to address all attack vectors

specified in Section 3 short of an adversary that intercepts
every query to target.sec’s name-servers.

In the event that Eve were to attempt attack vector 1,
her initial record may become cached. However, any subse-
quent queries to target.sec (for any record at all, not just the
previous query) would allow target.sec to inform the cache
that the zone’s state has transitioned. The cache could then
request REVKEYs and see that Eve’s record is dirty and it
would be flushed.

If Eve were to attempt attack vector 2, caches would be
able to flush her record with exactly the same efficiency as
attack vector 1.

Attack vector 3 has Eve positioned so that she can inter-
cept all traffic to one of target.sec’s name-servers. In this
situation, Alice’s cache may be unfortunate enough to en-
counter Eve’s name-server some of the time. However, the
very first time Alice’s cache encounters one of target.sec’s
real name-servers for any query, she will receive a message
that the zone’s state has transitioned. The cache will then
fetch the REVKEYs from that name-server, and see that
the other signatures and key are invalid.

Attack vector 4 allows Eve to intercept all traffic bound
for any of target.sec’s name-servers. In this case, Alice will
not be able to receive messages indicating a rollover state
with the same frequency that she queries for names from
target.sec. However, by periodically walking the chain of
trust (from the root or sec) she will see when sec has cre-
ated a new delegation to target.sec and realize the old KSK
has changed. In this case, the response time will not be pro-
portional to the query rate, but Alice will be able to observe
a key change.

5. FEASIBILITY ANALYSIS
Below we analyze a sample of actual DNS information

to justify that simply waiting for key expiration will not
suffice for an emergency rollover plan and show how ZSR
outperforms this approach.

5.1 Signature Lifetime
The current deployment of DNSSEC is fairly small. Using

an existing DNSSEC monitoring project [1], we observed
that DS signature lifetimes currently span from 3 days to 30
days, with an average of 17.03 days. In addition to the DS
records, 31 zones signed their DNSKEYs for periods ranging
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from 3 to 30 days, with an average of 26.45 days.
The average lifetimes of signatures is several weeks. ZSR

offers key revocation notification on a timescale that di-
rectly correlates to the query traffic of a zone. Caching re-
solvers visit popular zones frequently, thus can learn about
the zone’s key revocation quickly once it occurs.

5.2 SOA Serial Number Analysis
The SOA serial number is treated very carefully by ZSR

because it is already used DNS zones. For example, it signals
the need for a zone transfer from a master to a slave.

We conducted a month-long study to justify the feasibility
of ZSR, and its use of SOA serial numbers. Due to the
fact that DNSSEC has not been widely deployed yet, we
studied the behavior of 50,000 typical insecure DNS zones’
SOA serial numbers during May 2006. These zones were
randomly chosen from a set of 2.5 million unique zones.

Figure 3 shows that while more than 80% of these zones
did not change their SOA serial numbers during the moni-
toring period, some zones, in the tail, show a large amount
of activity (seen as a spike in the curve).

Our results also show that most zones have very little dy-
namism in their SOAs, and only a small percentage show
a high degree of activity. Figure 4 shows that 95% of the
serial number changes that occured did so within 27 hours
of previous changes. We can see that only a small number
of zones change very frequently, and that among these zones
the average period is 13.5 hours. We can, therefore, reason
that the total number of changes needed (even highly ac-
tive zones) is still relatively low considering the very large
precision of the serial number.

Further, analysis of the serial number gaps (i.e. the rel-
ative change in the value of the serial number at every
stage) is shown in Figure 5. We can see from this figure
that there is some symmetry between positive and negative
changes. Inspection of those serial gaps shows that many
zones miscalculate their SOA serial numbers in such a way
that the numeric representation of the date[9] is not zero-
padded. To describe this, let us take an example of a real
zone from our traces. We call the zone missconfig.example,
and it had initial SOA serial number of 20065275 (which
should, perhaps, have been 2006052705). Upon re-visiting
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this zone, we observed that its serial number had changed
to 200652716. The difference between these values was:
200652716 − 20065275 = 180, 587, 441. Our next visit to
the zone showed a serial number of 20065284. The difference
this time was: 20065284−200652716 = −180, 587, 432. Fail-
ure to properly zero-pad the computed serial number results
in oscillating precision that explains the strange symmetry
seen in Figure 5.

We can see from Figure 5 that there are large peaks be-
tween about −2.28 and 2.28, which is the precision of the
oscillation in the preceding example. When counting the
number of increments from all points between these peaks
(inclusive), we account for approximately 99.2% of all SOA
changes seen. This indicates that most SOA changes are
noticeably less than the maximum allowed 231 value, and if
a zone using ZSR were to change its serial number by this
much, it would stand out as being in less than 1% of zone
changes.

5.3 Zone Access Patterns
In this section we describe the results of overlaying ZSR

on top of actual DNS traffic taken from a north-American
university. The traffic captures all the questions issued by
the stub resolvers to the local caching server, for the du-



ration of one month. There are 821 unique stub-resolvers
that query 117,540 different names belonging to 55,632 DNS
zones. This trace allows us to simulate the client traffic to a
local caching server, and by extension, the outbound traffic
from the caching server. In the simulation we model the ef-
fects of an adversary (Eve) that has compromised the KSK
of target.sec. The adversary is capable of mounting any of
the attack scenarios described in Section 3.

Window of Vulnerability: When considering the ef-
fects of Eve’s attacks, we must first examine the window
during which caches are vulnerable to attack. We used our
DNS trace to construct access patterns to each zone. As one
can see from Figure 6, unmodified DNSSEC has a window
of vulnerability that is independent of the type of the attack
(the red solid line). In contrast, the window of vulnerabil-
ity for DNSSEC with ZSR varies for the different types of
attacks. It is shorter for the first and second type of attack
compared to the third and forth type of attack.

The window of vulnerability is much shorter if ZSR is
deployed. For example, the window is more than 6 days for
around 88% of the zones without ZSR, and only for 17% of
the zones with ZSR. However, the results seen in Figure 6 are
heavily biased by those zones that receive an initial hit, and
are not queried thereafter. Such zones appear to have longer
windows of vulnerability, but actually are just unpopular
and do not receive traffic during our simulated attack.

Query-Based Vulnerability: The actual vulnerability
of a site is reflected by its query traffic. The preceding anal-
ysis simply outlined that caches may contain data from Eve.
However, active zones will benefit from ZSR in that caches
will receive messages that inform them of emergencies. To
illustrate this, Figure 7 shows that in the case of DNSSEC
with ZSR even if some zones have a window of vulnerabil-
ity they are not affected by the attack. The reason is that
the first query that they send out is able to invalidate the
signatures of compromised keys. Indeed, the figure shows
that only 5% of the zones are vulnerable to the first or sec-
ond type of the attack, and around 10% of the zones are
vulnerable to the second type of attack. Furthermore, the
number of queries that end up using the signatures of the
compromised keys are much smaller compared to the case
of the DNSSEC without ZSR.

6. CONCLUSION
In this work we have described ZSR, a simple enhance-

ment that is completely compatible with DNS’ protocol,
and requires very few modifications to current DNSSEC
records and mechanisms. These changes are: modification
of resolvers’ caching behavior, the introduction of new type
of key (the REVKEY), and a simple extension to RRSIG
and DS record types. We note that the typical handling of
record-type modifications is subject to much operational de-
bate, and the results are often to create new types (such as
the evolution from NSEC to NSEC3). However, the actual
changes require a very small development footprint and solve
the very large, and real, operational problem of emergency
key revocation in DNSSEC.

Our analysis shows that without ZSR, zones that suffer
a key compromise are vulnerable to attack for days. With
ZSR, operators are able to revoke a ZSK and rollover to a
new key within minutes to hours. In addition KSKs can
be revoked just as fast and are done so in such a way so
that the chain of trust can be allowed to recover within the
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operational cycles that exist across administrative domains
today. During this time, resolvers can be made aware of
threats.

Though ZSR does not directly solve the problem of ver-
ifying new KSKs after compromises, it does allow client
resolvers to recognize that an emergency revocation is in
progress at extremely large scales. The relatively small num-
ber of modifications needed to support ZSR and these pro-
cedures make the idea ideal for prototyping and real-world
implementations.

We intend to investigate the development of ZSR and an-
alyze its performance. Following successful prototyping, we
hope that engaging the operational community for feedback
and support will lead to hardening and deployment of ZSR
in DNSSEC.
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