
Managing Trusted Keys in Internet-Scale Systems

Eric Osterweil
UCLA

eoster@cs.ucla.edu

Dan Massey
Colorado State University
massey@cs.colostate.edu

Lixia Zhang
UCLA

lixia@cs.ucla.edu

1 Introduction

In order to meet security objectives, Internet applica-
tions are increasingly reliant on public key cryptogra-
phy. For example, Web sites often use the Secure Sock-
ets Layer (SSL) [14] or its successor TLS [7] to en-
crypt sensitive content, Pretty Good Privacy (PGP) [16]
uses public key cryptography to digitally sign and verify
email conversations, and the DNS Security Extensions
(DNSSEC) [3, 5, 4] use public key cryptography to au-
thenticate DNS lookups. We anticipate that this list of
applications will continue to grow over time.

This paper considers a fundamental problem facing all
applications that rely on public key cryptography: how
to obtain, verify, and maintain the set of trusted public
keys. Without some notion of where to find the right
keys or which keys can be trusted, an adversary can cre-
ate false keys, trick users into accepting the false keys,
and impersonate legitimate online parties. For example
an adversary could forge the public key for Amazon.com
and steal customers credit card information. Further-
more, a valid key can also be revoked at a later time,
thus the trusted key set needs continuous maintenance.
Unfortunately, the problem of obtaining and managing
trusted keys is made challenging by Internet’s lack of a
central authority: Generally speaking, there is no single
point of authority to issue lists of trusted PGP keys, or
SSL certificates, or DNSSEC keys for the entire Internet.

In this work we explore a new direction to address the
challenge of distributing and maintaining trusted keys.
First, we note many of today’s more successful Internet
cryptographic systems (such as the SSL and PGP) use
various forms of locally trusted key lists, but managing
this local list encounters the following 3 basic questions:
1) Where can one learn the needed keys? 2) How can
one verify the trustworthiness of the keys, and 3) How
does one maintain this trusted key lists to keep them
updated? To find a systematic solution to these ques-
tions, we also observe that there exists a set of exist-
ing practices that people already use when making trust
decisions based on public data. Examples include the
way in which DNS resolvers learn the IP addresses of
the DNS root name servers, the way Border Gateway
Protocol (BGP) routers learn the global routing table,
a way in which DNS resolvers learn of DNSKEYs, and even
a way in which clients learn Secure Shell (ssh) keys. Con-

ceptualizing these existing practices, we present a model
called Public-Space, in which publicly available data can
be used as self-verifying. By shifting the onus of veri-
fying data’s authenticity away from a central authority
and onto the Public-Space, users can judge veracity for
themselves within a structured framework.

2 Existing Key Management

Pretty Good Privacy (PGP): In PGP [16] there is
no formally identified authority for verifying keys or data.
PGP users generate their own public and private key pairs
and then immediately use them to sign, encrypt, and ver-
ify data. These keys contain identification information,
such as the name of the person who generated them, their
email address, and sometimes even their picture so that
when someone obtains a key they can associate it with
the person who owns it. Without a global authority, there
is no de facto way to distinguish between keys that are
spoofed and valid keys. Some form of real-world trust
should exist before accepting a PGP key from someone
else. In other words, Alice should use some real-world
mechanism to verify that key K belongs to Bob.

One person’s trust in a key does not necessarily influ-
ence anyone else’s. There is a notable addition to PGP
called the Web of Trust [9] in which users can cross-certify
each others’ keys so that someone can use other people’s
attestations as evidence that a PGP key belongs the its
purported identity. Whether a user wants to believe these
attestations, and whether they are rigorous enough evi-
dence to judge trustworthiness is beyond the scope of this
paper.

All trust in PGP is local in scope and PGP operates
based on a local trusted key list (a keyring). A user must
first decide for herself if a key is trustworthy (via key sign-
ing parties, the Web of Trust, etc.) and then enter that
key in their keyring. All PGP verifications, encryptions,
and signatures are based on this local file. When an ex-
isting key expires, the new version needs to be fetched
and verified manually (as described above). When keys
are revoked, there is no clear way to ensure that users can
even learn of the revocation. PGP makes no provisions
for the maintenance of its trusted key lists.

Secure Sockets Layer (SSL): SSL [14] is used by
many protocols including HTTPS [11]. SSL uses X.509 [6]
certificates for its cryptographic underpinnings. It allows

1



clients to verify newly discovered certificates by using
preconfigured trusted (or root) certificates as authorities
(CAs). The idea behind this system is that ultimate trust
can be bestowed by root certificates (in contrast to PGP
where there is no ultimate authority). However, SSL’s
design does not include any mechanism for securely dis-
tributing its root certificates to clients. SSL deployment
gets around this problem by having vendors such as Mi-
crosoft or Firefox preconfigure root certificates into client
applications. The presumption is that clients will trust
the root certificates provided to them by software ven-
dors.

Vendors that bundle SSL root certificates use informal
conventions for deciding which certificates to include. For
example, a web browser may come bundled with root cer-
tificates from organizations such as VeriSign [12]. Fur-
thermore, when an SSL client finds a certificate whose
signatory does not exist in the local list of roots, SSL often
lets the user decide what to do (e.g. Web users have likely
encountered a browser popping message asking whether
to accept a certificate). The use of a local trusted key list
allows individual users to add to and subtract from their
local set of roots. For example, an organization can create
its own root certificate and use it to sign locally generated
certificates that are served by its website, mail server, etc.
After users manually add the new root certificate, locally
signed certificates can be accepted by browsers without
paying the cost of obtaining a certificate signed by one of
the well known roots. However, just as with PGP, SSL
has no operational provisions for managing the keys in its
trusted keys lists.

Even if root certificates could be revoked, the SSL pro-
tocol has no provisions for distributing new certificates.
Rather, it relies on the initial maintainers (software ven-
dors) to distribute new keys through software patches or
new releases. This effectively means that a certificate’s
lifetime is loosely coupled to when it can be disseminated
to clients. In spite of the vast number of deployed SSL
clients, its means of managing its cryptographic keys can
be characterized at best as being ad hoc, and at worst as
problematic.

Though X.509 has provisions for Certificate Revocation
Lists (CRLs), they are not implemented in SSL clients.
One known approach to certificate revocation is the
Server-based Certificate Validation Protocol (SCVP) [?].
The details of SCVP are beyond the scope of this writ-
ing. However, for completeness we observe one simple
mismatch between this protocol and the Internet’s dis-
tributed authority structure. SCVP follows a traditional
PKI notion that its certificate policies should be managed
centrally rather than implemented at the consumer end-
points. Perhaps the most critical ramification of this is
that users must be able to learn of the proper authority
for a certificate revocation chain to avoid being spoofed
into using an attacker’s server as an authority by mistake.

DNS Security Extensions: The DNS Security Ex-
tensions (DNSSEC) provide a cryptographic solution to
the DNS spoofing problem. To prove that data in a DNS
reply is authentic, each zone creates public/private key
pairs and uses the private portions to sign data. Its pub-
lic keys are stored in DNSKEY record, and all the signatures
are stored in RRSIG records. In response to a query, an
authoritative server returns both the requested data and
its associated RRSIG(s). A resolver that has learned the
DNSKEY of the requested zone can then verify the origin
authenticity and integrity of the reply.

In order to authenticate the DNSKEY for a given zone, re-
solvers need to construct a chain of trust that starts from
a locally configured trusted key which then recursively
delegates to other keys following down the DNS hierar-
chy. For example, a resolver looking for the DNSKEY for
ucla.edu would begin by querying the root zone (.), and
then be referred to .edu, and then finally to ucla.edu.
The design of DNSSEC envisioned that resolvers would
only need to configure the public key of the DNS root zone
as a trusted key, which can then be used to recursively
authenticate zones in any branch of the DNS.

Generally speaking, parent and child zones in the DNS
tree belong to different administrative authorities, each
may decide independently whether and when they turn
on DNSSEC. If a parent zone has not deployed DNSSEC,
there is no chain of trust leading to its child zones’
DNSKEYs. This orphaned key effectively becomes isolated
in the DNS hierarchy. To verify the data in these isolated
DNSSEC zones, one has to obtain the keys offline in a se-
cure manner and store locally. Unfortunately, DNSSEC’s
design does not include provisions for securely obtaining
DNSKEYs for local trusted key lists. Thus, DNSSEC also
does not have provisions for maintaining its local trusted
key lists as they evolve.

One notable approach that was not discussed above is
the classical notion of a Public Key Infrastructure (PKI).
The main reason for the omission is the absence of glob-
ally deployed PKIs in practice. We speculate that this
absence is not accidental. In addition to the great dy-
namism of the Internet and the presence of constant mis-
configurations and changes (which complicate but do not
make PKI designs impossible in the Internet), the Inter-
net is composed of a enormous number of independent
and autonomous administrative domains. These domains
cannot be compelled to agree upon any single agency to
act as the root of all trust, as is required by traditional
PKI designs. This simple freedom gates the deployment
of any global PKI. Perhaps the closest examples of PKI-
like designs in the Internet are the Secure Sockets Layer
and The DNS Security Extensions.

3 The Public-Space

In many cases, if some data is made widely available, one
can reasonably expect that inconsistencies, inaccuracies,
or other problems in the data would result in publicized

2



objections and/or corrections. Examples of this behavior
in daily life include the legal requirement for people that
want to change their name to publicize this in a news-
paper before it becomes official, so that people remain
accountable for their deeds under their old names even
after switching to new ones. The public record is an au-
dit trail.

Perhaps more interestingly, the DNS top-level domain:
.se has recently begun running newspaper adds that pub-
licly announces its cryptographic key. This announce-
ment serves to notify everyone of what value they should
trust in the DNS resolvers. Clearly this concept and its
usage is not limited to daily life, but also exists in cy-
berspace. We believe we are the first to formally recognize
this use of information publicity and to suggest ways in
which principles can be derived from existing approaches
to solidify them into a coherent and formal approach: the
Public-Space [10].

3.1 Internet-Space

Many of the Internet’s core technologies already use ele-
ments of the Public-Space, and we note these, and some
emerging systems that capitalize on some of its concepts.

Currently, DNS resolvers can learn the mapping of any
domain name (such as www.ucla.edu) to data (such as its
IP address). This process is done by starting for the DNS
root servers and then recursively learning and querying
until the target name is found. However, the DNS root
servers must be known ahead of time. The mechanism by
which this is done is that a file (often called root.hints)
is disseminated to all DNS resolvers by: software vendors,
open source packages, operating system distributions, etc.
The contents of this file are generally considered trustwor-
thy because they are expected to be globally consistent.
Rarely does it change and when it does it is widely pub-
licized. Any questions about whether one has the proper
contents are immediately answerable by polling websites,
friends, etc. Essentially, the contents are too well-known
to fake.

Two well known results [2, 13] and [8] use historical
routing data to help defend BGP routes against hijacks.
These approaches revolve around the notion that if false
data gets injected into BGP, it will be corrected within a
“short” period of time. The result is that valid data be-
comes far more prevalent than invalid data when looking
at BGP history.

Regional Internet Registries (RIRs) announce newly al-
located Autonomous System Numbers (ASNs) over email
lists so that broad knowledge of which agencies own which
numbers can be used to authenticate what operators may
see. Thus, whenever anyone wonders (perhaps in the
face of conflicting reports) who owns which ASNs, op-
erators can refer back to the public record of the an-
nouncement. For example, IANA (one of the RIRs) an-
nounces its allocations over its email list, signs the mes-
sage with its PGP key, and includes a URL where the

registry can be found: http://www.michnet.net/mail.
archives/nanog/msg16203.html

Another example of self-verifying public data is they
way in which DNSSEC resolvers can learn and maintain
a list of verified DNSKEYs. Currently, SecSpider [1] tracks
the global rollout of DNSSEC and polls each zone for its
DNSKEY records from a set of distributed DNS monitoring
sites (or pollers). The results from the pollers are com-
pared against each other so that global consistency can be
verified. This means an adversary must spoof all pollers
at the precise time that they query a zone in order to
subvert SecSpider. All globally consistent keys are then
entered into a trust-anchors file that resolver operators
can download and configure into their resolvers whenever
it changes. The public view of DNSSEC zones acts as
self-verification of DNSSEC data.

As mentioned above, some organizations use PGP keys
to certify the authenticity and integrity of their announce-
ments. However, just as mentioned in Section 2, learning
PGP keys is not always straightforward. Many of these
organizations such as APNIC, RouteViews, RIPE, and
SecSpider (just to name a few) post their PGP keys on
their webpages. This act serves as public notice of what
their keys are. The persistence of these keys on these
websites can be attested to by search engines and casual
queries, but provides evidence of which are the proper
keys for an organization.

Finally, a new project called ssh-Perspectives [15] uses
pollers similar to its predecessor SecSpider, but designed
to pull ssh keys. However, rather than running as a global
census, ssh-Perspectives polls ssh servers on-demand and
returns to the querier the instantaneous values seen. This
public view of ssh keys also acts as self-verification of ssh
data.

3.2 Using the Public-Space

Beyond recognizing the trend of applications increasingly
using public data for verification, we also propose that
the Public-Space concept must be formalized. We pro-
pose that to formally participate in the Public-Space,
systems must incorporate a few important elements with
their “public data:” i) a notion of time; the presence of
data must include when it was seen how long it has been
visible. This requirement allows the presence of data
to be rebutted. ii) a notion of space; we define public
data as being widely visible from many spatially separate
locations. This allows public-data to be visible to any
party that may want to rebut its validity. iii) a notion of
non-repudiation; we require that public data must offer
some form of non-repudiation. However, we note that the
traditional definition of non-repudiation evokes notions
of cryptography and the provable veracity of data. We
soften this requirement slightly. The Public-Space allows
one to prove that data existed in public. The veracity of
data is always left to the end-user to determine.

These requirements offer convenient facilities when de-

3



signing Internet-scale trusted key learning and mainte-
nance systems. However, the Internet’s size, heteroge-
neous administrative authorities, and rampant miscon-
figurations and dynamism (i.e. constant and often fre-
quent changes) make managing public keys quite com-
plex. Never the less, the Public-Space is an ideal concept
on which to build a key management system for the In-
ternet. The propensity of successful cryptographic Inter-
net systems to manage their trusted key list locally, and
the preference of users to specify their own local view of
trustworthiness support designs that emphasize a user’s
ability to understand how her keys are managed and to
customize the list of keys that she does and doesn’t trust.

The Public-Space fully embraces this approach. Keys
that exist in the Public-Space can have their veracity de-
rived from their presence. This has the further benefit
that keys can be periodically regathered by clients. When
key owners need to change their keys, they simply do so
in the Public-Space and all clients can pull the updates
at their own rate. Furthermore, when key owners need to
revoke their keys, they can announce this in the Public-
Space so that all clients can use this as a public record.
Moreover, whenever a client wants to use their local pref-
erence to override something in the Public-Space, the key
list is manged locally and can be amended in any way the
operator wants.

It is important to note that any system attempting
to act as a Public-Space must create a notion of global
visibility. Systems like ad-hoc peer to peer systems in
which clients query untrusted peers for data may create
attack vectors in which adversaries can fool clients with
large bot-nets, or by pre-publishing keys for other users
before those users have the opportunity to refute them.
In contrast, in a Public-Space anyone can attest to data
or refute it. Thus, we feel that clients may face issues
of spam in the Public-Space, when adversaries publish
erroneous data, they will still be able to observe genuine
data owner’s submissions. Thus, the challenge will evolve
into discerning signals from noise.

4 Challenges and Open Issues

This paper argues that the formalization of the Public-
Space presents a new and promising direction to address
the public key learning, authentication, and maintenance
challenges in the Internet. At the same time, it also brings
a number of open issues.

As we discussed earlier in the paper, none of the ap-
plications using public key cryptography actually has a
secure and scalable means to revoke and reissue keys to a
potentially large number of users. We believe the Public-
Space offers the channel for this key management task,
and we have developed one specific form of solution for
DNSSEC key lookup. However providing a general solu-
tion for all other application remains an open issue.

The second issue is a problem introduced by the exact
nature of the Public-Space: putting information in public

can potentially lead to exposure of privacy. For example,
if party A shows the DNSSEC keys it has obtained, it
implicitly reveals the DNS domains it has visited. We be-
lieve solutions exist that limit the exposure during infor-
mation sharing, while still allowing Communities of Trust
to reinforce each other.

The third challenge concerns potential attacks against
the Public-Space itself. Miscreants may try to break down
the systems that are built on the Public-Space by disrupt-
ing its operations through DDoS attacks, impersonating
trusted parties, or simply compromising user machines.
In developing effective protections, we see two factors in
our favor. First is the Public-Space itself; anything al-
tered can be observed. Second is the scale, different from
hierarchical PKIs where a single failure at the root can
lead to cascading compromises, here we use Communities
of Trust instead of a single party so that an adversary
must fool a whole community, rather than a single party,
before he could cause a damage.

References

[1] SecSpider. http://secspider.cs.ucla.edu/.

[2] Protecting the bgp routes to top level dns servers.
In NANOG 25, 2002. http://www.nanog.org/meetings/

nanog25/presentations/massey.ppt.

[3] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose.
DNS Security Introduction and Requirement. RFC 4033,
March 2005.

[4] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose.
Protocol Modifications for the DNS Security Extensions. RFC
4035, March 2005.

[5] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose.
Resource Records for the DNS Security Extensions. RFC 4034,
March 2005.

[6] D. Chadwick. The X.509 Privilege Management Infrastructure.
In Security and Privacy in Advanced Networking Technologies.
2004.

[7] T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC
2246, January 1999.

[8] J. Karlin, S. Forrest, and J. Rexford. Pretty good bgp: Im-
proving bgp by cautiously adopting routes. In ICNP ’06: 2006
IEEE International Conference on Network Protocols, 2006.

[9] R. Khare and A. Rifkin. Weaving a web of trust. World Wide
Web J., 2(3):77–112, 1997.

[10] E. Osterweil, D. Massey, B. Tsendjav, B. Zhang, and L. Zhang.
Security through publicity. In First USENIX Workshop on Hot
Topics in Security, 2006.

[11] E. Rescorla. Http over tls. RFC 2818, RTFM Inc., May 2000.

[12] VeriSign. Licensing verisign certificates securing multiple
web server and domain configurations, 2005. http://www.

verisign.com/static/001496.pdf.

[13] L. Wang, X. Zhao, D. Pei, R. Bush, D. Massey, A. Mankin,
S. F. Wu, and L. Zhang. Protecting bgp routes to top level
dns servers. In ICDCS ’03: International Conference on Dis-
tributed Computing Systems, 2003.

[14] A. C. Weaver. Secure sockets layer. Computer, 39(4):88–90,
2006.

[15] D. Wendlandt, D. Andersen, and A. Perrig. Perspectives: Im-
proving SSH-style host authentication with multi-path prob-
ing. In USENIX Annual Technical Conference, June 2008.

[16] P. R. Zimmermann. The official PGP user’s guide. MIT Press,
Cambridge, MA, USA, 1995.

4


