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Abstract

Overlay networks represent an emerging technology for
rapid deployment of novel network services and applica-
tions. However, since public overlay networks are built
out of loosely coupled end-hosts, individual nodes are less
trustworthy than Internet routers in carrying out the data
forwarding function. In this paper we describe a set of
mechanisms designed to detect and repair errors in the data
stream. Utilizing the highly redundant connectivity in over-
lay networks, our design splits each data stream to multiple
sub-streams which are delivered over disjoint paths. Each
sub-stream carries additional information that enables re-
ceivers to detect damaged or lost packets. Furthermore,
each node can verify the validity of data by periodically
exchanging Bloom filters, the digests of recently received
packets, with other nodes in the overlay. We have evaluated
our design through both simulations and experiments over
a network testbed. The results show that most nodes can ef-
fectively detect corrupted data streams even in the presence
of multiple tampering nodes.

1. Introduction

In recent years a number of overlay networks have been
developed. These systems aim to provide functionalities
that cannot be easily or quickly provided by the IP net-
work layer. For example, overlay networks have been pro-
posed to provide ubiquitous multicast connectivity to end
users [8, 24, 6, 2], to provide robust end-to-end connectiv-
ity in the face of network outages [1], or to provide protec-
tion against DoS attacks [13].

Although overlay networks can provide new functional-
ity and/or better performance to applications, their loose-

coupled nature raises new research challenges. One of the
primary concerns in using an overlay network is the trust-
worthiness of its data delivery. Since individual overlay
nodes may be owned by anonymous users, data delivery
over such a system is potentially exposed to a great number
of faults, ranging from innocent data errors to intentional
modifications. It is difficult to detect when these faults hap-
pen and perhaps even more challenging to repair, because
there is no central management or control to oversee the op-
erations in such highly distributed systems.

Well-known fault-detection methods, such as protocols
that can achieve Byzantine fault tolerance [14], are not ap-
plicable to such large scale distributed systems for two rea-
sons: the number of participants is large and thus proto-
col complexity is likely to be prohibitively high; in addi-
tion fault detection in packet delivery needs to be performed
at the packet level, which implies a high message overhead.
Furthermore, given the diverse nature of applications, not
all applications require the strong fault detection guarantees
and the associated high cost provided by Byzantine robust-
ness. For example certain multimedia applications are capa-
ble of tolerating a small percentage of data losses.

In this paper we aim to provide a general framework
for detecting data stream inconsistencies in multicast over-
lay networks. Although our description focuses on the ap-
plication of this framework to shared-tree and source-tree
end-host multicast systems, we believe the framework can
be easily extended to other overlay services. The proposed
methods are lightweight and are specifically tailored for de-
tecting data stream deviations for any application that needs
to disseminate data to large numbers of participants.

Our framework includes two methods that are used to
detect stream inconsistencies in multicast data delivery, and
one method that can be used to identify the exact location of
the faults. The first fault-detection method use of Bloom fil-



ters [3], through which each node can compare its received
data stream with that of other nodes. The second method
takes advantage of the ability to easily construct vertex dis-
joint paths in overlay networks, and sends additional data
integrity checking information through different paths, en-
abling nodes to verify the validity of the received packets.

The main contributions of this work are the following:
� A set of general techniques that can detect a set of

faults that may appear during the packet forwarding
process in an overlay network.

� A method for identifying the exact point of failure and
a method for isolating the faulty parts.

� An evaluation of the proposed schemes through both
simulation and a prototype implementation.

The rest of the paper is organized as follows: in sec-
tion 2 we present the kind of faults that may occur in an
overlay network. In sections 3 and 4 we describe how our
framework works. In section 5 we evaluate our techniques
through simulation and a prototype implementation. Sec-
tion 6 discusses related work and Section 7 summarizes our
work.

2. Fault Types and Causes

In an overlay network environment, where end users col-
laborate in the packet forwarding process, various kinds of
faults may occur, ranging from routing faults due to in-
correct forwarding information to data stream faults where
undetected data alterations occur during forwarding. The
causes of faults may include, but not limited to, the follow-
ing:
� Software bugs: A software bug in one node can cause

problems that may affect the entire system. Up to now
most, if not all, of the overlay system designs assume a
fail-stop model for participating nodes. However prac-
tice shows that there are faults that do not follow that
model.

� Malicious code: Given that any user can install arbi-
trary code on his own node as long as it appears to con-
form to the overlay protocol at a minimum level, it is
relatively easy for a malicious user to disrupt the cor-
rect execution of the protocol and cause problems that
affect other users. In addition, it is also possible to have
a set of malicious nodes that collude to make fault de-
tection more difficult.

3. Fault Detection

The two fault detection methods, described later in the
paper, are based on the following two basic principles used
by the majority of fault-tolerant systems:

� Comparison: two or more modules that perform the
same operation compare their results. If there is dis-
agreement, an error has been detected. Methods such
as majority vote can then be used to pinpoint the faulty
modules.

� Self-checking: a single module can validate the re-
sult of its own operation by carrying out an additional
check using redundant information. A simple example
of this method is the detection of corrupted informa-
tion with the use of error detection codes.

3.1. Comparison Method

This method takes advantage of the fact that under ideal
conditions all the nodes that belong to the same multicast
group, have the same view of the data stream. Two or more
nodes have the same view of the stream if they receive the
same packets within a bounded time difference, not neces-
sarily in the same order. Thus every node can check whether
its received data stream diverges from that of other nodes.

A stream deviation is detected if during the comparison
phase there is an indication of a missing packet, a modified
packet, or an additional packet. Although the comparison
method is conceptually simple, applying it to overlay data
delivery imposes a great challenge. The number of nodes
in an overlay network can be large, which prohibits packet
comparisons among all the nodes. Furthermore, the amount
of data to be compared can be immense.

3.1.1. Stream Comparison with Bloom Filters A naive
solution of packet-to-packet comparison may increase the
overall network traffic at least t times, where t is the num-
ber of comparisons required for each packet. A better ap-
proach is to use collision-resistant hash functions which
can produce constant size values for each packet, and to
perform the comparison using the hash values. As an ex-
ample the MD5 hash function [19] can be used to reduce
the size of the transmitted information: instead of send-
ing the whole packet a node can send the 128-bit message
digest of each packet. This method can considerably re-
duce the overall message overhead compared to the packet-
to-packet approach, given that most multicast applications,
such as video and audio streaming, tend to use large size
data packets. Even if the average message size is 512 bytes
(most packets are closer to the Ethernet MTU value of 1500
bytes), the gain is 96.875% savings of network traffic load.

In order to reduce the traffic overhead even further,
we encode the message digests of the data stream by us-
ing Bloom filters [3]. A Bloom filter is a space efficient
data structure that supports membership queries and con-
sists of an array of m bits and a set of k independent hash
functions,
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Figure 1. Comparison method with Bloom fil-
ters. Node A receives the Bloom filter from
the upstream nodes C and G.
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of the mes-
sage and we set to 1 the bits of the Bloom filter that cor-
respond to these hash values. In order to check if a mes-
sage X is stored in the Bloom filter we check whether the� � ���	�

,
� � ���	�

,...
� � ���	�

bits of the Bloom filter are all
set to 1. If not, it is clear that the message is not stored
in the filter, otherwise there is a probability that this mes-
sage has been stored. That probability depends on the size
m of the Bloom filter, the number k of hash functions and
the number n of the messages that have been stored. It has
been proved [11] that the probability of a false positive
is: 
�� � � ��
��

������� � �
. Bloom filters have recently been

used in a variety of networking applications [11, 22, 10, 4],
mainly because they have the attractive property of consid-
erably reducing the size of transmitted information, by trad-
ing off the probability of false positives. By using Bloom
filters, we are able to reduce even more the overhead of the
comparison method, given that under specific parameter set-
tings, Bloom filters require around 10 times less traffic com-
pared to the MD5 hash approach.

Each node maintains two data structures: a list of MD5
hash values of the recently received packets and a Bloom
filter that stores these values. The maximum number � of
packets stored in the Bloom filter depends on the percent-
age of false positives that the system can sustain and it can
be derived from the above equation for a given number of
hash functions � and a given size � . The Bloom filter is
the only information that is exchanged between two nodes
that want to perform a stream comparison. The filters are
sent over a direct IP connection (bypassing the overlay net-
work and thus not allowing malicious nodes to modify the
filters). Additionally, we use collision resistant hash func-
tions

���
to prevent malicious nodes from easily selecting

modified packets that have the same hash value to a legiti-

mate packet (the probability of successful tampering in this
case is equal to the false positive probability).

When a node
�

receives a Bloom filter from another
node � , the former checks whether each MD5 hash value,
stored in the list of recently received packets, appears in
� ’s Bloom filter. If not, a stream deviation has been de-
tected that is due to packet addition, deletion or modifica-
tion, depending on the relative position of nodes

�
and �

and the forwarding direction of the disputed packet. If the
packet is forwarded with a direction from

�
to � then it has

been deleted or been modified, otherwise it has been added
somewhere between

�
and � . We must mention that a di-

rect comparison between the two Bloom filters, such as a
bit-to-bit comparison, can not indicate the exact number of
missing packets given that more than one packets can pos-
sibly set the same bit.

There are two methods to maintain the probability of
false positives in the Bloom filter for the recently received
packets below a desired threshold. We either reinitialize the
Bloom filter periodically or we remove the oldest packet
for every new packet that is inserted in the filter, when the
filter reaches its maximum capacity. The first solution is
relatively simple, but it assumes either that the nodes are
synchronized and exchange the filters just before they re-
set them, or that they exchange a number of previous filters
in addition to the current one. The second approach works
if we associate with each bit of the Bloom filter a reference
counter. Whenever a packet is inserted in the Bloom filter
the counters of the bits, that is pointing to, are increased by
one, and whenever it is removed they are decreased. If the
counter is higher that 0 then the corresponding bit of the
filter is 1 otherwise is zero. The second technique shares
many similarities with the one used in [11]. For simplicity,
we have chosen the first approach, where the last two fil-
ters are exchanged and no synchronization is required.

3.1.2. Node Selection The detection power of the com-
parison method depends on the nodes selected for the
Bloom filters exchange. The most suitable nodes are the
data stream sources, but that solution does not scale nei-
ther with the number of sources nor with the total num-
ber of overlay nodes. On the other hand, the solution of
randomly picking a node is not effective because it is ex-
pected to give a considerable number of false positives, in
the cases where a node receives the correct stream but it as-
sumes that there is an error, because the majority of the
nodes that performs the comparison with, happen to re-
ceive a diverged stream. In section 5 we will show that
in most cases the solution of randomly picked nodes per-
forms poorly compared with the following two proposed
schemes.

In the simple case where there is only one malicious or
faulty intermediate node � , there is at least one node

�
that can identify any stream deviations, due to the faulty



node � . Node
�

can be any node directly connected to
� , for which node � forwards packets, and it can iden-
tify the stream deviation if it compares its stream with all
the other nodes directly connected to � . If there is a packet
mismatch between

�
and any other neighboring node � of

� , then there is an indication that either � or � modified
the packet. Thus a node needs to compare its stream only
with all the nodes that are two overlay hops away. In that
case if the comparison method indicates a deviation in the
stream then either the first or the second hop node is respon-
sible for modifying the data. We must note that, in the case
that � is malicious or follows an arbitrary failure model, it
is pointless for node

�
to do the comparison with � given

that it may show no stream deviation, even if there is. More-
over node

�
needs to perform the comparison only with the

nodes that are in the direction from which it receives a data
stream.

In order to handle the cases where many colluding nodes
are connected one after the other on the same path, the com-
parison needs to be performed with some additional nodes
� � � 
�� 
������ hops away towards the root of the tree. A po-
tential problem of this approach is that nodes that are closer
to the root get overloaded, given that they receive a to-
tal number of bloom filter queries that increases exponen-
tially with the tree depth. For this reason each node asks
the bloom filters from nodes that are � ���

� � � � � 
�� 
������	� �
hops away. Assuming a binary tree, the nodes that are closer
to the root of the tree receive a number of queries 
 �����
��	�����������������	� � � �

�����
� � ��� � � � , instead of 
 ��� � � � �!� ,

where " is the tree depth and # is the distance to the root.

3.2. Self-Checking Method

The intuition behind the self-checking method is to
transmit some additional information related with one
packet, which can be the checksums or a hash value
of the packet payload, and to verify the integrity of the
packet based on that information. The checksum informa-
tion needs to be protected from any kind of modification
and one way to achieve this is by the use of digital signa-
tures. While there is work on the authenticity and integrity
of multicast data stream [16, 23] we decided to fol-
low a slightly different approach. The main reason is that
these solutions either require some additional infrastruc-
ture, such as PKI or time synchronization services, which
makes the whole system design more complex and de-
pendable on external factors, or they require a considerable
message and computational overhead.

3.2.1. Splitting the Stream over Multiple Paths Our ap-
proach is based on the fact in an overlay network it is rel-
atively easy to create multiple disjoint paths 1between a
source and a receiver node. In section 3.2.2, we describe a
simple algorithm for the creation of multiple paths in shared

H1  H2         P3 

H2  H3         P4     

H3  H4         P5     

H4  H5         P6     

H5  H6        P7    

H6  H7         P8     

Path 1 Path 3Path 2

Figure 2. Self-Checking Method with 3 paths
and 2 hash functions. Packet number 5 (P5)
carries in addition the hash values of packet
3 (H3) and packet 4 (H4), and uses a different
path.

trees, but in general the multiple disjoint path creation prob-
lem can be solved using the maximum flow problem [9]. A
faulty or malicious node located on one path can alter the
packets traveling through that path but it cannot modify the
packets that are traveling through different paths. Thus if
we send the checksum information, used for verification,
through a different path, a malicious node can change only
the data packet or the packet that contains the checksum,
but not both of them.

The same method can be extended in order to ensure the
message integrity under the presence of colluding nodes.
A set of different checksum information, which refer to the
same packets and which are able to verify the integrity of the
packet independently from each other, are piggybacked to
subsequent packets and transmitted through different paths.
Thus if the majority of the checksums verify the message,
the message is considered authentic. It is clear that if a node
uses t different paths, then this method is guaranteed to
work correctly only if the paths are non overlapping and
if more than the half of the paths are free from malicious
nodes that are in collusion.

More specifically, this method works as follows: for each
packet P the source node computes k hash values by us-
ing k independent hash functions,

� �
,
� �

,...
���

. Each of
these values is appended to k subsequent packets, thus ev-
ery packet carries k hash values, one for each of the k pre-
vious data packets. In addition, each receiver must estab-
lish t different paths. The number of paths t must be greater
than the number of the hash functions in order for a packet
and its k hash values to follow different paths.

1 Disjoint paths refer to overlay network paths and not to physical layer
paths



void FindDisjointPaths(RP,GroupID) { 
  // I: list of invalid nodes 
  // S: list of nodes belonging to other paths 
  // P: stack of potential parents 
  I,S, P = {}; 
 
  RootList = FindRoots(RP,GroupID); 
  for (R in RootList) { 
    PotentialParent = R; 
    FoundParent = false; 
 
    while ( ! FoundParent ) { 
      ChildrenList = FindChildren(PotentialParent); 
      while (ChildrenList not empty) { 
        NearestNode = FindMinRTT(ChildrenList, PotentialParent); 
 
        if (NearestNode not in S && NearestNode not in I) { 
          if (NearestNode != PotentialParent) { 
            P.push(PotentialParent); 
            S.add(PotentialParent); 
            PotentialParent = NearestNode; 
          } else { 
            accept = SendJoinRequest(PotentialParent); 
            if (!accept) { 
              I.add(PotentialParent); 
              PotentialParent = P.pop(); 
           } else { 
              FoundParent = true; 
              S.add(PotentialParent); 
              P = {}; 
            } 
          } 
          break; 
        } else { 
          ChildrenList.remove(NearestNode); 
          if (ChildrenList is empty) { 
            backtrack = true; 
          } 
        } 
      } 
       
      if (backtrack) { 
        PotentialParent = P.pop(); 
      } 
    }  
  }  
} 

Figure 3. Pseudo-code for the creation of
multiple disjoint paths

Different packets traverse different paths based on a se-
quence identifier. The identifier is set by the source of the
stream, and a certain path carries only the packets whose se-
quence identifiers is equal to the path identifier modulo the
total number of paths t. Thus the stream is split in multi-
ple sub-streams, and packets traverse the different paths in
a round robin fashion. While this approach can cause re-
ordering of packets, this can be handled at the transport or
application layer.

The verification process is performed on every node by
checking if the hash values, received from the subsequent
packets, match the � locally computed hash values for the
original packet. If the majority of the hash values matches
with the packet contents the packet is considered unmodi-
fied. Figure 2 shows a sequence of packets with two hash
functions and 3 different paths.

3.2.2. Multiple Paths Construction Figure 3 gives the
pseudo-code for the creation of multiple disjoint paths for
shared tree multicast overlays. It is used by every node
whenever it joins the overlay network and whenever there

is a change in the tree structure. Briefly the node that runs
this algorithm starts querying the root and the nodes be-
low it in a depth first manner, in order to find the closest
possible node. Then, it establishes the first sub-path with
this node. Similarly it repeats the same procedure but with-
out querying the nodes that have already been selected on
any of the established sub-paths. At the end it will estab-
lish t disjoint paths. We must mention that in the case that
this establishment is impossible (when the number of par-
ticipants is small), it is allowable to reuse some of the al-
ready selected nodes, in which case the total number of dis-
joint paths is reduced.

4. Fault Repair

Whenever a faulty or malicious node is detected the non-
faulty nodes need to isolate the problematic node, by re-
moving it out of any forwarding path. Thus, fault repair is
a two step process: first, when a node detects a deviation in
the data stream, it initiates a procedure to pinpoint the faulty
node, and second, in collaboration with the other nodes puts
the faulty node aside.

The identification of the faulty node is done by querying
a number of upstream nodes along the path of the deviated
stream, which are � � �

� � � � � 
�� 
������	� � hops away. The
query takes the form of a request for the Bloom filter for the
recently received packets. With those filters a node is able
to check which nodes received the same faulty packets, and
thus to estimate its distance to the faulty node. That distance
is expressed as number of overlay hops. In the case that
the comparison method is used for the fault detection, then
the querying step can be omitted, given that the Bloom fil-
ters are already known. On the other hand, the self-checking
method can detect the faults almost instantly. Thus, a com-
bination of these two methods can guarantee a fast detec-
tion of a fault and an exact identification of the faulty node.

A node that has already estimated the distance to the
faulty one, defers to take any action to isolate that node,
for an amount of time that is proportional to its distance
from the faulty node, in the hope that nodes closer to the
faulty one will isolate it. Thus the nodes that are directly
connected to the faulty node will be the first that will isolate
it. In the case of shared-tree protocols, the isolation is per-
formed by switching from the erroneous parent to the node
that is the closest after the faulty one, and in the case of
source tree protocols the isolation is done by artificially in-
creasing the proximity metric to the faulty node. The new
proximity takes its maximum possible value, and thus the
faulty node cannot be on the shortest path to the source. In
addition, the nodes, which are in a pending state of chang-
ing parent, cancel their repair procedure when they detect a
change on the path to the root , given that this change indi-



cates that an ascendant node took care of isolating the faulty
node.

For nodes that have been identified as faulty in the past,
it’s preferable not to continue considering them faulty for
an infinite time, since the identification procedure is not al-
ways accurate and because faulty nodes might actually be
repaired after some time. Thus nodes that have appeared as
faulty many times in the past, can be considered as faulty
with higher confidence. We make use of a quarantine list
in order to handle the above cases. When a node pinpoints
another node as a faulty one, it inserts it to its quarantine
list. That list is maintained on every node and stores all the
nodes that have recently been identified as faulty. A faulty
node stays in that list for an amount of time that increases
exponentially with the number of times that this node has
been identified as faulty.

5. Evaluation

We have evaluated the fault detection power of both the
comparison and self-checking methods by simulation, and
tested a prototype implementation over the Internet.

5.1. Simulation

We use two metrics to measure each method’s fault de-
tection power. The first metric is the percentage of nodes
that can detect a fault in a given network with some mali-
cious nodes. The other is the rate of false positives. Three
methods are compared in the simulation: the compari-
son method with randomly selected nodes, the compari-
son method in which nodes to be inquired are on the path
to the source, and the self-checking method. In this sec-
tion we present the fault detection results while in the
following section we show the combined results of fault de-
tection and repair.

An important factor in evaluating a fault detec-
tion method is the attack model of malicious nodes. In
order to get the lower bound of our methods’ perfor-
mance, we made two strong assumptions on the attack
model. First, we assume all malicious nodes are in full col-
lusion. Each malicious node modifies not only data
payload, but also the checking information carried by sub-
sequent packets to match the modified payload. Differ-
ent malicious nodes will make consistent modifications,
so that checking information forwarded by one matches
the data payload forwarded by another. Second, we as-
sume the number of malicious nodes increases linearly
with the network size, that is, their percentage keeps un-
changed as the network grows. In reality, it is more likely
that a large overlay network has a very small number of ma-
licious nodes, of which only a few collude with each other.
Therefore, we expect our methods generally perform bet-
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Figure 4. Percentage of nodes that can detect
a fault in a network of 11 disjoint paths
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Figure 5. Percentage of nodes that can detect
a fault in a network of 700 nodes

ter in the Internet than the results shown below. Perfor-
mance evaluation under other attack models is subject of
future work.

The simulation is done on an Internet-like topology gen-
erated by Inet [12]. Out of the 10,000 nodes in the topol-
ogy, 200 to 1000 nodes are randomly selected and used to
build an overlay network by HMTP [24]. We randomly pick
a source and a set of malicious nodes in each run. The re-
sults presented below is the average over 1000 runs with
different sources and malicious nodes.

Figures 4(a), 4(b) and 4(c) show the percentage of nodes
that can detect a fault under different network sizes, rang-
ing from 100 to 1000 nodes. The percentage of malicious
nodes ranges from 3-15% of the network size and the num-
ber of disjoint paths is fixed at 11. Note, in each curve, the
number of malicious nodes increases linearly as the network
size increases since the percentage is fixed. It is evident that
choosing nodes on the path to the source performs better
than randomly choosing nodes to inquire in the comparison
method. From these figures we can also infer each method’s
working range under our attack model: For small network
sizes, both methods can detect faults with high probability
even if the percentage of malicious node is quite high; For
larger network sizes, the comparison method performs bet-
ter than the self-checking method except when the percent-
age of malicious nodes is 3%. When the network grows,
the overlay path length increases since the HMTP over-
lay maintains a maximum node degree.This path length in-
crease, coupled with the growing number of colluding mali-
cious nodes, gives higher probability of having at least one
malicious node on the path to the source in large networks.
This is why the detection power decreases for both meth-
ods as the network increases. One possible way to over-
come this limitation is to increase the connectivity degree
of each node to achieve shorter path length in large over-
lay networks.

In the self-checking method, one malicious node on a
path is enough to compromise the data sub-stream to all
downstream nodes. But in the comparison method, it takes
multiple malicious nodes to fool a downstream node. There-
fore, when the number of disjoint paths is fixed, the self-
checking method is sensitive to the number of malicious
nodes, while the comparison method is only sensitive to the
percentage of malicious nodes. This is why self-checking
method does not perform as well as comparison method
when the number of colluding malicious nodes is large, i.e.
large network size and high percentage of malicious nodes.

Figures 5(a), 5(b) and 5(c) show detection power of these
methods in a network of 700 overlay nodes with differ-
ent number of disjoint paths. It is clear that the number
of disjoint paths can affect the detection power of the self-
checking method: when the number of paths increases, the
number of nodes that can detect a fault increases too. This is
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Figure 6. False positives rate in a network of
700 nodes

expected because the possibility of having a malicious node
on each path decreases when the number of disjoint paths
increases. On the other hand, the detection power of the
comparison method is almost independent from the num-
ber of disjoint paths because the comparison is performed
with nodes belonging to the same path each time.

Figures 6(a) and 6(b) show the false positive rate of the
comparison and the self-checking methods in a network
of 700 nodes with the number of malicious nodes rang-
ing from 3% to 15%. In the self-checking method, when
the percentage of malicious nodes is low, most paths are
free of malicious nodes. Therefore the increase in the num-
ber of paths reduces the false positive rate. However, af-
ter a certain point, when the percentage of malicious nodes
is high, paths with malicious nodes become dominant over
paths free of malicious nodes. The increase of such “bad”
paths gives higher chance for false positive. In the compar-
ison method, it takes many malicious nodes to totally com-
promise a path. Therefore, in our range of malicious nodes,

the usable paths are always dominant, and increasing them
gives lower false positive rate.

5.2. Implementation

We implemented and tested a prototype in order to eval-
uate these techniques on a real overlay network deployed
in the Internet. The implementation is based on the HMTP
[24, 25] protocol, runs at the application level, and has been
developed for different flavors of the Unix operating sys-
tem. It consists of a daemon process, which can run either
as a privileged or user process and a set of library functions
that third-party applications can use in order to commu-
nicate with the daemon process. The daemon participates
in the overlay network and forwards packets on behalf of
the applications. The prototype implements both the self-
checking and the comparison method, and uses a combina-
tion of them in order to detect the faulty nodes. More specif-
ically, the comparison method is triggered when the Bloom
filter of the daemon is reset. In addition the self-checking
method is able to trigger the comparison method whenever
it detects a fault over a certain path. Fault repair is also im-
plemented.

We have deployed this prototype system over the Inter-
net by using the PlanetLab testbed [18]. The testbed con-
sists of about 100 machines located at around 40 different
sites. The total number of nodes in each experiment is 90.
We insert a number of malicious nodes that alter the con-
tent of each packet. The faulty nodes are in collusion and
are intentionally placed close to the source of the stream in
order to initially affect a large number of nodes. Each ex-
periment runs for 90 minutes.

Figures 7(a) and 7(b) show the percentage of nodes that
receive faulty packets during the 90 minutes, with 3 and 5
disjoint paths, and 1 and 2 malicious nodes, respectively. At
the beginning of the experiment, a large number of nodes re-
ceive faulty packets since the malicious nodes are close to
the source. But as time goes by, nodes are able to detect
faults, pinpoint the malicious node, and exclude them from
the forwarding path. Therefore, the peaks in both Figure
7(a) and 7(b) diminish by the time of 500 seconds. Spikes
after 500 seconds are due to two reasons: either nodes that
were able to identify the malicious nodes in the past start us-
ing them again because their entry in the quarantine list has
expired, or new nodes that have never identified the mali-
cious nodes connect to them for the first time. It is clear
that over a time period, our techniques are effective in de-
tecting, locating and repairing faults in real Internet experi-
ments. The time needed to identify a malicious node is pro-
portional to the number of faulty application data packets,
and thus it is proportional to the applications’ average trans-
mission rate.
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Figure 7. Percentage of nodes that get af-
fected by faulty nodes in a network of 9 0
nodes

Finally we use the prototype implementation to esti-
mate the processing overhead of the comparison and self-
checking method. For these experiments we used two In-
tel P4 3GHz machines running Linux 2.4.18 connected by
a 100Mbps Ethernet link. Packets are forwarded from one
overlay node to the other at different rates and with different
packet sizes. Table 1 shows the increase in the total forward-
ing time that is due to the above two techniques. These num-
bers represent the percentage of time spent on these meth-
ods over the total time spent in packet forwarding. Even if
the overhead of computing the MD5 hash values of pack-
ets is an increasing function of the packet size, the over-
head introduced by these methods is almost the same for
different packet sizes under the same transmission rate, be-
cause the time for transmitting and receiving a packet is
still an increasing function of the packet size. The recep-
tion and transmission overhead introduced in the applica-
tion is due to the memory copies between kernel and user

Transmission 8 128 512 1024
Rate bytes bytes bytes bytes

1 pkt/sec 16.219 16.670 17.185 18.271
10 pkts/sec 19.053 19.297 20.031 20.638

100 pkts/sec 22.249 23.769 23.900 23.982
1000 pkts/sec 21.681 22.160 23.069 27.113

Table 1. The processing overhead (%) of the
comparison and self-checking method intro-
duced in the forwarding process of each
packet (the size corresponds to the payload
size)

space, and increases linearly with the packet size. The mes-
sage overhead of these two methods greatly depends on the
specific parameters (filter’s hash functions, number of dis-
joint paths) and on the average application packet size. For
our settings, where the bloom filter size is 512 bytes and the
false positives are 10%, the message overhead of the com-
parison method is around 2%, whereas for the self-checking
method the overhead is 4.7% and 7.8% for 3 and 5 paths re-
spectively, assuming average application data size of 512
bytes.

6. Related Work

The system closest to our work is [5], which studies at-
tacks aimed at preventing correct message delivery in struc-
tured peer-to-peer overlay networks and which presents de-
fenses to these attacks. More specifically the authors con-
centrate on techniques for secure node joining, routing ta-
ble maintenance and message forwarding. They introduce
the secure routing table concept, which is used as alterna-
tive routing table whenever a node detects that there is a
fault in the message forwarding process. Our techniques can
also detect any fault in the message forwarding process and
in addition can provide a mechanism for locating the ex-
act node that causes the fault.

A number of methods for fault isolation in multicast trees
are also presented at [17], where the authors are mainly in-
terested in faults that are due to lost packets. The authors
consider the case of IP multicast networks and make use
of the mtrace tool and packet counters in order to estimate
the number of lost packets. The two methods proposed in
this paper deal with arbitrary types of faults and thus they
can be viewed as more generic. Especially the comparison
method can be easily used in the case of IP multicast net-
works, given that it doesn’t require the existence of mul-
tiple disjoint paths, while the self-checking method cannot
directly be applied because it requires major changes in the
IP multicast routing protocols.



Extensive research has been conducted in the area of
fault-tolerant systems, ranging from work done on file sys-
tems [7], to operating systems [20] and Internet services
[21]. This paper describes how to apply some well-known
high-level concepts of the fault-tolerant systems design in a
networking environment and especially in the field of over-
lay networks. The methods presented at [15] are developed
for updating replicas in a Byzantine environment, and are
similar in concept with our comparison method. The ma-
jor difference is that we are interested in locating the ex-
act point of failure, whereas the authors of [15] concentrate
in providing hard guarantees for correct replica updates.

The large body of work in the area of secure multicast
(e.g. [16, 23]) is related to our work in the sense that a se-
cure system is less vulnerable in a variety of faults. Even if
these schemes have been recently optimized for less com-
putational and message overhead, they rely on the exis-
tence of services such as PKI or time synchronization ser-
vices. Our framework can guarantee the integrity of mul-
ticast data-streams, without any additional service require-
ment. Another difference is that while the secure multicast
approach is able to detect a fault it cannot pinpoint the ex-
act fault location.

7. Conclusion

In this paper we identified a number of faults that are ex-
pected to be a common case in a widely deployed overlay
network and we designed a generic framework that can by
applied in order to detect and repair that kind of faults. We
described how this framework works in the case of shared
tree and source tree overlay multicast system and we pro-
vided simulation results that support our arguments. Finally
we implemented a prototype system that uses the techniques
presented in this paper and we verified their feasibility on a
real overlay network deployed in a wide testbed over the In-
ternet.
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