Enhancing DNS Resilience against Denial of Service Attacks

Vasileios Pappas
T.J. Watson Center
IBM Research

vpappas @us.ibm.com

Abstract

The Domain Name System (DNS) is a critical Internet
infrastructure that provides name to address mapping ser-
vices. In the past few years, distributed denial of service
(DDoS) attacks have targeted the DNS infrastructure and
threaten to disrupt this critical service. In this paper we
show that the existing DNS can gain significant resilience
against DDoS attacks through a simple change to the cur-
rent DNS operations, by setting longer time-to-live values
for a special class of DNS resource records, the infras-
tructure records. These records are used to navigate the
DNS hierarchy and change infrequently. Furthermore, in
combination with a set of simple and incrementally deploy-
able record renewal policies, the DNS service availabil-
ity can be improved by one order of magnitude. Our ap-
proach requires neither additional physical resources nor
any change to the existing DNS design. We evaluate the
effectiveness of our proposed enhancement by using DNS
traces collected from multiple locations.

Keywords: DDoS, DNS, resilience, caching

1 Introduction

The Domain Name System (DNS) [16] provides name
services for the Internet. It maps hostnames to IP addresses
and also provides services for a growing number of other
applications, such as mapping IP addresses to geographic
locations or directory services for legacy telephony appli-
cations. Furthermore, protocols such as SMTP and SIP de-
pend on the DNS in order to route messages through appro-
priate application level gateways. As a result, the availabil-
ity of the DNS can affect the availability of a large number
of Internet applications. Ensuring the DNS data availability
is an essential part of providing a robust Internet.

Due to its hierarchical structure, the DNS availability
depends on a small number of servers that serve the root
and other important top level domains. A number of dis-
tributed denial of service (DDoS) attacks have been di-
rected against these top level DNS name-servers in recent
years [2, 3, 5, 7]. The impact on overall DNS availability
is debatable [1, 4], but some attacks did succeed in dis-
abling the targeted DNS servers and resulted in parts of
the Internet experiencing severe name resolution problems.

Dan Massey
Computer Science Department
Colorado State University
massey @cs.colostate.edu

Lixia Zhang
Computer Science Department
UCLA
lixia@cs.ucla.edu

Overall, attacks can potentially threaten the DNS availabil-
ity and effectively threaten the availability of the Internet
itself.

We have developed a simple approach that can effec-
tively enhance the DNS resilience against DDoS attacks.
We identify a special class of DNS records called infras-
tructure records, which store data for DNS infrastructure
components (namely the name-servers). DNS resolvers
use the infrastructure records to navigate the DNS hier-
archy. The presence of the infrastructure records in DNS
local caches can greatly improve the resilience of the DNS
in the presence of failures. In this paper we propose and
evaluate two methods for caching infrastructure records
for longer periods of time. First, we propose to assign a
much longer TTL value for the infrastructure records than
the data records. This is feasible because, generally speak-
ing, the infrastructure records change less frequently than
other DNS data records. Second, we propose a set of sim-
ple record renewal policies. Our analysis shows that these
two changes can improve DNS service availability during
a DDoS attack by one order of magnitude.

The main benefit of our approach is that it is oper-
ationally feasible and immediately deployable by either
large or small zones. In contrast, the currently deployed
solution of shared unicast addresses [14] aims at absorb-
ing the attack load by installing a large number of name-
servers. This solution is suitable for large zones, such
as the root and the top level domains, that can afford the
cost. Smaller zones may not be able to afford adding a
large number of name-servers. Other solutions proposed
by the research community [10, 21, 20, 12, 11] address the
problem of DDoS attacks against DNS by introducing ma-
jor protocol changes or by redesigning the whole system.
Although some of them are considered incrementally de-
ployable, their adoption is hindered by the operators’ re-
luctance to introducing major changes in an operational
system. Our approach requires no protocol changes while
achieving similar levels of resilience against DDoS attacks.

The rest of the paper is structured as follows. Sections 2
and 3 review the basic DNS concepts and the threat posed
by DDoS attacks. Section 4 presents our TTL guidelines
and caching enhancements. Section 5 evaluates of our ap-
proach using a set of real DNS traffic traces. Section 6 dis-
cusses some issues related to other attack strategies. Sec-

tion 7 reviews related work and Section 8 concludes the
paper.

2 Domain Name System

In DNS parlance, the name space is divided into a large
number of zones. Roughly speaking, each zone is author-
itative for the names that share the same suffix with the
zone’s name. A zone can also delegate part of its name-
space to another zone, referred as a child zone. For exam-
ple, the ucla.edu zone has delegated the cs.ucla.edu name-
space to create a child zone. This delegation procedure
results in an inverted tree structure with each node being a
zone and each edge representing a delegation point. The
root zone resides at the top of this tree structure. Generic
top-level domains (gTLD), such as edu, and country code
top-level domains (ccTLD) appear directly below the root.
Figure 1 displays a part of the DNS tree structure with some
functional elements introduced in the next two paragraphs.

Each zone stores the resource records (RRs) associated
with names under its authority. There are several different
types of R Rs with the most common one being the address
(A) resource record used to map names to IPv4 addresses.
Each RR has a time to live value (7'T'L) that specifies the
maximum lifetime when caching the record. For example,
the IP address of www.ucla.edu is stored in an A resource
record and has a TT' L value of 4 hours.

All the RRs that belong to a zone are available from
a set of DNS servers called authoritative name-servers
(ANs) for the zone. The ANs are identified by a spe-
cial type of resource record, the name-server (NS) resource
record. The NS records for a zone are stored at the zone
itself and also at its parent zone. Each NS record points to
the name of the authoritative name-server (rather than its
IP address) and thus one needs both the NS and A records
of the server in order to contact a zone. We call the set of
NS and A records that are associated with the AN's infras-
tructure resource records (I RRs). I RRs are used in order
to construct the DNS tree structure.

Client applications typically retrieve a desired RRs by
querying a stub-resolver (S R), a DNS element which is im-
plemented in every operating system. An SR typically for-
wards the query to a special type of server, called caching
server (C'S) and the CS obtains the desired RR. More
specifically, the C'S obtains RR’s from zone Z by query-
ing Z’s ANs. The C'S knows Z’s AN's either because it
has previously cached Z’s IRRs or by querying Z’s par-
ent zone. The parent zone knows the Z’s I RRs because it
is required to have a copy of Z’s IRRs. If the C'S does
not know the I RRs for Z or Z’s parent, it repeats finds the
nearest ancestor zone for which it has the I RRs. Every C'S
is hard-coded with the I R Rs of the root zone and thus can
always start at the root zone if no better / RRs are known.
A C'S caches each RR that it learns for a period of time
equal to the T'T'L value of the record. Thus, it can reply
back to a SR either with information that is locally cached
or with information that is retrieved directly from an AN.

3 Threat Assessment of DDoS Attacks

A successful Distributed Denial of Service (DDoS) at-
tack against the DNS offers potential for a high "pay-off".
Almost every Internet application utilizes the DNS and an
attacker can potentially achieve a DoS attack against many
services and many locations by disabling the DNS. The
DNS tree structure also seems to introduce critical points of
failure such as DNS root or DNS top level domains. Well
known DDoS attacks have been launched against the DNS
root and other top level zones [2, 3, 5, 7]. A simplistic view
suggests a successful attack against the DNS root servers
could cripple the Internet.

However, both the vulnerabilities and the potential im-
pacts are more complex than the simplistic view suggests.
A more informed analysis must take the various DNS com-
ponents such as redundant servers and caches into account.
A DNS zone can be served by a large number of DNS
name-servers. Protocol limitations have fixed the number
of IPv4 root server addresses at 13, but techniques such as
shared unicast addresses are being used to increase the ac-
tual number of servers. Second, even if the attack success-
fully disables the name-servers of a targeted zone, it may
have limited effect on the DNS service given that cached
records will continue to be served.

3.1 Launching a Successful Attack

This paper considers DDoS attacks that target the au-
thoritative name-servers for a zone. We assume the attack
objective is to disable the DNS resolution of all zones be-
low the targeted zone. Many high level zones such as the
root and top level domains (com, net, edu, uk, cn, and so
forth) primarily provide referrals to other zones lower in the
tree. For example, an attack against the edu authoritative
servers is intended to prevent resolvers from reaching any
of the zones below edu. Most of the well known large-scale
DNS attacks fall under this category. Section 6 discusses
other types of attacks.

Whether an attack succeeds it depends on both the re-
sources of the attacker and the defender. DDoS attacks
can easily succeed if a zone is served by a small number
of servers. Currently, most zones use two or three name-
servers and are thus vulnerable to relatively small attacks.
Larger and more critical zones tend to deploy more servers,
but their number still ranges in the order of tens or hun-
dreds. Unfortunately, some of the "botnets" controlled by
attackers include hundreds of thousands of "drone" ma-
chines [6] and can potentially be successful even against
the few zones that deploy anycast enabled name-servers
[14]. Overall, the situation creates an arms race between
attacker and defenders with both sides seeking enough re-
sources to overwhelm the other.

3.2 Factors Affecting Attack Impact

While it may be feasible to launch a successful DDoS
attack against a zone, the attack will not necessarily have
any impact on Internet applications. There are mainly three
factors that affect the end-user experience of a successful

)

=
du. NS ns1.edu.
du. NS ns2.edu.

Authoritative Server

E Caching Server

ﬂ Stub Resolver =

, N\E
) DNS zone @ @\g

D Subnet

T /
ucla.edu. NS ns1.ucla.edu
ucla.edu. ucla.edu. NS ns2.ucla.edu.
s v
@ ¢ »

oy 5%

Figure 1. Overview of DNS elements.

DDoS attack against DNS:

Position of the Target Zone If a zone is a stub in the
DNS tree structure, i.e. it is not used in order to access
the name-servers for other zones, then the attack will only
affect the names defined in the targeted zone. Note that a
leaf-zone, i.e. a zone that has no children, is not necessar-
ily a stub-zone. In many cases leaf-zones are used in order
to resolve the IP address of other zones’ name-servers. In
essence, the number of descendant zones that can be re-
solved through a zone can indicate the severity of a suc-
cessful attack against that zone. If one considers only the
position of a zone, then the root zone would be considered
the most important zone given that it is needed in order to
resolve all other zones.

Popularity of the Target Zone The impact of a success-
ful attack also depends on the frequency of referrals pro-
vided by the target zone. The number of referrals depends
partly on the the number of child zones below the parent
zone. But it is also influenced by the popularity of the child
zones, i.e. the number of caching servers that query them.
In addition, the TTL values of the child zones I RRs can
also influence the frequency of referrals. To illustrate this,
consider an attack that targets the root zone. Every zone
is a descendant of the root, but an attack against a popu-
lar TLD may be more catastrophic than attack against the
root. There are only around two to three hundreds zones
directly below the root, compared to millions of zones di-
rectly below the largest TLDs. Furthermore, the zones di-
rectly below the root tend to have I RR records with rela-
tively TTL values. In contrast, many zones below the TLDs
have shorter TTL values for the I RR records. As a conse-
quence, the caching servers query TLDs more frequently
than they query the root zone.

Resource Record Caching The impact of a successful
DDoS attack is also affected by resource record caching.
Even if some zones are unavailable due to a DDoS attack,
the records defined at these zones may be cached in some
caching servers and thus still accessible. Clearly, the higher
the TTL value for a record and the more popular the record
may be, the higher the probability of being cached. In
essence, the use of resource record caching allows end-user
application to still function even though a zone’s authorita-
tive name servers are not accessible. In a similar manner,

from parent

from child L L No Refresh
! !
TTL = °
‘ ‘ Refresh
v v ‘V ‘V v
Renew + Refresh
l J Vo ¢t $
Long-TTL + Refresh
l ! Vol |

Figure 2. Proposed schemes showcase.

the caching of infrastructure records can allow a caching
server to access a zone’s name-servers, even if an ascen-
dant zone is not accessible due to a DDoS attack. While
the caching of data records plays a role, the caching of in-
frastructure records plays a more prominent role in mitigat-
ing DDoS attacks. The presence of a zone’s infrastructure
record in the local cache allows the resolution of all the
names defined inside the zone and also allows the resolu-
tion of all the descendant zones even when the parent zone
(or any other ascendant zone) is unavailable.

4 Enhancing DNS Resilience

Previous efforts [10, 21, 20, 12, 11] of enhancing the
DNS resilience against DDos attacks focus on reducing
or eliminating critical points of failure in the DNS hierar-
chy. Either they introduce new ways of resolving the name-
servers [21, 12] which do not coincide with the name-space
tree structure, or they abandon completely the concept of
name-servers [10, 20, 11], at least in the way that they are
currently defined. As a consequence these previous propos-
als require substantial changes in the DNS infrastructure.

In contrast, our approach of enhancing the DNS re-
silience against DNS attacks focuses on zone popularity
and caching. We introduce changes only at the caching
servers and we do not require any modifications to the un-
derlying DNS infrastructure. Our enhancements aim at
forcing the caching servers (C'S) to maintain for longer pe-
riods of time copies of the infrastructure resource records
(I RRs) for the zones that they use the most frequently. In
consequence, the number of referral, i.e queries that a C'S
sends at a parent zone in order to resolve names belong-
ing to a child zone, can potentially decrease. In this way
the popularity of a zone depends mainly on the number of
queries generated for the names that belong to the zone and
less on the number of queries generated for names belong-
ing to a child zone.

We provide the following example in order to elaborate
more on the basic idea of our approach. Let’s consider a
successful attack against the edu zone. In that case, a C'S
cannot resolve a zone that resides just below the edu if it
does not have the I RRs for that zone. The probability of
having the I RRs for the zone cached are increased when a
zone is more popular or when the I R Rs have a longer TTL.

In order to increase the probability of having the IRRs, a
C'S can "artificially" increase the popularity of the zone
by querying it whenever the I RRs are ready to expire or
the zone’s administrator can increase the TTL value of the
zone’s IRRs. Note that in the extreme case, a C'S can
indefinitely query for the I RRs and the zone’s administra-
tor can unlimitedly increase the TTL value. While both of
these extreme cases can lead to the best resilience against
DDoS attacks, they are not desirable given that the first can
introduce a considerable message overhead and the second
can potentially introduce I RRs inconsistencies.

Next we present three feasible techniques that can be

used in order to increase the probability of having the
IRRs for a zone locally cached. Figure 2 provides their
graphical representation, corresponding to the /RRs of a
zone, which are cached inside a C'S. The longer arrows
represent referral replies from the parent zone, while the
shorter arrows represent replies from the child zone. The
horizontal lines represent the period of time for which the
IRRs are cached. We should point out that the proposed
methods affect only the IRRs and not any other record,
e.g. as the various data records.
TTL Refresh In order to explain how TTL refresh works
we first need to provide some specific details on how C'S's
learn and cache these records. A C'S learns the IRR for a
zone Z initially from Z’s parent zone (P). The IRR for Z
are included in the authority and the additional sections of
the referral sent by P’s name-servers. The C'S caches these
records locally and then contacts one of Z’s name-servers
to obtain the desired data. The reply from Z’s name-servers
also includes a the IRR for Z in the authority and addi-
tional sections of the reply. The C'S ought to replace the
cached I RR that come from the parent with the / RR that
come from the child zone when they are not identical [13].
This establishes initial I RR records for zone Z.

Additional queries for names in Z can make use of the
IRR data and go directly to Z’s name-servers. Each query
to a Z name-server will include a copy of Z’s IRR data
and TTL refresh uses this new data to refresh the TTL on
Z’s IRR. For example, a query for www.ucla.edu will re-
sult in the cache learning both the requested www.ucla.edu
record and the TRR data from ucla.edu. If the IRR for
Z has not yet expired, a later query for ftp.ucla.edu will
go directly to the Z name-servers and the response will in-
clude both the ftp.ucla.edu record and another copy of the
ucla.edu IRR data. This new copy of the I RR informa-
tion could be used to refresh the cached copy of all ucla.edu
IRR, but many popular DNS caching server implementa-
tions do not refresh the TTL value for the I RR. Note that
the www.ucla.edu record may expire before the ucla.edu
I RR and thus even another query for www.ucla.edu could
be used to refresh the TRR.

This simple modification is very effective for the zones
that a C'S visits frequently. Assuming a C'S sends some
query to zone’s name-servers before the I RR expires. Ev-
ery query resets the TTL and the zone’s IRR will be al-
ways locally cached. In contrast without TTL refresh the

('S has to visit the parent zone when the I RR expires. The
difference is shown in Figure 2. If the C'S does not refresh
the TTL, the I RRs expire after the first two queries and
thus the third one triggers a query at the parent zone. In
contrast with the refresh the C'S needs to query the parent

zone only at the fifth query.
TTL Renewal The limitation of the TTL refresh method

is that it does not work well for the popular zones that the
caching server queries in a less regular fashion. A C'S will
not have the I R Rs for the zone if the time between queries
to Z exceeds the TTL on Z’s ITRR. This is the case in
Figure 2. The C'S does not have the I RRs during the fifth
query. The TTL renewal method aims at filling that gap.
In essence, it allows the I RRs for the most popular zones
to stay in a C'S for longer periods of time, compared to
the TTL refresh method. This is done by refetching and
then renewing the TTL of the IRRs just before they are
ready to expire. This is shown with the double-head arrow
in Figure 2.

In order to renew the I RRs only for the most popular
zones we consider four different renewal policies. The ba-
sic idea behind these policies is that each zone is assigned
a certain credit ¢ which defines the number of times the
zone’s I RRs can be renewed after they have expired. The
assignment of credit is different for the four renewal poli-
cies but it mimics either the last recently used (LRU) or the
least frequently used (LFU) cache renewal policies. More
specifically we consider the following policies:

e LRU*: This policy sets a zone’s credit to c ev-
ery time that the zone is queried. Also every time
that the zone’s I RRs are about to expire the credit
is decreased by one and the [RRs are re-fetched.
In essence, with this policy the TRRs stay in the
cache for an additional period of time that is equal
to ¢ x TT'L. It resembles an LRU replacement policy
because the I RRs that haven’t been recently used are
the ones that expire first.

e LFU*: This policy adds a credit of c to the zone’s
current credit, whenever the zone is queried. Again,
the credit is decremented by one whenever the zone’s
IRRs are re-fetched. Given that for the most pop-
ular zones the credit may indefinitely increase, we
consider a maximum credit M. If the current credit
reaches M, then it stops increasing. This policy re-
sembles an LFU policy for the reason that the I RRs
that expire first are the ones that are not frequently
used.

e A — LRU¢C: This is an adaptive version of the LRU
policy. The need for an adaptive policy arises from
the fact that different zones have I R Rs with different
TTL values. Thus the additional time that their I RRs
stay in the cache may vary. In order, to make this time
equal for all the zones we consider a version of the
LRU*® policy in which the credit adapts based on the
TTL value. More specifically, the assigned credit is
equal to 86400 * ¢/T'T L, where 86400 is the equiva-
lent of one day in seconds. Thus, for example if the

c¢ = 3 then the credit causes all the I RRs to stay in
the cache for three days additionally.

e A — LFU°®: Similarly we define an adaptive version
of the LF'U® renewal policy. Again the credit adapts
to the TTL value of each zone’s I RRs and it is equal
to 86400 * ¢/TTL. Furthermore, there still exist a
maximum credit A/ that the current credit cannot ex-
ceed, which prevents the credit of very popular zones
from increasing indefinitely. The benefit of the adap-
tive LFU (as well as LRU) is that zones stay in the
cache for an additional period of time that is indepen-
dent of their I RRs TTL values.

Finding an optimal policy [9] requires the presence of

an oracle that could foresee future queries, which makes
it non-practical, but our evaluation shows these simple and
easily implementable policies can be very effective.
Long TTL Instead of renewing the I RRs after they ex-
pire, one can achieve the same results by simply increasing
the TTL value of the I RRs. For example, assuming a cur-
rent TTL value of one day, then increasing the TTL value to
3 days provides the same resilience as the LRU? renewal
policy. Note the proposed increase of the TTL value is
only for the I RRs, and not for end-host records. Thus this
scheme does not effect CDN or load balancing schemes
that rely on short TTL values for end-hosts. While current
TTL values range from some minutes to some days, most
zones have at TTL value less or equal to 12 hours. The
main benefit in increasing the TTL values is that it does
not require any changes at the caching servers and it can be
enforced directly by the zone administrators. In addition,
this modification reduces overall DNS traffic and improves
DNS query response time since costly walks of the DNS
tree are avoided.

But if the IRR changes at the AN’s, the cached copy
will be out of date. Increasing the TTL value can increase
the time during which cached I RR differs from the actual
IRR stored at the ANs. Fortunately, I RRs change in-
frequently [12]. Furthermore, DNS works as long as one
name-server in the cached I RR is still valid. The penalty
paid for querying an obsolete name-server is a longer res-
olution time. If a server fails to respond, the next server in
the IRR is queried. Once any response is received for a
valid server, the I RR set is updated and inconsistency is
resolved. In the worst case, all servers in the old I RR fail
to respond and the parent zone must be queried to reset the
IRR.

Combinations The above proposed modifications can
work independently as well as in parallel with each other.
Clearly, by combining two methods one can complement
their abilities in improving the DNS resilience against
DDoS attacks. Furthermore, combining them reduces their
overhead, as it is shown in a later section. Apart from
the above performance benefits, there is an additional and
maybe more important operational benefit. The first two
methods, allow any DNS client to enhance its resilience
against the DDoS attacks that target the DNS, without re-
quiring any modifications at remote sites, i.e. infrastruc-

100

R "Trace 1 ——

80 — Trace 2
S 4 Trace 3 -
ﬁ_’ 60 [/ Trace 4 1
o 40 Trace 5
o

20

0 i i
(0] 1 2 3 4 5 6 7

Gap Duration (Days)
100
80
60 -
40 -
20

CDF (%)

(0] 10 20 30 40 50
Gap Duration (Fraction of TTL)

Figure 3. Time-Gap Duration (CDF)

ture changes. The last method allows any DNS zone to
improve its resilience to DDoS attacks that target any of
its ascendant zones, without requiring any modifications
in other zones or modifications at the DNS clients. In
essence, the above methods provide the power both to the
DNS clients and the DNS operators to enhance the DNS
resilience against DDoS attack by introducing only local
changes.

5 Evaluation

In order to evaluate the effectiveness of these C'S mod-
ifications we collected a number of DNS traces. The
traces captured all the queries that were generated by stub-
resolvers (SRs) and queries sent by the caching servers
(CSs). The collected traces come from a number of dif-
ferent organizations (five US universities) and are grouped
based on the caching servers (six servers). They were col-
lected around the same period of time, and their durations
ranged from one week (for a C'S with very large query
load) to one month. Table 1 gives some additional details
for each trace, such as number of SRs (clients), the num-
ber of queries generated by S Rs (requests in), the number
of queries sent by the C'Ss to the name-servers (requests
out), the number of distinct names appearing in the queries
(names) and the number of distinct zones queried (zones).

First, we used these traces to measure the time duration
between the expiration of a zone’s I RR and the time the
next query was sent to the zone. The length of this time-
gap is indicative of how well the proposed schemes can
work; if the time gap is long, the IRR may still expire
from the cache even if it is refreshed, renewed or its TTL
value is increased. Figure 3 gives the cumulative distribu-
tion function (CDF) for the time-gap duration. The upper
graph gives the duration of the gaps in an absolute time
(in days), while the lower graph gives the duration of the
gaps as a fraction of the zone’s IRR TTL value. For ex-
ample a fraction of 10 it means that the gap is 10 longer
compared to the TTL value. It is interesting to note that
in absolute time almost all gaps are less than 5 days long,
while the gaps duration varies largely when compared with
the TTL values. The reason is that the I RRs TTL values
vary greatly, from some minutes to some days, which leads
to a greater variability in the relative gap time.

Trace || Organization | Location | Duration | Clients | Requests In | Requests Out | Names | Zones

TRC1 University USA 7 Days 339 8480402 1930250 | 556809 | 200531
TRC2 University USA 7 Days 486 1400490 566507 | 193250 45802
TRC3 University USA 7 Days 915 3148919 1038870 | 306053 87893
TRC4 University USA 7 Days 455 15061455 1989997 | 551617 50531
TRC5 University USA 7 Days 291 3135620 413648 87863 44502
TRC6 University USA 1 Month 821 3461948 1153739 | 117540 55632

Table 1. DNS Traces Statistics

Aside from the above simple measures, the main use for
the traces is as a query workload for our simulations. The
simulator also took as an input the part of the DNS tree
structure that was needed in order to resolve all the zones
that were captured in the traces. This part of the DNS struc-
ture was acquired in an off-line stage, by actively probing
the DNS. As such the simulated DNS structure represents
the real DNS structure that appeared during the period of
time that we collected the traces. Furthermore, the ITRR
values used in the simulator are the actual TTL values for
the zones during that period of time. We used the simula-
tor in order to evaluate both the effectiveness of the pro-
posed techniques in enhancing the resilience of the DNS
against DDoS attacks and in order to gauge the overhead
introduced by them.

5.1 Resilience against DDoS Attacks

In order to measure the resilience of the current DNS as
well as of the proposed schemes we considered the follow-
ing experiment. For the first six days we assume that all
zones work normally and at the beginning of the seventh
day a DDoS attack completely blocks the queries sent to
the root zone and the top level domains. The attack dura-
tion ranges from 3 to 24 hours. Then we measure the per-
centage of queries during the attack period that fail to re-
solve due to the attack. We measure both the failed queries
sent by the SRs to the C'S, as well as the failed queries
sent from the C'Ss to the ANs. Note the following subtle
difference between queries from the S Rs and queries from
the C'Ss. The failed queries from the S Rs captures the ac-
tual impact of the DDoS attack on the end-users, while the
queries by the C'S's captures the impact of the DDoS attack
on caching servers attempting to access the DNS.

We measure the number of failed queries for the follow-
ing systems: A vanilla system that captures the behavior
of the current DNS, a system that implements only TTL-
refresh, a system that implements both TTL-refresh and
TTL-renew for each of the four renewal policies, a sys-
tem that combines both TTL-refresh and long-TTL and a
system that implements all three (with LF'U as a renewal

policy).
5.1.1 Vanilla DNS

Figure 4 shows the percentage of queries that fail to resolve
during the time that the DoS attack takes place when simu-
lating the current DNS. The upper graph shows the percent-
age of failed queries that are sent by the S Rs and the lower
graph shows the percentage of failed queries that are sent

by the C'Ss. The figure provides results for the first five
traces and for attacks that last from 3 to 24 hours. Clearly,
when the attack duration increases then the percentage of
failed queries increases for the reason that more and more
records start to expire. These records include both end-host
records, such as A RRs, as well as I RRs. Moreover, we
see that the percentage of failed queries from C'S’s is higher
than the percentage of failed queries from S Rs. The reason
is that queries from SRs can be answered locally if they
are cached at the C'S’s, while all queries from C'S's have to
query the DNS infrastructure.

Furthermore the figure shows that the percentage of
failed queries varies a lot for the different traces when con-
sidering queries from S Rs, while it is almost the same for
queries generated by the C's. We speculate that this is due
to the fact that the number of parameters that affect the suc-
cess rate of queries from S Rs are much larger compared to
queries from C'Ss. For example, the query distribution, the
distribution of TTLs for end-host RRs, the number of S Rs
that use the same C'S as well as the overlap of interest be-
tween different S Rs affect the success rate of queries gen-
erated by the S Rs. On the other hand, the success rate of
queries generated by the C'Ss depends only on the distribu-
tion of queries and the distribution of TTLs for I RRs. For
that reason, when we compare the effectiveness of our pro-
posed schemes we compare it against each trace separately,
rather that averaging across all traces.

5.1.2 TTL Refresh

Figure 5 shows the percentage of failed queries for the
same scenario of DDoS attacks that we used before, when
the TTL-refresh method is implemented. The figure in-
cludes two graphs that show the same type of results as in
Figure 4. Note also that we use the same type of figure to
presents the resilience to DDoS attacks for all the conse-
quent schemes presented in this paper. Clearly both graphs
shows that by implementing the refresh of I RRs TTLs the
resiliency of the DNS can greatly improve. For most cases
this modification leads to a percentage of failed queries that
is at least 50% lower compared to the current system.

5.1.3 TTL Refresh and Renewal

Figures 6, 7, 8 and 9 show the DDoS attack resiliency
achieved when implementing the LRU®, LFU®, A —
LRU®¢ and A — LFU® TTL-renewal policies, in combina-
tion with the TTL-refresh method. All graphs show results
for the six hours attack and contrast them to the resiliency
of the current DNS for the same attack. We consider three

Failed Queries (%)
Stub Resolvers

Failed Queries (%)
Stub Resolvers

Failed Queries (%)
Caching Server

Failed Queries (%)
Stub Resolvers

Failed Queries (%)
Caching Server

Failed Queries (%)
Stub Resolvers

Failed Queries (%)
Caching Server

Failed Queries (%)
Caching Server

100 T
3 Hours
80 6 Hours ==—==x1 -+
12 Hours ZzzZ1
60 2

24 Hours 4
40 C
7 7
20 4
() £ 4 NN A

Trace 1 Trace 2 Trace 3 Trace 4 Trace 5

100 T T T

A A NI]
Trace 1 Trace 2 Trace 3 Trace 4 Trace 5

Figure 4. Vanilla DNS

100 T T
DNS =
80 LFU] ==
LFUS &zzz
60 LFU® .
40
20
o = [
Trace 1 Trace 2 Trace 3 Trace 4 Trace 5
100
80 -
60 [
40
20 a
N
o NAN

Trace 1 Trace 2 Trace 3 Trace 4 Trace 5

Figure 6. TTL Refresh + Renew (LRU)

100 ‘ |
DNS s

8 A-LRUA o
A-LRU; &ZZZZ3

ot A-LRU® 4

40
ol | |
o Ll S Sl | |

Trace 1 Trace 2 Trace 3 Trace 4 Trace 5

100
80

60 -

40

20

N Nrim &l&

& AN A 2 g\
Trace 3 Trace 4 Trace 5

\ N
Trace 1

Trace 2

Figure 8. TTL Refresh + Renew (A-LRU)

100 T T
DNS TTL
80 1 Day TTL S5
3 Days TTL zzzza
60 5 Days TTL q

7 Days TTL

40
20 J I
ga_ISE: 7 NI |

Trace 1 Trace 2 Trace 3 Trace 4 Trace 5
100

80 [

60 [

40 |-

20 S

o EJ\V/; N WNosz BSosnm sdk\%

Trace 1 Trace 2 Trace 3 Trace Trace 5

Figure 10. TTL Refresh + Long-TTL

100 T T
< 3 Hours
=8 80 6 Hours o===<1 |
8> 12 Hours ZzzZ1
= 60 24 Hours W
Q
SE 40
kel
28 20
w
()
Trace 1 Trace 2 Trace 3 Trace 4 Trace 5
R 100
5 80
o2
£3 60
32
£ 40 -
35
=0 20
w
()
100 T T
< DNS
¢ g LFU! ==
82 LFU: zzzn
§ % 60 LFU® oy -
0% 40
kel
28 20t
w
o |
Trace 1 Trace 2 Trace 3 Trace 4 Trace 5
s 100
5 80l
73
S8 60t
32
£ 40 -
36
2 © L.
FO 20 S : :
w 0 NN NN NN

Trace 1 Trace 2 Trace 3 Trace 4 Trace 5

Figure 7. TTL Refresh + Renew (LFU)

100 T T
DNS mm—m
80 A-LFU} ===5
A-LFUS ==z
60 A-LFUS .

Failed Queries (%)
Stub Resolvers

40
ol | |
o - - [

Trace 1 Trace 2 Trace 3 Trace 4 Trace 5

100
80

60 -

40

20

Failed Queries (%)
Caching Server

Nzl NN

NN 1 \
Trace 4 Trace 5

INIZIW K
Trace 3

\ N
Trace 1 Trace 2

Figure 9. TTL Refresh + Renew (A-LFU)

100 T T
DNS TTL
80 1 Day TTL =SSN
3 Days TTL zzzza
60 5 Days TTL q

7 Days TTL

40
20 J I
o M ~ = | |

Trace 1 Trace 2 Trace 3 Trace 4 Trace 5

Failed Queries (%)
Stub Resolvers

100
80
60
40
20

Failed Queries (%)
Caching Server

N \17
Nrwezz Nemz
Trace 3 Trace Trace 5

72

I\ NN 771
Trace 1 Trace 2

Figure 11. TTL Refresh + Renew + Long-TTL

different values for the credit ¢: 1, 3 and 5. The figures
show that all the schemes perform almost equally with the
performance becoming slightly better with the schemes in
the following order: LRU¢ < LFU¢ < A — LRU® <
A—LFU*. Intuitively the adaptive policies are better given
that they are neutral to the different values of the IRRs
TTLs. Furthermore, the LFU policies perform better than
the LRU for the reason that they favor the most frequently
used zones. In conclusion, the A — LEFU€ is shown to work
the best: the failure rate for queries generated from the S Rs
is lower than 2.5%, while the failure rate for queries gen-
erated from the C'S is lower than 10%. In summary, the
combination of TTL refresh and renew improves the fail-
ure one order of magnitude compared to the current DNS.

5.1.4 TTL Refresh and Long-TTL

Figure 10 shows the percentage of failed queries when all
zones change their ITRRs TTL value to one, three, five
and seven days, and the caching server implements the
TTL-refresh method. We note that the long-TTL scheme
achieves the same level of resilience as the most effective
I RRs renewal policy (A — LFU?). Furthermore, the fig-
ure shows that the a TTL value of five days is almost as
good as a TTL value of seven days. The reason is that the
time duration between the expiration of an /RR and the
next time it is fetched from the zone is almost always less
than five days (see Figure 3). Thus, a TTL value of seven
days does not yield much more additional benefits in terms
of resilience against DoS attacks.

5.1.5 TTL Refresh, Renewal and Long-TTL

Finally, we combine the cache renewal policies with the
long-TTL scheme. The benefits of this hybrid approach is
that it achieves the resiliency of the best renewal policy,
with a much lower overhead (as show in the next section),
as well as with smaller TTL values. Figure 11 shows the
percentage of queries that fail to resolve when an LFU?3
renewal policy is applied to I RRs with TTL values of one,
three, five and seven days. The graphs show that a TTL
value of three days is good enough to achieve the maximum
possible resilience to DoS attacks, given that longer TTL
values do not yield any additional benefits.

5.2 Overhead

Next we consider the overhead due to the proposed
modifications. We consider both the message overhead, i.e.
the number of additional queries generated by a C'S, and
the memory overhead due to the additional zones cached at
the C'Ss.

5.2.1 Message Overhead

Caching servers that implement one of the renewal poli-
cies can potentially increase the total DNS traffic, due to
additional queries issued for re-fetching the I RRs. In con-
trast both the refresh and long-TTL modifications lead to
a lower number of DNS messages. Indeed, Table 2 shows
the increase in the number of generated DN'S messages for
each of the proposed schemes when compared to the cur-

[Scheme [[Tracel [Trace2 | Trace3 [Trace4 [Trace5 |
Refresh -1.891 -0.968 -1.605 -1.044 -1.494
LRU® 49.378 29.842 38.264 15.145 48.408
LFU® 64.797 38.492 51.089 27.819 76.257
A-LRU® 591.813 339.557 487.965 164.646 548.210
A-LFU® 593.629 340.845 490.028 166.434 554.362
Long-TTL -14.291 -7.271 -9.942 -6.131 -10.313
Combination 9916 -4.177 -6.226 -5.018 -5.436

Table 2. Message Overhead

50000

? dNS —_—
@& 40000 LRU? i
SR LFUZ =
>3 30000 A-LRU5 B
52 A-LFU
25 20000 | e ong - TTL
§§ 10000 | et Gombination e

H* P

0 5 10 15 20 25 30 35 40 45

50000
40000 |-
30000 |-
20000
10000

Memory Size
of cached records

0] 5 10 15 20 25 30 35 40 45
Time (days)

Figure 12. Memory Overhead

rent DNS. Negative values indicate a decrease in the num-
ber of generated messages.

The table shows that the adaptive schemes incur a sig-
nificant overhead, which leads in increasing the DNS traf-
fic by five times in the worst case. That is due to the fact
that there is a large number of zones that have very small
TTL values (in the order of minutes) which leads to a very
large number of re-fetch requests. On the other hand, the
non-adaptive renewal policies come with a much smaller
cost. They increase the number of generated messages by
at most 76%. Given that the DNS traffic is a negligible
portion of the overall Internet traffic, we believe that this in-
crease is not significant. More importantly, the table shows
that the refresh and the long-TTL schemes, with TTL set
to 7 days, lead to a decrease in the DNS related generated
traffic. Furthermore, the combined scheme of long-TTL
with a value of three days and the LFU? policy leads also
to a reduction in the generated messages. This in a very
promising results given that the hybrid scheme can achieve
the resiliency of the most effective adaptive policy, without
incurring the high message overhead.

5.2.2 Memory Overhead

The three proposed modifications increase the memory re-
quirements of the C'S’s, given that they require the caching
of IRRs for longer periods of time. On the other hand,
as it is shown in Table 1 the total number of zones that
appear in a period of one week is in the order of tens to
hundreds of thousands. Thus, the additional memory re-
quirements for storing all these I RRs are in the worst case
in the order of tens of Mbytes. Figure 12 shows the num-
ber of zones and records cached for any given point of time
for the one month long DNS trace (TRC6). It also com-
pares these numbers with the number of zones and records
cached when using the proposed schemes. Clearly, the ad-
ditional memory overhead is not an issue for the current

systems, given that the proposed caching schemes increase
the number of cached objects by two to three times. Note
that all other traces showed similar memory overhead.

6 Discussion

In this section we elaborate more on three point that
relate to our proposed solutions and that deserve an addi-
tional attention.

Deployment Issues Notably there are two practical is-
sues that may arise when deploying our proposed modifi-
cations. A first issue is their compatibility with the DNS
security extensions. The DNSSEC introduces a number
of new records for authentication. Some of them can be
classified as new infrastructure resource records (see [18]
for more details). Thus under a DNSSEC deployment we
extend the refresh, renewal and long-TTL techniques to
accommodate these new [RRs. A second practical issue
is the ability of parent zones to reclaim delegations. Cur-
rently, this happens automatically every time that a caching
server gets a referral from the parent zone. The parent zone
can point to a new set of servers in the case that the own-
ership of the zone changes, or it can inform the caching
server that the zone does not exist anymore. Given that the
goal of our techniques is to reduce the number of these re-
ferrals, caching servers may still continue querying to the
old zone, as far as the old zone still functions as before.
In other words, a non-cooperative owner can potentially
maintain the ownership for longer periods of time by not
updating the name-servers with the new set of nameservers.
Apart from resolving this issue with non-technical means
(i.e. legally), we can solve it by forcing the caching servers
to periodically query the parent zone (for example every
7 days). In addition, current caching servers do not ac-
cept arbitrary large TTL values (more that 7 days). In this
way, any new delegation can appear at the caching servers
within 7 days in the worst case, i.e. when the old owner is
non-cooperative.

Maximum Damage Attack In the evaluation section we
considered only one case of attack, that is an attack against
the root zone and all the top level domains. This attack is
not necessarily the one that can cause the maximum dam-
age (thought, we believe that is close tho the maximum
one). We define the maximum damage attack as the one
that maximizes the total number of failed queries across
all caching servers (or stub-resolvers), for a given budget
of attacked zones. Clearly, identifying the maximum dam-
age attack is not practically feasible because it requires the
traffic patterns from all stub-resolvers. Furthermore, the re-
sult is highly time dependent, meaning that the targets are
not the same for different attack starting times, or for dif-
ferent attack durations. Even when considering the traffic
pattern from only one caching server, the identification of
the maximum damage attack is not straightforward. One
approach is to count the number of upcoming queries, and
then identify the zone whose children have the maximum
number of upcoming queries. The problem with this ap-
proach is that failures can happen at any of the descendant

zones, and thus it is not enough to count failures only at the
children. Furthermore, failures start at a time that depends
on the zones IRR TTL value as well as the time that the
failure started at the parent zone. These events of cascad-
ing failures are difficult to model with known optimization
techniques, such as linear or dynamic programming.
Other Types of Attacks In this paper we consider only
one class of DDoS attack against the DNS, that is attacks
that aim at disabling the resolution of all the descendant
zones of the targeted zone. Notably, there are two other
broad classes of attacks. First, attacks that aim at disabling
the name resolution of the names that belong to the tar-
get zone. The goal in this attack is to disable all the ser-
vices that are provided by the servers "hosted" at the tar-
geted zone. We believe that this type of attack is defensi-
ble by adding more name-servers. Name-servers provide a
stateless service (they use UDP) and thus it is much harder
to overload them compared to overloading the services it-
self. The reason is that the most popular services are state-
full, e.g. they use TCP, and thus if a DDoS attack has the
ability to disable the name-servers of a zone, then it has
also the ability to disable a service directly (while the re-
verse is not always true). The second class of attacks that
we don’t consider are attacks against the caching servers.
These attacks are possible, but their damage is locally lim-
ited. Furthermore, the simple approach of configuring the
stub-resolvers with many caching servers or more sophisti-
cated peer-to-peer approaches [19] can address this type of
attacks.

7 Related Work

He have classified the related work in three broader ar-
eas. The first two are closer to our work while the third one
relates more to the DNS performance issues.

DNS Hardening In recent years there has been a num-
ber of proposal for hardening the DNS against DDoS at-
tacks. Yang et al [21] have proposed to augment the DNS
structure with additional pointers, that are used in order to
access children zones. The pointers are stored at sibling
zones and are randomly distributed across zones so as an
attacker cannot identify them. Handley et al [12] have pro-
posed to globally replicate the infrastructure records at ev-
ery caching server by utilizing a peer-to-peer system. Both
approaches assume that DNS operators are cooperative,
which may not be practical given the economically com-
petitive environment between them. Parka et al [19] have
proposed to add a lookup peer-to-peer service between the
stub-resolvers and the caching servers. This service can
be used in order to defend against DDoS attack that tar-
get caching servers. On the other hand, it cannot enhance
the DNS resilience against DDoS attack that target name-
servers. Recently, Ballani et al [8] have proposed to utilize
expired records. Caching servers never discard records,
even if they have expired, and thus they can utilize them
in the case that they cannot retrieve them from the name-
servers. Unfortunately, this proposal violates the semantics
of record expiration as defined for DNS, which may hinder

its adoption.

DNS Redesign Apart from hardening the current system
there has been a number of proposals on redesigning the
DNS. Cox et al [10] have proposed to replace the DNS in-
frastructure with a peer-to-peer infrastructure implemented
on top of a distributed hash table. One benefit of this ap-
proach is that all servers become equally important and
thus mounting a DDoS against the system has diminish-
ing results. The same study showed that the performance
of such a peer-to-peer system, measured by the query re-
sponse time, was worse than the performance of the DNS,
and concluded that such as system may not be a good can-
didate for replacing the DNS. In a followup study, Ra-
masubramanian et al [20] improved the performance of
the lookup service by replicating the most popular records
across the peer-to-peer system. Following an opposite di-
rection, Deegan et al [11] proposed to replace the DNS
with a centralized system. While their objective was to im-
prove many aspects of the system, such as its resilience
to configuration errors [17], they argued that a centralized
system could also sustain a DDoS attack. All these ap-
proaches of redesigning the DNS require a complete over-
haul of the DNS structure. The concept of zones becomes
relevant only at the name-space level, given that zone op-
erators lose the ability to administer name-servers. We be-
lieve that these type of radical changes can delay the adop-
tion of those proposals.

DNS Performance Kangasharju et al [15] have proposed
to replace the DNS with a globally replicated database,
with the goal of improving the response time of DNS
queries. Cohen et al [9] proposed the use of proactive
caching in order to address the same performance problem.
It is interesting to note that both schemes can potentially
improve the resilience of the DNS against DDoS attacks.
On the other hand they are not designed for that purpose
and thus they are not optimized for such a task. For in-
stance both schemes deal with end-host records, while, as
we argue in this paper, utilizing only infrastructure resource
records is more appropriate.

8 Conclusion

Mockapetris [16], the original DNS designer, pointed
out that “The administrator defines TTL values for each
RR as part of the zone definition; a low TTL is desirable in
that it minimizes periods of transient inconsistency, while a
high TTL minimizes traffic and allows caching to mask pe-
riods of server unavailability due to network or host prob-
lems”.

Considering DDoS attacks are simply one of the means
leading to DNS server unavailability, our work reported in
this paper is a realization of the above suggestion. We
demonstrated not only the effectiveness of using longer
TTL value in enhancing DNS resilience, but we also pro-
posed some simple record renewal policies to be used in
conjunction with a long TTL value, with a combined re-
sults of improving the availability by up to one order of
magnitude. Our results can be easily generalized to any hi-

erarchical system [21] that utilizes caching and we debunk
the belief that hierarchical systems cannot provide the same
level of resilience against DDoS attacks as flat peer-to-peer
systems.

References

[1] Events of 21-Oct-2002. http://d.root-servers.org/october21.txt,
2002.

[2] Nameserver DoS Attack October 2002.

http://www.caida.org/projects/dns-analysis/, 2002.

[3] UltraDNS DOS Attack. http://www.theregister.co.uk/2002/12/14/,
2002.

[4] DNS FAQ. http://www.cs.cornell.edu/People/egs/beehive/faq.html,
2004.

[5] DoS Attack against Akamai. http://news.com.com/2100-1038_3-
5236403.html/, 2004.

[6] Million-PC botnet threatens consumers.
http://www.infomaticsonline.co.uk/ vnunet/news/2167474/million-
pc-botnet-threatens, 2006.

[7] ICANN Factsheet for the February 6, 2007 Root Server At-
tack. http://www.icann.org/announcements/factsheet-dns-attack-
08mar07.pdf, 2007.

[8] H. Ballani and P. Francis. A Simple Approach to DNS DoS Defense.
In Proceedings of HotNets, 2006.

[9] E. Cohen and H. Kaplan. Proactive Caching of DNS Records: Ad-
dressing a Performance Bottleneck. In Proceedings of SAINT, pages
85-94, 2001.

[10] R. Cox, A. Muthitacharoen, and R. Morris. Serving DNS Using a
Peer-to-Peer Lookup Service. In Proceedings of IPTPS, pages 155—
165, 2002.

[11] T. Deegan, J. Crowcroft, and A. Warfield. The Main Name System:
An exercise in centralized computing. In Proceedings of CCR, pages
5-13, 2005.

[12] M. Handley and A. Greenhalgh. The Case for Pushing DNS. In
Proceedings of HotNets, 2005.

[13] T. Hardie. Clarifications to the DNS Specification. RFC 2181, 1997.

[14] T. Hardie. Distributing Authoritative Name Servers via Shared Uni-
cast Addresses. RFC 3258, 2002.

[15] J. Kangasharju and K. Ross. A Replicated Architecture for the Do-
main Name System. In Proceedings of INFOCOM, pages 660—669,
2000.

[16] P.Mockapetris and K. J. Dunlap. Development of the Domain Name
System. SIGCOMM CCR, pages 123-133, 1988.

[17] V. Pappas, Z. Xu, S. Lu, D. Massey, A. Terzis, and L. Zhang. Im-
pact of Configuration Errors on DNS Robustness. In Proceedings of
SIGCOMM, pages 319-330, 2004.

[18] V. Pappas, B. Zhang, E. Osterweil, D. Massey, and L. Zhang. Im-
proving DNS Service Availability by Using Long TTL Values. In-
ternet Draft, 2006.

[19] K. Parka, V. Pai, L. Peterson, and Z. Wang. CoDNS: Improving
DNS Performance and Reliability via Cooperative Lookups. In Pro-
ceedings of OSDI, 2004.

[20] V. Ramasubramanian and E. Sirer. The Design and Implementation
of a Next Generation Name Service for the Internet. In Proceedings
of SIGCOMM, pages 331-342, 2004.

[21] H. Yang, H. Luo, Y. Yang, S. Lu, and L. Zhang. HOURS: Achieving
DoS Resilience in an Open Service Hierarchy. In Proceedings of
DSN, pages 83-93, 2004.

