
A Prototype Implementation of the Two-Tier Architecture for Differentiated
Services

Andreas Terzis, Jun Ogawa, Sonia Tsui, Lan Wang, Lixia Zhang

UCLA Computer Science Department

{terzis, ogawa, sonia, lanw, lixia}@cs.ucla.edu

Abstract

We present here a partial prototype implementation of
the Two-Tier architecture for resource allocation in
Differentiated Services networks, first presented in
[ROTZY98]. Specifically, we have implemented the low
level forwarding path support for providing different
levels of network services. The allocation of resources is
managed by the Bandwidth Broker. Our Bandwidth
Broker implementation contains a policy database which
stores information about flows requiring increased
network service, and the Bandwidth Broker configures
routers forwarding parameters in the domain
accordingly. This policy database can be accessed and
updated through a web interface.

Our preliminary experimental results show that this two-
tier architecture can allocate network level resources
according to administrative policies and provide high
quality of network service to specific flows effectively.
Our implementation is part of Qbone effort under
Internet2 initiative, a testbed for IP quality of service
technologies.

1. Introduction

Providing end-user applications with increased levels
of network service has been the holly grail of the QoS
network community for the last 10-15 years. Over the
last few years, research and development effort has
focused on providing Differentiated Services. The
architecture of differentiated services specifically
focuses on scalability as its fundamental goal and
provides a close match to the business needs for the
Internet services.

In this paper, we describe a prototype implementation
of the Differentiated Services architecture and present
our preliminary performance results. We modified the
FreeBSD kernel to provide differential packet
forwarding services. The allocation of resources is
orchestrated by a novel entity called aBandwidth Broker
which was first introduced in [NJZ97]. Our prototype
implementation of the Bandwidth Broker retrieves users
bandwidth usage and policy information from a Flow
database and sets appropriate control parameters in the
routers along the packet forwarding paths.

The rest of the paper is structured as follows. In the
rest of Section 1, we briefly present the Differentiated
Services framework and the Two-Tier resource
management architecture. Section 2 gives an overview
of our implementation architecture. Section 3 presents
the enhancements needed in the packet forwarding path
to provide different levels of service. Sections 4 and 5
describe the control elements and functions used in
resource allocation. Finally, Section 6 presents our
preliminary experimental results and Section 8 discusses
future work.

1.1. Differentiated Services

The Differentiated Services architecture, [RFC2475]
was conceived by the IETF community as a way to
provide scalable service differentiation over the Internet.
This new framework achieves scalability and flexibility
by making a fundamental distinction between the
following two components of the architecture:
• Forwarding Path. This component includes

differential treatment of individual packets at each
network node, as implemented by packet service
disciplines and/or queue management disciplines. In
addition, the forwarding path may require that some
monitoring, policing and shaping be done on the
network traffic designated for “special” treatment.

• Management Plane. This part includes the
configuration of network nodes with respect to
which packets get special treatment and what kind
of rules are to be applied to the use of resources.

In the forwarding path, differentiated services are
realized by sorting each packet into specific forwarding
treatment by the value contained in the TOS1 field of the
IP packet header at each network node on its path. For
example, if the value carried in a packet means “low
delay”, then a router would put that packet on a high
priority queue to forward it promptly. Since routers only
have to look at the packet TOS field to decide the proper
treatment, neither complex classification nor per-flow
state is needed. End-hosts or first-hop routers set the
values in the DS field according to the service quality
each packet is required and entitled to receive.

Given the mode of operation described above, it is
clear that if packets are marked irrespective of the
amount of available network resources, the desired
service behavior cannot be assured. Thus one must
control the amount of traffic injected to the network at
every service level. To carry out this task, the
Differentiated Services architecture introducescontrol
elementswhose job is to enforce that traffic conforms to
predefined profiles. The family of control elements
includespolicers that cut off excess traffic andshapers
that provide temporary buffering to make traffic
conform to the specified profile. Setting the shapers’ and
policers’ parameters is the task of the Management Plane
described in the next section.

1.2. The Two-Tier Architecture

Up to now work in Differentiated Services in IETF
has mainly focused on defining the low-level forwarding
mechanisms, while the design of the management plane
remains a research issue. One proposal for scalable
resource allocation to provide Differentiated Services
was presented in [ROTZY98] which introduces aTwo-
Tier architecture for resource management. This
architecture has two main characteristics:
1. Individual administrative domains manage their

internal resources with approaches that best match
their own needs. For example, some domains may
rely on adequate provisioning, some may use static
configuration, while others may deploy dynamic
reservation protocols such as RSVP.

2. At domain boundaries, two neighboring domains
allocate resources for each other's border-crossing
traffic in bulk accounting for the total needs of
aggregate data flows. The agreement on the
amounts of the allocated resources, commonly

1 The IP header contains an 8-bit field called Type of Service (TOS).
This field was not widely used up to this date. The Differentiated
Services architecture renamed this field toDS Field.

called service level agreements (SLAs), is strictly
bilateral between neighboring domains only. In
such an agreement the sender side offers the
payment and the receiving side pledges to serve the
incoming traffic according to the specified treatment
classes and up to the specified amount. The amount
of resources described in SLAs can be dynamically
adjusted, however the adjustment periods should be
much longer than the lifetime of individual
application flows in order to achieve the desired
system scalability and stability.

Stub Domain 1

Transit
Domain1

Stub Domain 2 Transit Domain 2

Stub Domain 4

Ingress B

Egress C

Egress A
BB2

BB1

BB3

Fig. 1. The Two Tier Hierarchy

Both the allocation ofintra-domainresources and the
arrangement ofinter-domain agreements are managed
by the Bandwidth Broker (BB), a resource manager
entity which was first introduced in [NJZ97]. A
Bandwidth Broker for each domain can be configured
with organizational policies. It keeps tracks of the
current resource usage and interprets new requests in
light of the policies, current allocation of internal
resources, as well as the current SLAs with neighbor
domains. To provide its users or clients with end-to-end
premier services a Bandwidth Broker negotiates
adequate amount of resources with the BB of next hop
neighbor domain, which in turn assures adequate
allocation further down the road. It is this concatenation
of bilateral agreements across domains, together with
adequate intra-domain resource allocation, that achieves
end-to-end service goals.

An example of this model is shown in Fig. 1. Assume
that some new data flow requiring premier network
service is traveling from Stub Domain 1 to Stub Domain
4. To satisfy the resource needs for this new flow, BB1

and BB2 readjusted resources at the domain boundaries
between Stub Domain 1 and Transit Domain 1. BB1 then
instructs Egress Router A to set the appropriate shaping
parameters at the outgoing interface, and BB2 instructs
Ingress Router B to adjust the corresponding policing

parameters at the incoming interface from Stub Domain
1. BB2 will also need to make sure that the incoming
traffic will receive appropriate treatment inside Transit
Domain 1 and will make the necessary arrangements to
allocate resources for this traffic further downstream. In
our example, BB2 could aggregate the requirements from
Stub Domains 1 and 2 and allocate enough resources
over the next downstream boundary to Transit Domain
2.

2. Intra-Domain Implementation

After describing the overall picture of the Two-Tier
architecture, this section presents our implementation of
the intra-domainresource allocation. As Fig. 2 reveals,
our implementation is roughly divided to two major
components:

1. Bandwidth Broker: The entity responsible for
resource allocation as described in Section 1.2.

2. Routers: forward packets according to the specified
level of services.

There are two types of routers in our implementation:
interior routers and edge routers. An edge router
connects the local domain to neighboring domains. It is
the task of edge routers to check and enforce that traffic
crossing domain boundaries conforms to the existing
SLAs. Another difference is that while resource
allocation at edge routers is dynamically adjustable by
the domain’s Bandwidth Broker, resources at interior

routers can be either statically configured, or
dynamically allocated by a resource setup protocol, such
as RSVP, to reserve resources on the path from the
Ingress to the Egress Router.

The Bandwidth Broker (BB) maintains the domain’s
policy, which contains information regarding flows
requesting increased level of service. These flows are
either locally generated, or coming as an aggregate from
neighboring domains for transit service. Based on the
contents of the flow database, the bandwidth broker
instructs the domain’s edge routers to set their policer
and shaper parameters appropriately. In our
implementation, the protocol used for this
communication is COPS [BCD99] because of its
availability, although other protocols can also be used to
serve the same purpose. The Bandwidth Broker contains
a COPS server that sends configuration commands to a
COPS client residing at edge routers. At the edge router
side, the COPS client receives these commands and via
the Forwarding Path Driver (FPD), translates them to
parameters understood by the forwarding path.

3. Forwarding Path

We use the the termforwarding pathto collectively
refer to all the low level mechanisms used to forward
packets from one node in the network to the next. Our
prototype implementation uses PCs running FreeBSD as
both end hosts and network routers. Our choice is based
on the fact that FreeBSD offers high performance, is
freely available, and is based on the BSD network code

Packets

FPD

COPS Client

Forwarding Path

Management Plane

Router COPS

Web Interface

dB/COPS Interface

dB

COPS Server

BB

. . .

Edge

Router

Fig. 2. Intra-Domain resource allocation architecture

which has been highly optimized and well documented.
In addition, the ALTQ [Cho98] package implemented on
FreeBSD, which is freely available fromSONY CSL,
offers a wide range of packet queuing disciplines.

As a first example of premier network services we
decided to implement the EF PHB described in [JKP99].
The EF PHB can be used to build a low loss, low
latency, low jitter, and assured bandwidth end-to-end
service through domains supporting differentiated
services. Although we have implemented only one
service in addition to best effort, our implementation is
extensible and we plan to implement other services in
the future.

Subdividing the forwarding path functionality
furthermore we can distinguish two subsets: the
functionality required at the routers and the functionality
required at the end-hosts. Routers do shaping and
policing while end-hosts set the DS field in the packets.
Each of these is described in the following sections.

3.1. Router

Figure 3 shows the processing path that packets go
through inside a router. Packets arrive from an incoming
interface, are processed inside the kernel, and are
eventually forwarded through an outgoing interface. The
processing phase consists of several stages. Initially the
packet is delivered from the network interface in kernel
space. Some sanity checks are then performed to make
sure that the packets is in good shape and then the packet
is delivered to the forwarding code that decides which is
the appropriate outgoing interface based on the
destination address in the packet’s header. Once this
decision has been made, the packet is delivered to the
outgoing interface’s queue where it awaits its turn to be
transmitted.

In our architecture policing is implemented in the
incoming interface while shaping is implemented in the
outgoing interface. We took this decision to make flow
identification and separation easier, since flows from

different incoming interfaces that converge to the same
outgoing interface can be policed separately before
getting multiplexed over the same outgoing interface.
Had we decided to do policing at the outgoing interface,
we would have to implement more complex classifiers
able to discern between packets belonging to flows from
each of the incoming interfaces.

Since all of ALTQ’s functionality is implemented at
the outgoing interface we had to add the needed
functionality in the incoming interface. Once packets
arrive at the kernel, they go through a classifier that
categorizes them according the value of the DS field in
the IP header. If the packet is an EF packet, it is passed
to the Policer module, otherwise it is immediately given
to the forwarding module. The Policer module is
implemented using a token bucket mechanism. A token
bucket has two parameters: a token rate and a bucket
depth. Tokens are generated at a specified rate. No more
tokens than the bucket depth can be accumulated. Each
time a packet arrives, the Policer checks if there are
enough tokens. If there aren’t enough tokens the packet
is dropped, otherwise the packet moves to the next stage.
This next stage is forwarding where a route lookup is
made and the appropriate outgoing interface is found.

The specification of the EF behavior dictates that EF
packets should be given priority at the outgoing interface
over best-effort packets. Moreover at domain boundaries
the amount of EF traffic must be shaped according to the
existing SLA. For these two tasks, we use the existing
CBQ module [FJ95] provided by ALTQ. CBQ is a
mechanism that allows a hierarchy of arbitrary defined
traffic classes to share the bandwidth on a link in a
controlled fashion. In our case, the trivial CBQ hierarchy
shown in Fig. 4, is used. There are only two classes: EF
and best effort traffic. EF traffic is allocated up to x % of
the outgoing interface’s bandwidth and is given priority
over best effort traffic. Best effort traffic can in the worst
case use the remaining (100-x)% of the outgoing
interface’s bandwidth.

The difference betweeninterior and edge routers

Input
Interface

A B C
Output
Interface

Packet BE

A: DS Classification C: Forwarding
B: Policing D: Shaping

D
EF

Fig. 3. Forwarding Path Components

inside a domain is that for interior routers the policer and
shaper parameters are statically configured while in edge
routers these parameters are configured by an agent
following the commands of the domain’s BB, as we will
see in later sections.

3.2. End Host

At the end host, applications can specify their need
for increased level of network service for their packets
by requesting from the kernel to mark their packets with
the EF codepoint. To do so, we have implemented a new
socket option namedSO_EF. Using this option TCP,
UDP and raw sockets can be marked with the EF
codepoint. Applications wanting enhanced level of
service for their traffic can open a socket using the
socket() function and then callsetsockopt(SO_EF)
for that socket. When the kernel receives a packet from
that socket it sets the EF value in the DS field of the IP
header and forwards the packet.

Based on this feature, we have modified thetg
traffic generator utility providing the capability of
sending EF packets. This utility has been used to test our
router implementation and measure the performance of
our router code.

4. The Bandwidth Broker (BB)

The Bandwidth Broker, as we have already said in
Section 1.2, is the entity in charge of resource
management in an administrative domain. There are two
fundamental requirements for an entity to be able to
perform this task:

1. Enough information must be available regarding
the flows requiring network service inside and
through the local domain.

2. The entity should be able tocontrol the behavior of
the domain’s forwarding elements in order to
provide the required service.

To satisfy this dual needs our Bandwidth Broker
implementation consists of two parts:i.) A flow database
containing information about flows requiring differe-
ntiated level of service andii.) a COPS server that

communicates with a COPS client at the edge routers to
set the appropriate parameters at the forwarding path. In
the following two sections, we present each of the
components in more detail.

4.1. Flow database

The Flow Database stores information about the
flows that request increased level of network service
from the local domain. These are either local flows
whose sender resides in the local domain or flows that
transit through the local domain on their way to their
final destinations. The database stores the following
information about each of these flows:

• ingress interface: The interface through which the
flow enters this domain2.

• egress interface:The exit point through which the
flow leaves this domain.

• Resources requested:Expressed as token bucket
parameters, that is a pair [r,b] wherer is the rate in
bytes/second andb is the bucket depth in bytes.

• start time: Starting from this instant, the flow
requires the resources mentioned above.

• finish time: After this time, no resources should be
allocated for this flow and the ones reserved must
be revoked.

• auxiliary information: such as contact
information etc.

We have implemented the database using the freely
available MySQL RDBMS [MySQL]. To provide easier
access to the flow database we have also implemented a
Web-based front-end to it. Using this front-end, the
authenticated network administrator can make queries
about existing flows, add new flows or delete old ones.
The implementation of the front-end is based on the
PHP3 scripting language. PHP3 is a server-side scripting
language that integrates nicely with our database back-
end. It is relatively easy to use and is supported by the
Apache web server. For more information on PHP3, the
interested user can find a wealth of information in
[PHP3].

4.2. COPS Server

Once the requested resource allocation information is
loaded into the flow database, the next step is for the
Bandwidth Broker to send the appropriate configuration
parameters to the domain’s edge routers. But before this
is done, an intermediate step takes place. As we have
seen in the previous section, the policy database contains

2 for local flows, the first hop router is consider to be the flow’s ingress
router

Root

EF BE 100-x %x %

Fig. 4. Allocation of resources at the
output interface.

individual flows that have an entry and an exit point
through the local domain. Some of these flows will have
the same entry or exit points and therefore their resource
requirements have to be aggregated before configuration
parameters for the total resource usage can be passed to
the domain’s routers. The BB goes through this process
twice, once for incoming traffic and once for outgoing
traffic. When this process is complete, it contacts each of
the domains edge routers to configure the shaping and
policing parameters. The detailed message exchange
between the BB and the edge routers is described in
detail in the following section.

5. Edge Router

The control plane components of the edge router can be
divided to two parts. The first part is the COPS client
used to exchange configuration information with the
domain’s Bandwidth Broker and the second part is the
Forwarding Path Driver (FPD) which translates
configuration commands received by the Bandwidth
Broker to parameters understood by the forwarding path
mechanisms.

5.1. Edge router-BB Communication

The COPS (Common Open Policy Service) Protocol
[BCD99] is a query and response protocol that is used
for exchanging policy information between a policy
server and its clients. In this protocol, the server, also
calledPolicy Decision Point(PDP), keeps configuration
information about a domain’s resource management and
installs these configurations to clients, also named as
Policy Enforcement Points(PEPs). Although COPS
supports several operations, we mainly use the
Configuration operation in which PDP sends
configuration commands to the PEPs. In our
architecture, BB plays the role of the PDP and edge
routers contain the PEPs. A detailed specification of the
message exchanges between the BB and the edge routers
can be found in [RCD+98]. We will only describe the
main mechanism involved briefly here.

Communication between the BB and the edge routers
is achieved mainly by three kinds of COPS messages:
Request , Decision and Report messages. When
an edge router (PEP) makes a request for configuration
information during initialization for example, it sends a
Request message to the BB (PDP). The BB replies by
sending a Decision message containing the
appropriate parameters for the corresponding interface of
the edge router. After getting this message, the edge
router replies by sending the configuration result (i.e.
success or failure) to the BB via aReport message.
Figure 5 shows the sequence of messages exchanged
between the Bandwidth Broker and the edge router.

As time passes, some of the installed parameters may
need to be altered. For example a network administrator
may want to add or delete a flow from the flow database
or some of the existing flows have expired. This will
trigger the forwarding of an updatedDecision
message from the BB to the edge router and subsequent
forwarding of a Report message from the edge router.

The configuration parameters supported by our
current implementation include enabling and disabling a
router’s policer and shaper, setting the parameters for the
token bucket meter and shaper for the EF packets.

5.2. Forwarding Path Driver (FPD)

The Forwarding Path Driverprovides an interface
between the COPS client and the Forwarding Path.
When the PEP receives a configuration request from the
BB, it removes the COPS specific headers and sends it
to the FPD. The FPD then installs the appropriate
parameters to the forwarding path (e.g. the policing
parameters) and sends the reply received from the
forwarding path back to the PEP. It is this value that will
be sent back to the BB inside aReport message. One
of the significant characteristics of the FPD is its ability
to do parameter checking. The FPD before installing any
parameters received in a request to the Forwarding Path,
it verifies their validity. For example, a request that asks
more bandwidth than the interface bandwidth is
obviously invalid. If any errors are found, the FPD sends
a negative notification to the PEP without installing any
parameters. The FPD can also be used to install a static
configuration at the forwarding path independently from

Edge Router BB

REQ

DEC

RPT

dB Change

DEC

RPT

dB Lookup

Initialization

Resource
Configuration

Resource
Configuration

Fig. 5. BB-Edge Router Communication

the BB. Such a capability provides increased robustness
against BB crashes.

6. Experimental Results

To test our implementation and to get some first
estimates of its capabilities we have run some initial
experiments. The topology we used is shown in Fig. 6.
Our topology contains three hosts and one router.
Camelot and Gawain are the sending hosts and Lancelot
is the destination for both traffic streams. Gawain is
sending best effort traffic while Camelot is sending EF
traffic. All of Avalon’s interfaces are 10Mbps point-to-
point Ethernet links. Avalon acts both as ingress and as
egress router. So the incoming interfaces I1 and I2 do
policing while the outgoing interface towards Lancelot
does shaping. Camelot has an exponential source with
average transmission rate of 8 Mbps, while Gawain is
sending best effort traffic at a constant rate of 8 Mbps.

For policing, the token bucket parameters on interface
I1 have been set to [4 Mbps, 20000bytes] where 4Mbps
is the policing rate and 20Kbytes is the bucket depth. On
the outgoing interface we have also allocated 4 Mbps to
EF traffic and 6 Mbps to best effort traffic.

Figures 7 and 8 shows the incoming best effort and
EF traffic respectively. Note from the graphs that best
effort traffic is smoother than EF as expected. The other
lines in Figures 7 and 8 are background traffic.

Figure 9 shows the traffic at Avalon’s output
interface. Att=800 only the EF flow is on. We can see
that even though the incoming EF traffic is coming at a
rate of 8 Mbps it is successfully policed at the
configured rate of 4 Mbps. At timet=810 we turn on the
best effort traffic but we can clearly see that the EF flow
is not affected by it. Due to shaping, the best effort flow
get 6 Mbps of the output interface’s bandwidth. At time
t=850 we turn of the EF flow and we can immediately
see how the best effort traffic ramps up and consumes
the extra available bandwidth.

7. Summary

We described in this paper a prototype
implementation of intra-domain resource control under
the two-tier differentiated services architecture. The two-

Lancelot Avalon

Gawain

CamelotI1

I2

Fig. 6. Experiment Topology

lancelot

131.179.96.194

131.179.53.95

131.179.53.65

131.179.49.71

131.179.128.30

Best Effort Traffic

Time (sec)

8 0 0 8 2 0 8 4 0 8 8 0

T
ra

ff
ic

 (
M

b
p

s)

0

2

4

6

Fig. 7. Incoming best effort traffic

l a n c e l o t

camelot

avalon−33

E F T r a f f i c

Time (sec)

8 0 0 8 2 0 8 4 0 8 6 0

T
ra

ff
ic

 (
M

b
p

s)

0

2

4

6

8

Fig. 8. Incoming EF traffic

l a n c e l o t B E

131.179.53.66

lancelot EF

131.179.53.34

131.182.10.250

224.2.203.37

Outgoing Interface

Time (sec)

800 820 840 860 880

T
ra

ff
ic

 (
M

b
p

s)

0

2

4

6

Fig. 9. Outgoing Traffic

tier architecture divides the resource allocation task into
two major components: theintra-domain allocation, by
which each administrative domain allocates internal
resources independently and theinter-domain allocation,
where neighboring domains jointly allocate aggregate
resources at domain boundaries. In our effort we have
implemented the forwarding path mechanisms required
to provide the EF behavior. We also implemented a
control entity known as theBandwidth Broker, which
oversees the allocation of resources inside the local
domain and allocates resources at domain boundaries.
The Bandwidth Broker contains the domain’s flow
database holding information about resource needs and
communicates through COPS with the domain’s edge
routers to set policing and shaping parameters according
to these needs. Our preliminary results show that the
mechanisms implemented can provide improved support
to applications requiring increased levels of network
service and at the same time protect the domain’s
resources against resource abuse.

8. Future Work

At this point our prototype implements only one part
of the complete architecture presented in Section 1.2,
namely the intra-domain resource allocation mechanism.
Our plan for the future is to implement the rest of our
architecture. Specifically we plan to move along the
following two directions:
• Implement a dynamic intra-domain resource

allocation protocol. The allocation of internal router
resources is statically configured at this time, which
we plan to replace with a dynamic allocation
mechanism along the paths between ingress and
egress routers of a domain. One simple scheme may
work as follows: The ingress router uses
information received by the domain’s BB to send
RSVP PATH messages to the required egress
routers, and the egress routers will respond by
sending RESV messages reserving the required
resources on the path between the ingress and the
egress routers.

• Implement automated inter-domain resource
allocation control.At this point, information about
transit flows is exchanged between neighboring
domains via some out-of-band mechanism, such as
e-mail or phone calls between network
administrators. We plan to develop a BB-to-BB
protocol to automate the communication between
neighboring BBs allowing for more dynamic inter-
domain resource allocation..

References

[BCD99] J. Boyle, R. Cohen, D. Durham, S. Herzog, R. Rajan,
A. Sastry, “The COPS (Common Open Policy Service)
Protocol”. Work in progress, Internet-Draft, February 1999
[Cho98] K. Cho, "A Framework for Alternate Queueing:
Towards Traffic Management by PC-UNIX Based Routers." In
Proceedings of USENIX 1998 Annual Technical Conference,
New Orleans LA, June 1998.
[FJ95] S. Floyd, V. Jacobson,“Link Sharing and Resource
Management Models in Packet Networks”. IEEE/ACM
Transactions on Networking, August 1995.
[JKP99] V. Jacobson, K. Nichols, K. Poduri, “An Expedited
Forwarding PHB”. Work in progress, Internet-Draft, February
1999.
[NJZ97] K. Nichols, V. Jacobson, L. Zhang, “A Two-bit
Differentiated Services Architecture for the Internet”. Work in
progress, Internet-Draft, Nov 1997.
[RCD+98] F. Reichmeyer, K. Chan, D. Durham, R. Yavatkar,
S. Gai, K. McCloghrie, S. Herzog, “COPS Usage for
Differentiated Services”. Work in progress, Internet-Draft, Dec
1998.
[ROTZY98] F. Reichmeyer, L. Ong, A. Terzis, L. Zhang, R.
Yavatkar, “A Two-Tier Resource Management Model for
Differentiated Service Networks”. Work in progress, Internet-
Draft, Nov 1998.
[RFC2474] K. Nichols, S. Blake, F. Baker, D. Black,
“Definition of the Differentiated Services Field (DS Field) in
the IPv4 and IPv6 Headers”. RFC 2474, December 1998.
[RFC2475] S. Blake, D. Black, M. Carlson, E. Davies, Z.
Wang, W. Weiss, “An Architecture for Differentiated
Services”. RFC 2475, December 1998.
[MySQL] Available athttp://www.tcx.se/

[PHP3] Available athttp://www.php3.net/

