
Check-Repeat: A New Method of Measuring
DNSSEC Validating Resolvers

Yingdi Yu
UCLA

yingdi@cs.ucla.edu

Duane Wessels
Verisign Labs

dwessels@verisign.com

Matt Larson
Verisign Labs

mlarson@verisign.com

Lixia Zhang
UCLA

lixia@cs.ucla.edu

Abstract—As more and more authority DNS servers turn
on DNS security extensions (DNSSEC), it becomes increasingly
important to understand whether, and how many, DNS resolvers
perform DNSSEC validation. In this paper we present a query-
based measurement method, called Check-Repeat, to gauge the
presence of DNSSEC validating resolvers. Utilizing the fact that
most validating resolver implementations retry DNS queries with
a different authority server if they receive a bad DNS response,
Check-Repeat can identify validating resolvers by removing the
signatures from regular DNS responses and observing whether a
resolver retries DNS queries. We tested Check-Repeat in different
scenarios and our results showed that Check-Repeat can identify
validating resolvers with a low error rate. We also cross-checked
our measurement results with DNS query logs from .COM and
.NET domains, and confirmed that the resolvers measured in our
study can account for more than 60% of DNS queries in the
Internet.

I. INTRODUCTION

Domain Name System Security Extensions (DNSSEC) pro-
vide the much needed cryptographic protection for the critical
DNS services, by allowing end hosts to authenticate DNS data.
Effective rollout of DNSSEC requires deployment efforts from
both data publishers (zone owners) and data consumers (DNS
clients). Zone owners must sign their zones and publish their
keys, and DNS clients must upgrade their caching resolvers
to perform cryptographic verification of the DNS data.

Tracking both sides of DNSSEC deployment is important
for a number of reasons. For example, it helps with the
“chicken-and-egg” problem. When publishers know that con-
sumers are configuring validation in their resolvers, they will
be increasingly motivated to sign their zones. When consumers
know that publishers are increasingly signing their zones, they
will be more motivated to enable validation.

The publishing side of DNSSEC deployment has been well
studied over the last few years [1]. It is relatively easy to
determine whether a given zone is signed by simply sending
queries to the authoritative DNS servers of the zone. In
contrast, it is rather difficult to measure how many caching
resolvers have turned on DNSSEC verification. Generally
speaking one does not know all the existing caching resolvers
around the world, nor can one directly query them externally.
To get good measurement results, one must first find a way to
capture resolver queries and analyze their behavior.

We are particularly interested in understanding DNSSEC
deployment at the consumer-side. To gauge the number of
caching resolvers that perform DNSSEC validation, which we

call DNSSEC validators, or validators in short, we face the
following two problems:

• How can one gather DNS queries from as many caching
resolvers as possible?

• For a given resolver, how can one tell whether it performs
validation of DNS data?

Some previous studies solved the first problem by analyzing
the queries received by the authority DNS servers for a popular
domain, such as .ORG [2] and .JP [3]. Unfortunately this
method can potentially introduce false positive results. As
reported by [4], about 1.6% of measured caching resolvers
sent DNSKEY query, but did not validate data.

Some other studies solved the second problem by combining
the observations of end host behavior on both DNS queries
and HTTP requests [4], [5]. As we discuss in Section VI, the
effectiveness of this approach is confined to the resolvers that
query for a specific domain name. Ideally, one wishes to derive
a method that can address both problems simultaneously while
avoiding the above mentioned negative factors.

In this work, we develop a new solution, dubbed Check-
Repeat, to address the two problems at once. Our earlier
measurements show that most validating resolver implemen-
tations (such as BIND and Unbound), upon receiving a bad
response [6], will resend a query to another authority server.
Utilizing this observation, Check-Repeat first redirects DNS
queries from multiple zones to a single, experimental zone
named VALIDATORSEARCH.VERISIGNLABS.COM, intention-
ally removes the DNSSEC signature records from responses
given by that zone, and then observes whether the caching
resolvers will resend queries to another server of VALIDA-
TORSEARCH.VERISIGNLABS.COM zone. We examine whether
a resolver sends both DNSKEY queries and repeated queries
as a stronger indicator of performing DNSSEC validation. Sec-
tion III provides the full details of Check-Repeat’s operations.

We also compared our measurement results with previous
studies, and found that the ratio of validators and resolvers
measured are consistent. We also evaluated the representa-
tiveness of our results by cross-checking them against query
logs from the .COM and .NET authority servers. We observed
that the set of caching resolvers seen in our measurements
accounted for more than 60% of queries to .COM and .NET
zones. The full results of our analysis are presented in Sec-
tion IV.

In the rest of the paper, we first briefly introduce the
basic concepts of DNS and DNSSEC in Section II. We then
proceed to describe our methodology and measurement results
(Sections III and IV). We discuss the deployment issues
surrounding our measurement tool in Section V and related
work in Section VI. We conclude the paper in Section VII.

II. BACKGROUND

A. DNS

DNS provides mappings from domain names (e.g.,
WWW.UCLA.EDU) to IP addresses, and a wide range
of other data, such as E-mail servers and address-to-
name records. All of these mappings are represented
in terms of Resource Records (RRs). For example,
“www.ucla.edu A 169.232.33.241” is an A
type RR that maps the name WWW.UCLA.EDU to
its IP address, and “www.verisign.com CNAME
www-ilg.verisign.net” is a CNAME type RR that
redirects the resolution of WWW.VERISIGN.COM to the
resolution of another domain name. All resource records in
a zone (e.g., UCLA.EDU) are stored in one or more servers
called authority servers, which can answer queries for domain
names in that zone.

When an end user wants to know the IP address of a
domain name, it usually asks a special name server, called a
caching resolver. Usually, the caching resolver sends queries
directly to authority servers. In some situations, however, a
caching resolver might be configured to forward its queries
to another caching resolver. Sometimes resolvers send queries
for names that do not exist [7]. These domain names are called
NXDOMAIN names.

B. DNSSEC

When the DNS was initially designed, data authentication
was not taken into consideration. For example, when a re-
solver receives an RRset of the IP addresses of the name
WWW.UCLA.EDU, the resolver can not tell if this RRset is
created by the operator of UCLA.EDU zone or by a malicious
attacker.

DNSSEC is an extension to the DNS, providing a solution
to data authentication. A DNSSEC-secured zone generates at
least one pair of public/private keys. Private keys are used to
sign each RRset in the zone. Such a process is called zone
signing. The generated signatures are added to the zone data
as RRSIG records. When responding to a DNSSEC-capable
resolver, the authority server attaches the signatures in the
reply message.

Validating resolvers use the zone’s public key to verify that
the signatures are authentic. Whereas private keys must be
kept in secret, public keys are published in the zone file, for
anyone to retrieve, as DNSKEY records. Validating resolvers
are expected to issue separate queries for the public keys as
necessary.

Although responses can be validated by verifying attached
signatures, DNS is still not secured without authenticating
public keys, i.e., which public key should be used to verify

.edu%DS%

root%

ucla.edu%DS%

.edu%

www.ucla.edu%A%

.ucla.edu%

Key%Signing%Key%
Zone%Signing%Key%

Designate%
Sign%
Validate%

Trust%Anchor%

Fig. 1. An example of how DNSSEC validation works.

signatures? To solve this problem, a parent zone can point to a
public key in each of its signed child zones. Such information
is stored in one or more Delegation Signer (DS) records. A
zone’s DS record is signed and held by its parent zone, which
means it can be validated by the parent zone’s public key. The
public key pointed by a DS record is called Key Signing Key,
which is only used to sign the DNSKEY RRset in a zone. The
other DNSKEY records (called Zone Signing Key) are used to
sign the other RRsets. To validate a response, a resolver needs
to check 1) whether the attached signature can be verified with
the corresponding public key; 2) whether the public key can
be validated with the DS record signed by the parent zone.
Such a verification process continues recursively back along
the zone’s ancestors (as shown by the dotted line in Figure 1)
until reaching a trusted public key that has been configured
locally as a trust anchor. The whole process is called DNSSEC
validation, and a resolver that can validate DNSSEC data is
called a DNSSEC validator. Errors at any step in the process
of validation can cause name resolution failures.

III. METHODOLOGY

In this section, we explain how Check-Repeat functions to
measure DNSSEC validators. Check-Repeat consists of three
components: a set of CNAME records that are used to collect
queries from caching resolvers, a signature remover that can
induce validators to retry queries, and a query-based validator
identifying algorithm.

A. Validation Indicators

Although receiving DNSKEY and DS records are necessary
steps in DNSSEC validation, they are not always sufficient
indicators that validation is actually taking place. DNSKEY
and/or DS queries may be sent by monitoring systems, browser
plugins, DNS crawlers, and even end users. Another indicator
of validation is the rejection of bad data, such as missing
or incorrect signatures, keys, or DS records. Since authority
servers always do their best to provide good data, we won’t
find evidence of rejection in the query logs of operational
zones. To elicit this behavior, we must intentionally introduce
errors into the communication between validators and signed
zones.

Internal(
Network(

Fig. 2. An example of deploying signature remover in front of a zone.
131.179.196.11 and 131.179.196.12 are the original IP addresses of the two
authority servers respectively.

Resolvers
Signature
Remover

Authoritative
Name server

foo.example.com A

foo.example.com A
127.0.0.1
foo.example.com RRSIG
…..

foo.example.com CNAME
cn1352130406.example.com
foo.example.com RRSIG
……

cn1352130406.example.com A
cn1352130406.example.com A
127.0.0.1

Non-validator
accepts reply!

cn1352130406.example.com A

cn1352130406.example.com A
127.0.0.1
cn1352130406.example.com RRSIG
……

foo.example.com A

Validator
repeats query!

Fig. 3. An example of how signature remover works.

We built a tool called Signature Remover which can inter-
cept queries to a zone and remove signatures from specific
responses. In many cases, the missing signature causes the
validator to retry its query at one of the zone’s other authority
servers. Non-validators, however, accept the modified response
as legitimate. Therefore, the repeated queries can be used as
a strong indicator of DNSSEC validation. Since the signature
remover modifies signature records only, it does not affect
resolution for non-validators. Note that we do not use repeated
queries alone as an indicator, since repeats might also be
caused by packet loss or other reasons.

Figure 2 shows how a signature remover is placed in front
of a signed zone, EXAMPLE.COM. In this case, the zone has
two authority servers and a single signature remover process
listens on both1. Later, in Section V we talk about how the
signature remover can be used in cases where the authority
server are distributed. The signature remover forwards certain
queries to the real (“backend”) authority server using loopback
or private IP addresses.

With such a deployment, the signature remover receives all
DNS traffic for the EXAMPLE.COM zone. However, it doesn’t
necessarily remove signatures for every name and record in
the zone. It is configured with a target set of names. Queries
for names that are not in the target set are passed on directly to
the backend server, and the corresponding responses are passed
back to the querier unmodified. Furthermore, we restrict the
types of records for which signatures are removed (i.e., A and
AAAA).

Queries for names in the target set are called target queries.
Figure 3 shows how a signature remover handles a target query

1Although putting all authority servers on one network violates the DNS
best practices, we feel it is acceptable for this study.

for the address of FOO.EXAMPLE.COM:
1) When the signature remover receives a target query, it

responds with a CNAME record. The CNAME record
contains a unique component, based on the query time,
such as CN1352130406660979.EXAMPLE.COM. At the
same time, the signature remover pre-fetches the re-
sponse for the target query from the backend name
server.

2) A resolver receiving a response containing the CNAME
record will send another query for the new name. Such
a query is called a probe query. The probe query will
be intercepted by the signature remover as well.

3) The first time that the signature remover receives a
particular probe query, it returns an unsigned response
which is constructed using the RRs in the answer section
of the pre-fetched response.

4) A non-validator will not notice the missing signatures,
thus accepting the unsigned response. The signature
remover will not receive any more probe queries.

5) A validator, due to validation failure, can send the
probe query to another authority server address, which
is intercepted by the signature remover again.

6) When the signature remover sees a repeated probe query,
it returns a signed response which can be validated.

With the signature remover deployed, we define a trial as
a sequence of queries containing a target query and its sub-
sequent probe queries. The basic query pattern of a validator
consists of a target query and two probe queries. Depending
on whether a validator has previously fetched the zone’s public
key, the pattern may also include a DNSKEY query. Note that
different implementations may request records in a different
order, or may include other queries in the sequence. However,
to be considered as a validator, it must contain the basic pattern
as a subset. A log file records all queries seen by the signature
remover. We analyze this log file to identify validators using
the methods described in Section III-C.

B. Sample Resolver Collection

For our measurements to be meaningful, we need to re-
ceive DNS queries from many resolvers spread far and wide
throughout the Internet. Since removing signatures from DNS
responses might negatively impact end users (i.e., with SERV-
FAIL errors), we must carefully choose the zones on which to
deploy the signature remover. We want to find zones that are
both busy, yet won’t cause disruptions when we tinker with
them. We need zones where the answers don’t really matter.
Fortunately, we happened to have some.

In our measurement, we managed to add CNAME records
for five “WPAD” domain names, WPAD.{COM, NET, ORG,
BIZ, US}, so that queries for these names will eventually
become queries to our experimental zone. The Web Proxy
Auto Discovery protocol (WPAD) is a way for browsers to
locate proxy auto-configuration scripts using DNS queries. For
example, a web browser may query for WPAD.CS.UCLA.EDU
to get the location of a local proxy configuration file. If there is
no such a file or the location does not exist, the web browser

Validator

foo.example.com A

Signature
Remover

Non-Validator

foo.example.com A
foo.example.com A
127.0.0.1

foo.example.com A
127.0.0.1

foo.example.com A

foo.example.com A
127.0.0.1

foo.example.com A

foo.example.com A
127.0.0.1

Answered by
cached response!

Fig. 4. An example of how multi-level cache prevent repeated queries from
reaching signature remover.

may query for WPAD.UCLA.EDU instead. It does not make
any sense to query for WPAD.EDU if the web browser cannot
find the configuration file yet. However, many web browsers
(especially Microsoft Internet Explorer) still query for these
meaningless domain names. And the five domain names we
used receive millions of queries per day that, theoretically,
should not exist.

C. Query Log Analysis

Within the signature remover’s log file, a resolver is iden-
tified as a validator if it satisfies the following three rules:

A. it received a signature via a repeated query;
B. it received the zone’s public key via a DNSKEY query;
C. its query pattern was consistent over time.

The first two rules are necessary steps of DNSSEC validation.
The purpose of the last rule is to exclude two situations
that can cause false positive results: 1) non-validators may
occasionally re-send queries due to packet loss, and 2) non-
validators and validators might coexist behind a single NAT
box.

It is important to note that, based on the above rules, our
method cannot identify validators that forward their queries
to another caching resolver. As shown in Figure 4, the non-
validator is not aware of the missing signature and caches the
response until it is ejected out. During this time, even if the
validator repeats the probe query, the non-validating forwarder
responds with the cached data, rather than contacting the
authority server again. Such multi-level caches can cause false
negatives in our measurements.

The first step of query analysis is to group queries in the
same trial together. Since all queries in a trial are associated
with a unique CNAME record, they can be grouped according
to this information. Any queries arriving more than five
seconds after the target query are discarded. If we do not find
a repeated probe query within five seconds of the timestamp,
the trial is considered as a non-validation.

Next, for each trial, we determine whether or not the
resolver requested the public key, or if the key was already
in the resolver’s cache. This is somewhat tricky because the
key is not unique per-trial and has a relatively long TTL (two
hours). Furthermore, some trials issue queries from multiple
IP addresses. Therefore, we first group together all the IP

TABLE I
SUMMARY OF CAPTURED DNS QUERY TRACE

trace-I trace-R
Captured Queries 24,786,845 8,030,734
Collected IPs 77,685 50,603
Days 36 9

TABLE II
SUMMARY OF MEASUREMENT RESULT OVER TRACE-I

Total Validators Ratio
Trials 6,498,277 561,772 8.64%
IPs 77,685 2,768 3.56%
Resolvers 49,488 2,377 4.80%

addresses for a resolver (within a 24-hour period). Then we can
see if any of those IP addresses received a DNSKEY response
within two hours of the trial. If we are not able to locate such
a DNSKEY query, the trial is considered as a non-validation.

Finally, we categorize all IP as validating, non-validating,
or mixed. IP addresses that are only associated with non-
validating trials are marked as non-validators. Similarly, ad-
dresses that are only associated with validating trials are
marked as validators. The remaining set of addresses partic-
ipated in both validating and non-validating trials. Here we
use a threshold. If 90% or more of an address’ trials are
non-validating, the address is marked as a non-validator. The
remaining are most likely IP addresses of NAT boxes.

IV. MEASUREMENT RESULT

In this section, we examine our measurement results. We
placed a signature remover in front of an experimental zone
VALIDATORSEARCH.VERISIGNLABS.COM. We have only one
name in the target set. The five “WPAD” domain names,
WPAD.{COM, NET, ORG, BIZ, US}, are all configured with
a CNAME record pointing to the target name. We collected
queries from 2012-09-25 to 2012-10-31, and refer to this
signature remover data as trace-I. Then we disabled the
signature remover, and collected queries from 2012-11-01 to
2012-11-09 in order to check for false positives. We refer to
the data in this latter period as trace-R. Table I summarizes
these two traces.

Trace-I contains 6,498,277 trials from from 77,685 distinct
IP addresses. Upon applying the validation detection tech-
niques described in Section III, we find 561,772 trials clas-
sified as DNSSEC validations. These validation trials consist
of queries from 2,768 distinct IP addresses. We grouped IP ad-
dresses belonging to the same resolvers together, thus getting
49,488 resolvers and 2,377 validators. We list the summary
of validator identified over trace-I in Table II. The ratio of
validators to total resolvers is 4.8%, which is close to the
4.5% measured by Wander and Weis [4] and 4.0% measured
by Huston [5] using the rejection-of-bad-data technique.

In order to check false positive rate, we also applied our
validator identifying algorithm to trace-R. Since the signature
remover was turned off when collecting queries in trace-
R, trace-R should not contain repeated queries caused by

0 7 14 21 28 35 42 44
10

1

10
2

10
3

10
4

10
5

10
6

Day

N
u

m
b

e
r

o
f

R
e

s
o

lv
e

rs

Detected Validators

Detected Resolvers

Possible Validators

False
PositiveFalse Negative

Fig. 5. Resolvers and validators measured from 2012-09-25 (Day 0) to
2012-11-09 (Day 44). On 2012-11-01 (Day 35) signature remover was turned
off.

intentionally missing signatures. If Check-Repeat still reported
validators from trace-R, then this implies that Check-Repeat
falsely identified a resolver as a validator by mistaking re-
peated queries caused by other reasons (e.g., packet loss). All
of these identified “validators” are false positives.

Figure 5 shows the number of validators and resolvers
detected each day for both traces. Because the signature
remover was turned off on 2012-11-01 (i.e., Day 36), any
validators identified since that time are false positives. As
shown in Figure 5, the number of identified validators has
dropped to around 40 since Day 36. Given the number of
resolvers found per day is approximately 20,000, the rate of
false positive detection is only 0.2%. This suggests that Check-
Repeat introduce very few false positives.

To evaluate the false negative rate of Check-Repeat, we
examined trace-I for resolvers that received the public key,
but did not repeat queries. These resolvers might be validators
that can not be identified by Check-Repeat. For example, a
validator may terminate a trial as long as one response is
not signed, or the repeated query is answered by an up-level
caching resolver. As the red line shows in Figure 5, the daily
false negative count is around 30. Given that the number of
caching resolvers found per day is approximately 20,000, the
false negative rate is about 0.15%. We believe that most false
positives are due to multi-level caches, a.k.a. DNS-forwarding.

To evaluate the representativeness of our measurement
results, we cross-checked them against the query logs of
G.GTLD-SERVERS.NET (G.GTLD for short) which is one of
the 13 authoritative servers of .COM and .NET. We find
that, although IP addresses measured in our results comprise
only 1.6% of the addresses seen by G.GTLD, those addresses
account for 63.5% of all the queries to G.GTLD. This implies
that our measurement results can reflect the validation ratio of
considerable portion of DNS traffic in the Internet.

Among the 63.5% of G.GTLD’s queries sent from caching
resolvers seen in our measurements, 80.6% are sent by non-
validators, and 19.4% by validators. Surprisingly, even though
our validators account for only 0.056% of the addresses seen
by G.TLD, they account for 12.3% of the queries. Such a fact

US FR BR RU DE CA GB CL PL CN AR JP NL IN IT
10

0

10
1

10
2

10
3

10
4

10
5

Countries

D
e

te
c
te

d
 N

u
m

b
e

rs

Validators

Resolvers

Fig. 6. Geo-distribution of detected resolvers and validators by countries

suggests that validation has been configured on some very
large or busy caching resolvers. Not surprisingly, Comcast,
who has been very active and outspoken on DNSSEC vali-
dation [8], is a significant contributor to validating queries.
In fact, 73.4% of DNSSEC-secured responses are sent to
Comcast’s resolvers.

Next, we examined the geographic distribution of resolvers
and validators collected in our data. The identified resolvers
are distributed among 219 countries, 115 of which have at
least one validator. Figure 6 shows the number of resolvers
and validators found for the top 15 countries. We also ranked
countries that have at least 200 identified resolvers by the
ratio of validators to resolvers. We find that Sweden, Czech
Republic, and Finland have the highest ratio. This is not
surprising as each of these countries also lead in adoption of
DNSSEC within their ccTLD. The countries with the lowest
ratios, such as Korea and Thailand, are all in Eastern Asia.

As mentioned in Section III, we also find that different
resolver implementations have unique query patterns when
validating. This provides us with a chance to estimate the
current market share among validators. We find that 60%
of detected validators are using BIND, 29% are probably
Unbound, and 9% of are running Nominum’s software.

V. DISCUSSION

In this section, we first take a look of the measurement
results and then discuss how other parties may deploy Check-
Repeat in their networks.

A. Gauging the Deployment of DNSSEC Validators

Gudmundsson and Crocker [2] performed DNSSEC valida-
tor measurement one year ago. Their results show that about
10% of queries to .ORG domain are sent by validators. Our
results showed that more than 12% of queries to .COM and
.NET domains are sent by validators. The number of DNS
queries sent by validators seems growing over time, albeit at
a rather slow pace. However, we would point out that the
results reported in [2] may contain many false positives, so
that the actual percentage of queries from validators back then
may have been lower than 10%. Thus the DNSSEC validator
numbers may be growing faster than the data suggests.

B. A Distributed Signature Remover

In this measurement, we deployed only one signature
remover in front of the authority server of VALIDA-
TORSEARCH.VERISIGNLABS.COM zone. However for others
to conduct the Check-Repeat measurement study, it would be
infeasible to assume that all the authority servers for a zone
are placed within a single network. Real zones are served from
multiple networks and multiple locations. Thus one needs to
run the signature remover for a distributed zone.

However, deploying distributed signature removers may
make it difficult to decide when to remove signatures or to
identify repeated queries. Rather, it is possible that none of
the responses will include the necessary signature, in which
case the resolver returns a SERVFAIL error code to its client.

Knowing this, we can choose to deploy signature remover
only for domains that can tolerate a SERVFAIL error. To
many applications, NXDOMAIN and SERVFAIL errors are
identical. They both mean “host not found.” Thus, it may be
acceptable to use this technique on names that normally return
NXDOMAIN.

C. Extending the Range of Measurement

Unlike other approaches, our technique works purely over
DNS. It does not require application-level transactions, such as
HTTP. While the data presented in this paper did come from
browser-initiated queries, we’d like to be able to extend our
measurement footprint by including other types of domains,
such as IN-ADDR.ARPA reverse zones, and those used in the
process of mail delivery, such as defunct realtime blackhole
lists (RBLs).

VI. RELATED WORK

Gudmundsson and Crocker [2] performed measurement to
identify DNSSEC validators by examining query logs from
the .ORG domain. They counted all the resolvers who sent
DNSKEY and DS queries as DNSSEC validators. Given the
popularity of .ORG domain, their measurement results should
capture most if not all the caching resolvers. However although
fetching DNSKEY and DS records is necessary for performing
DNSSEC validation, it is not a sufficient indicator and can
introduce false positives. Our own measurement results and
other previous work [4] show that many resolvers query
for DNSKEY record but do not perform signature validation.
Moreover, since .ORG’s authoritative servers use anycast, it
is difficult to assemble a complete trace of all the queries
from a given resolver. Fujiwara [3] used a similar method to
identify DNSSEC validators by analyzing query logs from the
.JP domain.

Huston [5] and Wander & Torben [4] looked for the absence
of the use of intentionally bad data to detect a DNSSEC
validator. For example, one can embed in a web page two
images with different URLs and different hostnames. One
hostname exists in a properly signed zone, while the other is
incorrectly signed. When the user agent attempts to load both
images, one can observe whether the involved DNS resolver
is configured to perform DNSSEC validation. If the user agent

loads the good image, but not the bad one, this shows a
strong indication that the resolver performed validation. These
studies also use unique-per-trial query names and require
correlation of DNS and web server log files. To maximize the
measurement size, [5] utilized paid advertisement, while [4]
used a combination of voluntary website visitors and hidden
HTML/javascript added by webmasters. While this technique
has the advantage of “seeing through” forwarders, it also
has the disadvantage of identifying specific non-validating
forwarders as validators.

Measurement efforts on the deployment of DNSSEC at
the publisher side is relatively easier with better established
results. Osterweil et al. proposed three metrics to measure this
deployment: availability, verifiability, and validity [9]. They
also built a monitoring system called SecSpider [1] to track
the publisher side of DNSSEC deployment.

VII. CONCLUSION

In this paper, we proposed Check-Repeat, a new query-
based method to measure DNSSEC validators. This method
leverages the knowledge that, upon receiving an intention-
ally unverifiable DNS response, most caching resolvers that
perform DNSSEC validation will repeat their queries, and
uses the presence of repeated queries as a strong indicator of
DNSSEC validation. Check-Repeat combines the advantages
of previous work. It achieves the same level of accuracy as the
methods used by other researchers and allows us to collect
measurement results from a sufficient number of caching
resolvers. By cross-checking our results with data from the
.COM and .NET authority servers, we learn that Check-Repeat
finds the resolvers that are responsible for producing more
than 60% of DNS query traffic to .COM/.NET, and that about
12% of .COM/.NET responses are currently sent to validating
resolvers.

REFERENCES

[1] “SecSpider.” [Online]. Available: http://secspider.cs.ucla.edu/
[2] O. Gudmundsson and S. Crocker, “Observing DNSSEC Validation in the

Wild,” Securing and Trusting Internet Names (SATIN), 2011.
[3] K. Fujiwara, “Number of DNSSEC validators seen at JP,” in ICANN 41,

2011.
[4] M. Wander and T. Weis, “Measuring Occurrence of DNSSEC Validation,”

in PAM, 2013.
[5] G. Huston, “Counting DNSSEC,” RIPE Labs website. [Online].

Available: https://labs.ripe.net/Members/gih/counting-dnssec
[6] “dnssec-or-not.net.” [Online]. Available: http://dnssec-or-not.net/
[7] D. Wessels and M. Fomenkov, “Wow, thatsa lot of packets,” in Proceed-

ings of Passive and Active Measurement Workshop (PAM), 2003.
[8] “Comcast’s Operational Experiences,” in ICANN

DNSSEC Workshop, March 2012. [Online]. Avail-
able: http://costarica43.icann.org/meetings/sanjose2012/presentation-
comcasts-operational-experiences-14mar12-en.pdf

[9] E. Osterweil, M. Ryan, D. Massey, and L. Zhang, “Quantifying the
operational status of the dnssec deployment,” in Proceedings of the 8th
Internet Measurement ACM Conference, 2008, pp. 231–242.

