
FRTR: A Scalable Mechanism for Global Routing Table Consistency ∗

Lan Wang
UCLA CSD

lanw@cs.ucla.edu

Daniel Massey
USC/ISI

masseyd@isi.edu

Keyur Patel
Cisco Systems

keyupate@cisco.com

Lixia Zhang
UCLA CSD

lixia@cs.ucla.edu

Abstract

This paper presents a scalable mechanism, Fast Rout-
ing Table Recovery (FRTR), for detecting and correct-
ing route inconsistencies between neighboring BGP
routers. The large size of today’s global routing ta-
ble makes the conventional periodic update approach,
used by most routing protocols, infeasible. FRTR lets
neighboring routers periodically exchange Bloom fil-
ter digests of their routing state. The digest exchanges
not only enable the detection of potential inconsisten-
cies during normal operations, but also speed up recovery
after a BGP session reset. FRTR achieves low band-
width overhead by using small digests, and it achieves
strong consistency by “salting” the digests with ran-
dom seeds to remove false-positives. Our analysis and
simulation results show that, with one round of mes-
sage exchanges, FRTR can detect and recover over 91%
of random errors that the current BGP would have
missed with an overhead as low as 1.3% of a full rout-
ing table exchange. With salted digests FRTR can de-
tect and recover all the errors with a probability close to
100% after a few rounds of message exchanges.

1. Introduction

Due to the dynamic and error-prone nature of a net-
work environment, robust neighbor to neighbor com-
munication is an essential part of distributed routing
protocols. Earlier routing protocol designs, such as RIP
(Routing Information Protocol [12]) and OSPF (Open
Shortest Path First [14]), achieved this goal by letting
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routers periodically exchange their latest routes or con-
nectivity information; any information that is not re-
freshed will be deleted. Unfortunately, due to the large
size of today’s global routing table, this periodic update
approach is deemed infeasible for BGP (Border Gate-
way Protocol [17]), the de-facto inter-domain routing
protocol used in the Internet. Instead, BGP uses an
event driven update approach. Once a router A has
sent its initial routing table to a neighbor B, it sends
no further updates until a route change occurs or the
peering session with B breaks. Since routing updates
can be lost, re-ordered, or corrupted during transmis-
sion, neighboring BGP routers establish a TCP con-
nection and then exchange routing updates over this
reliable connection.

However operational experience has shown that re-
liable update delivery via TCP alone is inadequate to
ensure routing consistency between neighbors ([2],[4]).
For example, on Oct. 25, 1998, an Internet service
provider (ISP) accidentally sent out a large number
of invalid routes, creating an outage over large regions
of the Internet [2]. The faulty AS quickly withdrew the
false routes. However, some of the withdrawn routes
were still present in certain areas of the Internet on
the following day. Although the exact cause of this spe-
cific error is unknown, it is known that earlier BGP
implementations by a few major vendors had a com-
mon bug which could cause a BGP router to forward
a route withdrawal message to some, but not neces-
sarily all, of its neighboring routers [6]. Since the cur-
rent BGP design does not delete any route until it is
specifically withdrawn, stale routes persist in the rout-
ing table until some external event (such as a peering
session breakdown) flushes out the entire routing ta-
ble.

Routing state can also be modified or erased by
hardware failures or human errors. As far back as in the
1970’s, a memory corruption of an ARPANET switch
caused an east coast router to falsely announce a zero
cost route to UCLA [13]. Because ISPs do not nor-
mally report all their routing outages or disclose the ex-
act causes, today it is difficult for the research commu-



nity to gauge how often routing table corruptions oc-
cur in the operational Internet. However, several pub-
licized incidents have been discussed on NANOG, the
network operators mailing list (e.g. [8]). There are also
numerous examples of configuration errors that led to
falsely inserted routes [11]. Moreover, routing state can
be altered by malicious attacks[16]. For example, when
neighboring routers are connected via a shared medium
and their exchanges are not protected by cryptographic
mechanisms, another node on the same wire can eas-
ily inject a false update. The use of a reliable trans-
port protocol does not protect BGP against any of the
above unexpected faults.

In addition, BGP suffers from transient peering ses-
sion failures which can be caused by unstable links or
traffic congestion. One study shows that in the Sprint
network, physical links between routers go down every
30 minutes on average, and in 80% of these cases the
failed links come back in less than 10 minutes [1]. Ex-
amination of BGP update logs during the Nimda worm
attack in Sept. 2001 showed that some BGP monitor-
ing sessions broke down multiple times, possibly due
to the congestion caused by the worm traffic [24]. In
these cases, BGP routers cleared all the routes received
from their neighbor and then re-sent their entire rout-
ing tables when the sessions were re-established. Since a
default-free BGP table typically contains over 100,000
routes, a table exchange incurs high bandwidth cost
and may delay routing convergence. Such a high cost
in routing state re-establishment is particularly un-
warranted in the case of a transient failure because
most routes may still be valid when the session is re-
established and therefore do not need to be retransmit-
ted.

The goal of this work is to design a fast and band-
width efficient mechanism that can detect any incon-
sistencies between neighboring routers and resynchro-
nize their routing tables whenever inconsistencies are
detected. Our approach, Fast Routing Table Recovery
(FRTR), uses Bloom filter [3] to efficiently encode rout-
ing table data. BGP neighbors periodically exchange
their Bloom filter digests to detect any potential rout-
ing inconsistencies. After a session reset, FRTR uses di-
gests to identify which routes have changed and sends
only those routes. In addition, to overcome the false
positive drawback of Bloom filter, FRTR “salts” the
digests with random seeds and periodically changes
the seeds to ensure strong consistency between BGP
routers.

We have evaluated FRTR design through both anal-
ysis and simulation. Our results show that, with one
round of digest exchanges, FRTR can detect and re-
cover more than 91% of random errors and the over-

head can be as low as 1.3% of a full routing table ex-
change; a slight increase in the digest size can achieve a
detection and recovery rate higher than 97%. Further-
more, the use of salted digests allows FRTR to ensure
nearly 100% consistency between neighboring routers
after only a few rounds of digest exchanges. By com-
parison, the current BGP would not detect any unex-
pected errors; even if the errors were detected, BGP
would require a full table exchange to recover. Finally,
FRTR facilitates incremental deployment because any
two neighboring routers can start using FRTR when
they both implement the scheme.

The remainder of the paper is organized as follows.
Section 2 describes the FRTR design. Section 3 pro-
vides more details on the protocol and implementation.
Section 4 describes how we used routing tables col-
lected from the Internet to evaluate FRTR. Section 5
and 6 present the results. Section 7 describes the re-
lated work and Section 8 concludes the paper.

2. FRTR Design

2.1. Background and Definitions

A BGP route r consists of a network address pre-
fix (Prefix(r)) and a set of path attributes (Attr(r)).
BGP path attributes include the AS path used to reach
the address prefix, the next-hop router, and a variety
of other information related to the route.

Neighboring BGP routers exchange routes and store
them in Routing Information Bases (RIBs). If RA and
RB are two neighboring routers, the set of routes that
RA sends to RB is denoted RibOutA,B. The set of
routes that RB learned from RA is denoted RibInB,A.
BGP supports import and export routing policies ; an ex-
port policy controls which routes to send to each neigh-
bor and an import policy decides which received routes
to save and use. We make two assumptions: (a) RA

applies its export policy to a route before putting it
in RibOutA,B; and (b) RB stores a received route in
RibInB,A before applying its import policy. Section 3.3
presents solutions when the above assumptions do not
hold.

Ideally, we have RibOutA,B = RibInB,A. However,
faults or attacks may lead to inconsistencies between
them. Examples of such faults and attacks include, but
are not limited to, memory corruption, failure to re-
move a stale route, or insertion of an invalid route.
Figure 1 illustrates how RibInB,A may become incon-
sistent with RibOutA,B. Since we focus on the commu-
nication between two routers, we will use the simpli-
fied terms RibOutA and RibInB in the rest of the pa-
per.
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Figure 1. An Example of Routing Faults

Let S denote a set of n routes {r1, r2, ..., rn}. We
define the following types of changes to S that can be
caused by faults or attacks.

• Insertion of rn+1 into S: S′ = S
⋃
{rn+1};

• Modification of ri in S: S′ = S−{ri}
⋃
{r′i}, where

r′i = (Prefix(ri), a′) and a′ #= Attr(ri);

• Removal of ri from S: S′ = S − {ri}.

2.2. Design Overview

There are two existing approaches to achieving rout-
ing table consistency. The first one is to let neigh-
boring routers periodically send their routes to each
other. When the routing table size is large, however,
this brute-force approach incurs a high cost. The sec-
ond approach is for a router to compute a checksum for
each received route and store both the checksum and
the route in its RibIn. The router periodically com-
putes a new checksum over the route, and whenever
the two checksums do not match, it requests the neigh-
bor to re-advertise the route. This scheme detects un-
expected internal changes, such as memory corruption,
but offers no protection if a route is accidentally re-
moved along with its checksum, or if an obsolete route
fails to be removed.

Our proposal, FRTR, unifies the above two ap-
proaches and at the same time addresses their limi-
tations. In FRTR, each router computes a digest over
its routes using Bloom filter [3]. Neighboring routers
then exchange routing digests periodically to protect
against unexpected insertion, removal, or corruption
of the routing state. Bloom filter maps each route to
only a few bits in the digest, making the periodic ex-
changes both effective and efficient.

In the following sections, we first describe how the
digest mechanism works in one round of message ex-
change. We then show how periodic digest messages
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Figure 2. Digestion Computation

with changing “salt” values ensure consistency between
neighboring routers. Finally, we show how routers can
efficiently synchronize their routing tables after a ses-
sion reset.

2.3. FRTR Digest Exchange Steps

Step 1: Computing the Sender Digest dA

The sender, RA, computes a digest dA over RibOutA
and sends the digest to neighbor RB. Figure 2 illus-
trates how the digest is computed. Suppose an l-bit di-
gest (d) and k hash functions (h1, h2, ..., hk) are used
to encode a set of n routes (S). Let d(i) denote the
i’th bit in d. The digest is initially set to all zero. For
each route r ∈ S, we first compute the k hash values
h1(r), h2(r), ..., hk(r) and then set the corresponding
bits in the digest to 1, i.e. d(hi(r)) = 1 for 1 ≤ i ≤ k.
For example, if we use 3 hash functions and the hash
values of a route are 65, 39 and 125, then we set the
65’th, 39’th and 125’th bits of the digest to 1. Note
that the hash values of other routes may map to the
bits that have already been set to 1, in such cases those
bits simply remain to be 1.

Step 2: Identifying Invalid Routes

The neighbor, RB, receives dA and uses it to deter-
mine whether its RibInB contains any routes not cur-
rently used by RA, i.e. the set difference (RibInB −
RibOutA). More specifically, for a given route r in
RibInB, RB first computes the k hash values of r and
checks whether the corresponding bits in the digest dA

are set to 1. It then places r into one of the follow-
ing two groups:

1. Invalid Routes: ∃i, 1 ≤ i ≤ k, s.t. dA(hi(r)) =
0. Since Bloom filter does not produce any false
negatives, RB can be certain that r /∈ RibOutA
(i.e. r ∈ (RibInB − RibOutA)).



2. Probably Valid Routes: ∀i, 1 ≤ i ≤ k,
dA(hi(r)) = 1. It is probable that r ∈ RibOutA,
but r could also be a false positive.

RB also computes its own digest dB in the above pro-
cess by updating the digest whenever it identifies a
probably valid route.

When RA’s Bloom filter has a low false positive rate,
RB can have a high probability of identifying all the
invalid routes in RibInB. The false positive rate of a
Bloom filter is determined by the encoding ratio ( l

n )
and by the number of hash functions (k). It can be
computed as follows. First, let p denote the probabil-
ity that d(i) = 0 after the digest is computed.

p = (1 − 1
l
)k×n ≈ e−k×n

l (1)

The false positive rate f is the probability P(∀i, 1 ≤
i ≤ k, d(hi(r)) = 1) where r is not a member of the set
in question, i.e.,

f = (1 − p)k ≈ (1 − e−k×n
l )k (2)

Let’s use α to denote the encoding ratio (i.e. l
n ). It

can be proven that f is minimal when k = ln2 · α. In
other words, for a given α, there exists an optimal num-
ber of hash functions that minimizes the false positive
rate. For example, when the encoding ratio is 5, the op-
timal k is 3.47 (in practice either 3 or 4 is used). Al-
ternatively, one can fix the number of hash functions
and adjust the encoding ratio to keep the false positive
rate below a target value. For example, if the num-
ber of hash function is 3, one can use an encoding ratio
of 8 to keep a false positive rate below 3%.

Step 3: Detecting Missing Routes

After removing the invalid routes in Step 2, RB pro-
ceeds to determine whether any routes are missing,
i.e. whether RibOutA − RibInB #= ∅. One way to test
the above hypothesis is to see whether RibOutA and
RibInB have the same digest. Note that RB has al-
ready computed its own digest dB over all the proba-
bly valid routes in Step 2.

If dA #= dB, we can be certain that RibOutA −
RibInB #= ∅. However, if dA = dB, we cannot conclude
that all routes from RibOutA are present in RibInB.
The accuracy of this test depends on the false positive
rate and the size of RibOutA − RibInB; a lower false
positive rate and a bigger difference between RibOutA
and RibInB both result in higher testing accuracy.

Step 4: Recovering Missing Routes

The goal of this step is to recover the missing routes.
Let PA denote the list of prefixes in RibOutA and PB

denote the list of prefixes in RibInB (excluding the pre-
fixes of invalid routes). If dB #= dA, RB sends PB to RA.
RA then checks every prefix p ∈ PA and classifies p as
follows:

1. Missing Prefix: If p /∈ PB, RB has no route to
this prefix (or had an incorrect route that was re-
moved in Step 2). RA needs to re-advertise the
route to prefix p.

2. Probably Received Prefix: If p ∈ PB, RB has
a route to this prefix and the corresponding path
attributes are likely to be correct (since otherwise
the route would have likely failed step 2). Nothing
needs to be done in this case.

In addition, if p ∈ PB but p /∈ PA, we have identi-
fied an invalid route in RB. This can occur if the incon-
sistency was not detected in Step 2 due to a false pos-
itive. To remove this invalid route, RA simply sends a
BGP withdrawal message to RB.

2.4. Periodic Updates

Since one cannot predict how or when a route may
be corrupted, error detection and recovery must be
done periodically. The FRTR design lets RA send peri-
odic updates containing dA only, the digest of RibOutA,
thus keeps the overhead low.

As with all other periodic refresh schemes, the inter-
val between periodic updates represents an engineer-
ing tradeoff. Frequent updates allow routers to detect
faults quickly, but incur a higher bandwidth and pro-
cessing overhead. On the other hand, infrequent peri-
odic messages introduce less overhead, but the average
time before an error is detected is increased. Neverthe-
less, FRTR with a long refresh period is still a qualita-
tive improvement over the current BGP in which unex-
pected errors stay permanently until the next session
reset. Note the trade-off is not necessarily a one-time
fixed decision. For example, given a bandwidth budget,
[21] discusses how to adjust the soft-state rate based on
the number of messages to send.

As we mentioned earlier, Bloom filter based digests
can lead to false positives especially when small size di-
gest is used to keep the overhead low. FRTR takes ad-
vantage of periodic digest exchanges to overcome this
dilemma. In order to catch those false positives, FRTR
design uses “salted” MD5 hash functions. MD5 [19] was
chosen since its computation is fast and several widely
available hardware and software implementations ex-
ist. The salt is a randomly generated 32-bit value which
is prepended to every route so that the MD5 compu-
tation will produce a different signature for the same



route when the salt changes. The salt values can be ei-
ther negotiated by the two neighboring routers before-
hand or carried in every digest. Adding the salt enables
new digests to be generated in each periodic exchange,
which significantly reduces the chance that a false pos-
itive from one round would remain as a false positive
in the next exchange.

2.5. Recovery after a Session Reset

After the peering session between RA and RB goes
down, RB marks all the routes in its RibIn as obsolete.
It also starts a timer for the removal of these routes
in case the peering session remains down for an ex-
tended period of time. Note that the setting of this
timer should be negotiated between the two routers so
that RB does not prematurely timeout the routes.

When the session comes up, RA sends RB its di-
gest and RB checks whether any routes have become
invalid. If a route can be matched to the digest, its sta-
tus will be changed from obsolete to valid. At the end of
this process, RB removes any routes still marked as ob-
solete. Now if RB ’s digest still does not match RA’s, it
sends a request to RA for the missing routes.

The recovery process in FRTR is much more effi-
cient than a full routing table exchange because RA

sends only the digests and the routes that have indeed
changed during the session down time. More impor-
tantly, BGP routing convergence will be much faster.
Although there is a small probability of some stale
routes are not removed after the first exchange due to
false positives, these routes will be removed in the fol-
lowing rounds of checking.

3. Design and Implementation Specifics

3.1. New BGP Messages

FRTR defines two new BGP message types: Digest
and Prefix. They both have a common BGP header. A
Digest message contains a digest, as well as the hash
functions and salt value used in the digest computation
if they are not pre-negotiated. A Prefix message con-
tains a list of prefixes whose routes match the peer’s
digest. Both message types will also contain two pre-
fixes to specify the corresponding group of routes.

3.2. Performance Optimization

If we compute a digest over an entire RibOut which
has over 120K routes, the digest would exceed the BGP
message size limit and must be sent in a series of frag-
ments. This is generally considered undesirable because

the receiver has to wait till all the individual pieces have
arrived before it can start processing the digest.

A better approach is to divide the RibOut into mul-
tiple groups by the prefix ranges and then process the
routes sequentially in each group, so that the digest
for each group of routes can fit into one BGP mes-
sage. When the sender transmits a digest to the re-
ceiver, it also includes in the message the starting and
ending prefixes of the corresponding route group. The
receiver sorts its routes in the same order. When it re-
ceives the digest message, it uses the starting and end-
ing prefix to identify which routes in its RibIn should
be matched to the digest.

This optimization can significantly reduce the band-
width overhead needed for error recovery; since each di-
gest only conveys information of a small set of routes,
error recovery can be localized to a specific route group
and therefore much less information needs to be ex-
changed. However, this optimization requires that the
sender and receiver be able to sort their RibOut and
RibIn. But explicit sorting is not needed if BGP imple-
mentations organize their routing tables using a Patri-
cia trie structure [20], as in the routing software GateD
[9], MRTd [15] and Zebra [25], since an in-order walk of
the tree will produce a list of routes sorted by the pre-
fixes.

Another optimization is incremental digest compu-
tation. In the basic design, we recompute the digests
before they are sent because the salt value is changed
in every round of checking. To reduce the computation
overhead, one may choose to change the salt value less
frequently, say every N rounds, and compute the di-
gests incrementally before the salt changes. The trade-
off is longer time to detect a false positive. The details
of this optimization are described in [22].

3.3. Policy Related Issues

A router may discard some of the routes received
from its peer according to its import policy. If it com-
putes a digest over only the saved routes, this digest
will not match the peer’s. One solution is to use Co-
operative Route Filtering [7] so that the sender sends
only those routes that match the receiver’s import pol-
icy. Moreover, the router may modify some of the re-
ceived routes according to its import policy, e.g. attach
a community attribute to a route. Such modification
will also lead to digest mismatch. We recommend turn-
ing on the “Soft Reconfiguration Inbound” option pro-
vided in most BGP implementations; this option lets
a router save a copy of all the pre-policy routes. In
[22], we describe a solution that does not require sav-
ing the pre-policy routes.



4. Evaluation Data and Methodology

We obtained BGP routing data from the RRC00
monitoring point maintained by RIPE NCC [18]. This
monitoring point receives BGP routing updates from
eleven routers in both large global ISPs and regional
ISPs (Table 1 shows their AS numbers and locations).

Location ASes that RRC00’s peers belong to
US AS7018 (AT&T), AS2914 (Verio), AS3549

(Glocal Crossing)
Netherlands AS3333 (RIPE NCC), AS1103 (SURFnet)
Switzerland AS513 (CERN), AS9177 (Nextra)

Britain AS3549 (Global Crossing)
Germany AS13129 (Global Access)

Japan AS4777 (NSPIXP2)
Australia AS4608 (APNIC)

Table 1. RRC00’s Peering ASes

To obtain the routing table of a monitored router,
we simply group the routes in RRC00’s routing table
according to from which router they were received (i.e.
the advertiser’s IP address). Our study uses RRC00’s
routing table archived at 16:00 GMT on Jan. 20, 2003.
The number of routes in the eleven derived routing ta-
bles ranges from 101,404 to 119,750.

We use a script to emulate two peering routers RA

and RB. RA adopts one of the routing tables obtained
from the RRC00 monitoring point and advertises all
the routes to RB. In the first part of our evaluation
(Section 5), we assume the BGP session between RA

and RB fails with a given rate, and compare the band-
width overhead of FRTR with that of the current BGP.
In the second part of our evaluation (Section 6), we in-
troduce random errors into RB ’s RibIn and measure
the error recovery ratio and bandwidth overhead of
FRTR. We assign a probability of error Pe and an er-
ror type to the routing table, i.e. there is a probabil-
ity of Pe for generating an error of the given type for
each route in the routing table.

Four types of errors are used in our experiments: re-
moval, insertion, modification and mixed errors. An er-
ror generated for a route r has the following effects on
r depending on the error type:

• Removal: remove r from the routing table;

• Insertion: insert a more specific route of r
into the routing table. For example, if r’s pre-
fix is 129.250.0.0/16, a route to the prefix
129.250.0.0/17 will be inserted;

• Modification: modify r’s path attributes;

• Mixed Errors: first randomly choose one of the
above three types of errors with equal probabil-
ity, then introduce the chosen error to the routing
table.

4.1. Parameter Setting

We choose the digest size (l) to be 1,024 bytes or 213

bits so that each Digest message is well within the size
limit of BGP messages – 4096 bytes. We use two en-
coding ratios (α): 5 and 8. Therefore , a digest can en-
code 1638 routes (α = 5) or 1024 routes (α = 8). These
encoding ratios are not meant to be the optimal val-
ues, but are used to illustrate the trade-off between the
various performance metrics. To produce a digest for
a group of routes, we first calculate the MD5 signa-
ture of each route and then take three 13-bit values
(i.e. k = 3) from the MD5 signature as the hash val-
ues.

4.2. Performance Metrics

We compare the bandwidth overhead of FRTR with
that of a full table exchange. In FRTR, the Digest and
Prefix messages are overhead as they do not directly
correct errors. In a full BGP table exchange, any BGP
routing update that does not correct an error is con-
sidered bandwidth overhead. We also measure the er-
ror recovery ratio of FRTR. More specifically, we cal-
culate the percentage of errors that are corrected after
each round of digest exchange.

5. BGP Session with Transient Failures

In this section, we estimate the long-term bandwidth
overhead of FRTR given a session failure rate of λ and
compare it with that of the current BGP. Note that
routing table inconsistencies caused by other types of
faults will be considered in the next section.

In FRTR, the bandwidth overhead is the total size
of the Digest and Prefix messages. Let’s denote them
Bd and Bp. We ignore Bp in the following analysis since
it is usually much smaller than Bd in the case of tran-
sient session failures. If the Digest messages are peri-
odically sent at a rate β, then the bandwidth overhead
of running FRTR is Bd · (λ + β).

In the current BGP, RA needs to send its routing
table to RB after their session fails. Let’s denote the
size of this table exchange Bt. Suppose the fraction of
routes that actually need to be updated is q, then the
overhead is Bt · (1 − q) · λ.

We are now interested in the ratio Bd·(λ+β)
Bt·(1−q)·λ . Let’s

use AS2914 as an example. We estimate that Bd/Bt =



0.013 for AS2914, since advertising its entire BGP table
would consume 4, 980, 127 bytes of bandwidth and the
total size of its Digest messages is 65, 151 bytes when
the encoding ratio is 5. q is usually close to 0 during a
transient failure, so the ratio becomes 0.013 · (1+β/λ).
We can make two observations from this result:

1. When β is 0, FRTR consumes only 1.3% of
the bandwidth overhead of the current BGP in
AS2914’s case. In other words, if used only af-
ter session resets, FRTR cuts down the over-
head of routing table synchronization by a factor
of 77.

2. When β is non-zero, the overhead of FRTR de-
pends on both the session failure rate and the fre-
quency of periodic Digest messages. Suppose the
session fails once a day, FRTR can achieve a lower
overhead if the digests are sent once every 19 min-
utes or less frequently. Note that a session fail-
ure rate of once a day is not uncommon. Some
links in operational networks have a failure rate
much higher than that (see [10]). Moreover, regu-
lar maintenance and policy changes can also lead
to session resets.

6. BGP Table Corruption

In this section, we show the performance of FRTR
in recovering corrupted routing tables when a variety
of errors are introduced. The performance results for
one round of recovery are presented in Section 6.1 and
6.2, and the results for multiple rounds are presented
in Section 6.3. Since we obtained similar results for all
the eleven routing tables, we present only the results
for AS2914’s routing table here for brevity.

6.1. Error Recovery Ratio

In Figures 3–6, we show the percentage of errors cor-
rected using FRTR. The X-axis is the probability of er-
ror (Pe) in log scale. We have chosen 9 different Pe’s
in the range of [0.0001, 0.9]. For each Pe, we perform
30 simulation runs, each with a different random seed,
to obtain the 95% confidence interval of the mean er-
ror recovery ratio. The two curves in each figure corre-
spond to the encoding ratio of 5 and 8 respectively.

6.1.1. Removal Errors Figure 3 shows the recovery
ratio for removal errors. When Pe is 0.0001, the recov-
ery ratio is around 92.4% (α = 5) and 96.9% (α = 8).
Both curves increase to 100% when Pe reaches 0.003,
and stay at 100% for higher error probabilities. This is
because, with only removal errors, all the errors are de-
tected through the “missing routes test”, i.e. Step 3 of
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Figure 3. Recovery Ratio of Removal Errors
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Figure 4. Recovery Ratio of Insertion Errors

the digest exchange process (see Section 2.3). As Pe in-
creases, more routes are removed from RB’s routing ta-
ble. This larger difference leads to a higher accuracy in
the test.

6.1.2. Insertion Errors The insertion errors show
very different characteristics: the error recovery ratio
stays around 91% (α = 5) and 97% (α = 8) regard-
less of the error probability (see Figure 4). This is be-
cause we evaluate a different step of the digest exchange
process here. In this experiment, there are no miss-
ing routes so the “missing routes test” is irrelevant.
Instead, the inserted routes are detected by checking
their hash values against the digest from RA (i.e. Step
2 of the digest mechanism). The lower the false posi-
tive rate with regard to RA’s digest, the higher the per-
centage of inserted routes detected using this type of
checking.

We can compute the false positive rate using Equa-
tion 2. When α is 5, f = (1−e−k×n

l )k = (1−e−k/α)k =
(1 − e−3/5)3 = 0.0918. The error recovery ratio should
be equal to 1 − f ≈ 91%. When α is 8, the false posi-
tive rate f is 0.03 and the error recovery ratio should
be roughly 97%. Both numbers match our experimen-
tal results. Furthermore, since the false positive rate
depends not on the error probability, but on the pa-
rameters used in the digest computation (i.e. α and k),
the error recovery ratio does not change with the er-
ror probability.
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Figure 5. Recovery Ratio of Modification Errors
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Figure 6. Recovery Ratio of Mixed Errors

6.1.3. Modification Errors Similar to those curves
in Figure 3, the two curves in Figure 5 have an in-
crease at the beginning, and similar to those curves
in Figure 4, they stay around a particular value after-
wards (91% for α = 5 and 97% for α = 8). This is
because both Step 2 and 3 are tested in this exper-
iment and the error recovery ratio is affected by the
failure rate of both steps.

6.1.4. Mixed Errors Figure 6 shows that when α
is 5, the curve increases from around 90% to 97% and
stays there, and when α is 8, the curve increases from
around 96% to 99% and stays there. We can expect
that, if we have a different combination of errors, the
curves may move up or down depending on which type
of errors is dominant. This is because the result is
roughly a combination of the error recovery ratios of
the different types of errors.

6.1.5. Summary The error recovery ratio depends
on the specific type or combination of errors, as well
as the parameters in the digest computation. With a
low encoding ratio of five and only three hash func-
tions, we can correct at least 91% of the errors most of
the time and achieve a 100% error recovery ratio for re-
moval errors when the error probability is higher than
0.003. Furthermore, increasing the encoding ratio to 8
can significantly increase the error recovery ratio to be
around or higher than 97% for most error types and er-
ror probabilities.

6.2. Bandwidth Overhead

Figure 7 shows that FRTR with an encoding ratio
of 5 has a much lower overhead than a full BGP table
exchange for most error probabilities. We explain the
difference between the two in greater detail below.

First, insertion errors incur the lowest bandwidth
overhead (Figure 7(b) shows the widest gap between
the curves). This is because only Digest messages were
sent in FRTR to correct the insertion errors, i.e. no
Prefix messages were triggered (see Section 6.1). The
Digest messages consume a constant 65,151 bytes of
bandwidth which is only 1.3% of the bandwidth over-
head required by the table exchange (4,980,127 bytes).

Secondly, for removal errors, the maximum band-
width overhead of FRTR (460,609 bytes) is reached
when the error probability is around 0.009. However,
it is still only 9% of the bandwidth overhead of a full ta-
ble exchange under the same error probability. As the
error probability approaches 0.9, the gap between the
two curves gets smaller as one would expect, but the
full table exchange still has a higher overhead. Modifi-
cation and mixed errors show similar characteristics as
removal errors.

The bandwidth overhead of FRTR with an encoding
ratio of 8 is still much lower than that of a full BGP ta-
ble exchange. The higher encoding ratio increased the
bandwidth overhead by less than 42K bytes for all er-
ror types and error probabilities. Due to space con-
straints, we do not show the figure here. Readers may
refer to [22] for more details.

6.3. Multiple Rounds of Recovery

In the previous experiments, we have demonstrated
that FRTR can achieve a high error recovery ratio with
a low bandwidth overhead after one round of error de-
tection and recovery. However, it is still necessary to
let neighboring routers periodically exchange the Di-
gest messages to correct any new errors that have crept
in since the last digest exchange, as well as to correct
any errors that were left undetected previously, such as
those due to Bloom filter’s false positive errors.

To evaluate the performance of the periodic “salted”
digests, we run FRTR for three consecutive rounds with
a range of error probabilities and measure the percent-
age of corrected errors after each round. For easier un-
derstanding of the results, we do not introduce new er-
rors in the second and third round.

In Figure 8 and 9, we show the error recovery ratio of
mixed errors when α is 5 and 8 respectively. The results
for other error types are similar (see [22] for the com-
plete results). The curves labeled “i = 1”, “i = 2” and
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Figure 7. Bandwidth Overhead (α = 5)
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Figure 8. Recovery Ratio of Mixed Errors after
Multiple Rounds (α = 5)
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Figure 9. Recovery Ratio of Mixed Errors after
Multiple Rounds (α = 8)

“i = 3” correspond to the results after the first, sec-
ond and third round. The two figures show that, when
the encoding ratio is 5 (or 8), we can correct more
than 99.9% (or 99.99%) of the errors in most cases af-
ter three rounds of error detection and recovery. This
matches our analytical result, that is, if the hash val-
ues generated in one round are independent from those
in the next round, the percentage of uncorrected errors
after i rounds should be (1 − g)i where g is the one-
round error recovery ratio (g is approximately 91% and
97% for α of 5 and 8 respectively).

We also observe that the advantage of the higher en-
coding ratio diminishes quickly with multiple rounds of
recovery. A practical implication of this result is that
one can use a Bloom filter with a low bandwidth over-
head to achieve good long-term performance.

7. Related Work

The RSVP protocol shares the same challenge as
BGP in keeping large amount of state synchronized be-
tween neighboring routers. RSVP uses a periodic up-
date approach, which leads to a high overhead as the
number of reservations goes up. In [23] we proposed
a state compression mechanism to reduce this over-
head. The idea is to compute a single digest over all
the RSVP state in a node using a tree structure and to
send this digest, instead of the state information, to re-
fresh the state in neighboring nodes. When the digest
indicates an inconsistency, two neighboring nodes need
to walk down the tree structure through message ex-
changes to identify the mismatching state entries. Al-
though the same scheme can be applied to routing ta-
ble recovery, it requires that neighboring nodes con-
struct and modify their tree structures in a consistent
way, a constraint that is difficult to meet across differ-
ent vendor implementations. In contrast, FRTR only
requires that a router be able to put routes in order;
each digest message contains the starting and ending
prefixes of the routes covered by the digest. The re-
covery process in FRTR is also much simpler. Due to
its flat structure FRTR can identify the erroneous en-
tries instantly within each route group.

Our work is closely related to [5] in which Byers et.
al. proposed several data structures including Bloom
filter for approximate reconciliation of set differences
(we had independently started FRTR design before
noticing their work). There are two main differences
between FRTR and [5]. First, since FRTR addresses a
problem in an existing network protocol, it faces design



issues not considered in [5]. For example, to prevent
the reassembly of large digest messages, FRTR divides
the routing table into groups and computes one digest
over each group to make each digest fit into one mes-
sage. Secondly, although the hierarchical data struc-
tures proposed in [5] have certain advantages over the
basic Bloom filter, we prefer the simplicity of the latter
because more complex data structures and algorithms
tend to cause more errors in implementation and oper-
ations.

8. Conclusion

The large scale of today’s Internet presents a funda-
mental challenge to the design of a resilient global rout-
ing protocol. In this paper we present Fast Routing Ta-
ble Recovery (FRTR), a scalable mechanism for detect-
ing and correcting route inconsistencies between neigh-
boring BGP routers. FRTR encodes routing table state
using Bloom filter to efficiently detect and recover oth-
erwise unnoticeable errors. Furthermore, FRTR takes
advantage of periodic exchanges by salting the digests
to effectively eliminate false positives. Finally, FRTR
can significantly reduce the overhead of routing table
recovery after BGP session failures.

Although our design has been presented in the con-
text of ensuring routing state consistency between BGP
neighbors, the same techniques we developed in this
work can also be used within a router to ensure the
consistency between its internal routing table and for-
warding table. Furthermore, the basic approach devel-
oped in FRTR should be applicable to other protocols
where a strong state consistency among multiple enti-
ties must be enforced.

This work is part of a broader effort to improve the
overall resilience of the global Internet and to under-
stand the principles that lead to a resilient protocol de-
sign. We plan to further explore the trade-offs between
the overhead and the gains of persistent checking, and
exploit protocol specific properties to make it more ef-
ficient.
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