
BGPmon: A real-time, scalable, extensible monitoring system

He Yan
Colorado State University
yanhe@cs.colostate.edu

Ricardo Oliveira
UCLA

rveloso@cs.ucla.edu

Kevin Burnett
Colorado State University
burnet@cs.colostate.edu

Dave Matthews
Colorado State University

dvmtthws@cs.colostate.edu

Lixia Zhang
UCLA

lixia@cs.ucla.edu

Dan Massey
Colorado State University
massey@cs.colostate.edu

Abstract

This paper presents a new system, called BGPmon, for
monitoring the Border Gateway Protocol (BGP). BGP is the
routing protocol for the global Internet. Monitoring BGP is
important for both operations and research; a number of
public and private BGP monitors are deployed and widely
used. These existing monitors typically collect data using
a full implementation of a BGP router. In contrast, BGP-
mon eliminates the unnecessary functions of route selection
and data forwarding to focus solely on the monitoring func-
tion. BGPmon uses a publish/subscribe overlay network
to provide real-time access to vast numbers of peers and
clients. All routing events are consolidated into a single
XML stream. XML allows us to add additional features such
as labeling updates to allow easy identification of useful
data by clients. Clients subscribe to BGPmon and receive
the XML stream, performing tasks such as archiving, filter-
ing, or real-time data analysis. BGPmon enables scalable
real-time monitoring data distribution by allowing monitors
to peer with each other and form an overlay network to pro-
vide new services and features without modifying the mon-
itors. We illustrate the effectiveness of the BGPmon data
using the Cyclops route monitoring system.

1. Introduction

Understanding global routing is critically important for

current Internet research and operational network security.

The existing Internet uses BGP[3] as its global routing

protocol, but research challenges related to BGP are well

known. Security remains an open challenge and is the

subject of active research[15], routing convergence prob-

lems have been identified and various solutions have been

proposed[13, 8], the research community is actively work-

ing on understanding the impact of routing policies[11, 10],

and efforts on next generation designs[14] have been mo-

tivated by problems experienced in the current system and

are often evaluated using data drawn from the operational

Internet. The BGP monitoring data supports a wide range of

efforts ranging from understanding the Internet topology to

building more accurate simulations for network protocols.

To truly understand and properly analyze the global rout-

ing system, one needs to collect BGP data from a wide

range of sites with different geographical locations and dif-

ferent types (tiers) of ISPs. Fortunately global routing mon-

itoring projects, such as Oregon RouteViews[7] and RIPE

RIS[6], have been providing this essential data to both the

operations and research communities. Google Scholar lists

hundreds of papers whose results are based on these mon-

itoring resources. Results on route damping, route conver-

gence, routing policies, Internet topologies, routing secu-

rity, routing protocol design, and so forth have all benefited

from this data. Clearly, these monitoring projects are very

useful.

However, experience over the years has also shown a

number of major limitations in the current BGP data col-

lection process. An ideal monitoring system would scale

to a vast numbers of peer routers and provide BGP data in

real-time to an even larger number of clients. For example,

one might like to add operational routers from different ge-

ographic locations and lower tier ISPs. At the same time,

real-time access would enable all interested parties to ana-

lyze the data to detect events such as fiber cuts, prefix hi-

jacks, and so forth. The monitoring system should also re-

flect the fact that BGP is still evolving and the system should

be easily extended to handle new BGP extensions, such as

the expansion to four byte AS numbers, new security mea-

sures, and any number of current or future extensions to the

protocol.

This paper presents the design and implementation of

a next generation BGP monitoring system. We propose a

mesh of interconnected data collectors and data brokers that

Cybersecurity Applications & Technology Conference For Homeland Security

978-0-7695-3568-5/09 $25.00 © 2009 IEEE

DOI 10.1109/CATCH.2009.28

212

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 26, 2010 at 20:28 from IEEE Xplore. Restrictions apply.

operate using a publish/subscribe model. Our approach ex-

tends the scalable event driven architecture[17] to meet the

requirements of BGP monitoring. Interested clients receive

an event stream in real-time or may read historical event

streams from archival sources. The event streams provide

both incremental BGP update messages and periodic rout-

ing table snapshots. We use XML to provide extensibility,

integration with common tools, and to allow local data an-

notations.

Using data from BGPmon, one can solve a wide range

of critical problems. As an example we present the Cy-

clops system[9] (http:.//cyclops.cs.ucla.edu). Cyclops was

designed to be a generic framework that would compare the

intended behavior of the network with the observed behav-

ior. The intended behavior can either be explicitly entered

by the user or statistically inferred. Network operators are

automatically alerted (e.g. by email or sms) anytime there

is a change in the network that deviates from the expected

behavior. In particular, one could use the underlying BGP-

mon data to detect and immediately report BGP prefix hi-

jacking events. Tools such as Cyclops can benefit greatly

from BGPmon since it can easily scale up the number of

BGP feeds; adding locations where RouteViews and RIPE

do not have a presence. Furthermore, BGPmon eliminates

the delay involved in receiving the feeds since they can be

provided in real time.

The paper is organized as follows. Section 2 reviews the

current state of BGP route monitoring and section 3 intro-

duces our new approach. Section 4 describes how our de-

sign “scales up” to meet both peer and client demands while

section 5 shows how our approach “scales out” using a pub-

lish/subscribe overlay network. Section 6 shows some early

results from deployment and section 7 shows how Cyclops

makes use of BGPmon data. Finally, Section 8 concludes

the paper.

2. Background

Before introducing our new BGP Monitoring system,

we will first review the basic concepts used by public data

collection sites such as Oregon RouteViews[7] and RIPE

RIS[6]. The objective of these sites is to provide interested

researchers and operators with access to the updates sent by

routers at various ISPs and to also provide periodic snap-

shots of the corresponding BGP routing tables. To accom-

plish this, the current monitoring system negotiates BGP

peering agreements with ISPs and deploys one or more col-

lectors to obtain the BGP data. To the ISP routers being

monitored, a collector is simply another BGP peer router.

The collector receives and logs the BGP messages received

from the ISP router being monitored. The heart of the sys-

tem is the data collectors. A collector may be a simple unix

machine running an open source routing toolkit. The col-

lector simply writes all received updates to a file in Multi-

threaded Routing Toolkit (MRT)[4] format and then the file

is made publicly available. Applications can read the MRT

formatted file directly or first convert the binary format to

text using tools such as bdpdump[2].

In addition to providing update logs, monitors also pro-

vide snapshots of the resulting BGP routing table, referred

to as RIBs. The collector builds a RIB table by applying

the standard BGP protocol rules. A BGP update may add a

route to the RIB table, remove a route from the RIB table, or

modify an existing route. Whenever an update is received,

the RIB table is modified accordingly. As updates are re-

ceived from a peer, the collector updates the routing table

for that peer and periodically writes it to disk in MRT for-

mat. RIB files provide a snapshot of the routing tables over

a very short interval while the udpates provide a stream of

changes that occur between the rib file snapshots. Together,

the RIB and update files provide the ability to rebuild the

state of the routes at a particular time and replay subsequent

changes to the routing infrastructure for analysis.

Currently, RouteViews provides update files that are

roughly 15 minutes in duration and provides routing table

snapshots roughly every 2 hours. This is sufficient for anal-

ysis of past events, but real-time monitoring of BGP activity

requires update files be available in seconds. For example,

current BGP prefix hijack alert systems would like to detect

a potential route hijack within a few seconds. At best, to-

day’s RouteViews system only allows hijack alert systems

to report hijacks that occurred many minutes ago.

In addition to providing data in real-time, an ideal BGP

monitoring system would scale to dramatically increase the

number of peers providing data. Given data from more lo-

cations, BGP analysis systems and tools could potentially

provide better answers. For example, a BGP prefix hijack

may only be visible in a small portion of the network and

ideally one would like to have a monitor present in that same

portion of the network. Thus our goal is not only to make

the data available in real-time, but also to dramatically in-

crease the volume of data available.

Finally, such an ideal system could attract a large num-

ber of new applications. The data is public and should be

available to any interested researcher or operator. In many

cases, the data collected by RouteViews can serve as one

input to monitoring systems throughout the network.

In summary, the current system is useful but it would

be useful to make the data available in real-time while si-

multaneously increasing the amount of data collected and

dramatically increasing the number of locations obtaining

the data. All this should occur without lose of data fidelity.

213

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 26, 2010 at 20:28 from IEEE Xplore. Restrictions apply.

Figure 1. Physical view of publish/subscribe
overlay network.

3. A New Monitoring System

Open source routing software that is currently used as

a collector typically implements a full routing protocol, in-

cluding receiving routes, applying policies, setting forward-

ing states, and announcing routes to peers. Applying po-

lices, setting forwarding states, and announcing routes to

peers involve considerable complexity, but none of these

actions are needed be collector. A collector simply needs

to receive and log routes. Our new collector design focuses

on a narrow set of data collection functions. By focusing

on the collection functionality and eliminating unnecessary

tasks, the new collector is able to scale up and support more

peer routers while making the data available in real-time to

a potentially vast number of clients.

To support hundreds of peer routers and thousands of

clients, one would like to scale out across multiple systems

by adding more collectors and distributing the services. At

the same time, a client should see a single monitoring ser-

vice and be unaware that the implementation of the service

may be done through multiple collectors.

Our approach is based on publish/subscribe overlay net-

works that consist of brokers, publishers, and subscribers as

shown in Figure 1. The brokers form the overlay network,

allowing publishers to send event streams to the overlay

network and allowing subscribers to receive event streams

from the overlay network. Publishers and subscribers in-

teract only with brokers, not with each other, allowing the

overlay network to insulate publishers and subscribers from

each other. The brokers manage the distribution of the event

streams based on the client subscriptions, identifying the

best path from the publisher to the subscriber. Services,

such as filtering, aggregation, and querying, are typically

performed by the brokers on behalf of the subscribers.

BGPmon publishes an event stream containing data

while applications subscribe to these streams based on at-

tributes of the data in the streams. These streams will in-

clude all BGP messages (open, close, update, notification,

keepalive, route-refresh) as well as state changes in the BGP

Finite State Machine (FSM). An application may subscribe

to all events or only a subset of events based on peer, au-

tonomous sytems, events type, or other information con-

tained in the data. To improve fault tolerance, multiple

brokers may monitor the same or different peers in an AS,

yet appear to a client application as a single subscription.

This allows critical applications to continue to receive event

streams in the case of a failure of a peer, monitor, or broker.

Our system implementation begins with BGPmon, a

simple monitoring system now available that incorporates

all three functions: publish, broker, and subscribe. The sec-

ond stage is BGPbroker which separates these functions to

support Internet scale and additional services.

4. Scaling Up: BGPmon

The BGPmon architecture shown in Figure 2 reflects a

real-time monitor capable of scaling up and out. The de-

sign makes use of threading to provide real-time support

and scales up the number of peers and clients supported by

the monitor. BGPmon uses a lightweight thread for each

peer and client connection. In addition, there are threads

for chains to other instances of BGPmon, and some internal

functions, such as labelling and XML conversion. The use

of threads takes advantage of the trend towards multicore

processors.

BGPmon creates a peer thread for each peer router

and places all BGP messages (Open, Update, Notification,

Keepalive, Route-refresh) in the peer queue to create a sin-

gle, consolidated stream of events. The peer thread detects

loss of connection and automatically initiates recovery of

the connection. In addition, all changes in the BGP FSM

are placed in the peer queue. The peer thread uses MD5

authentication for the router connection if configured.

A label thread processes the events from the peer queue

and maintains a RIBIN table which contains unprocessed

routing information advertised by peers. This thread deter-

mines label information based on the state of the RIBIN ta-

bles, and places the event and corresponding label in the la-

bel queue. The labels identify announcements, withdrawals,

new updates, duplicate updates, same path, and different

path to aid filtering and analysis [16]. Since the RIBIN ta-

bles are the major memory constraint for the system, label-

ing is an optional feature and when turned off, the memory

used by BGPmon drastically decreases.

Finally, the monitor thread periodically issues status in-

formation and injects route tables into the event stream.

Route tables are obtained directly from the peer router by

requesting a route refresh. The RIBIN table can be used to

simulate a route refresh if the peer does not support it.

214

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 26, 2010 at 20:28 from IEEE Xplore. Restrictions apply.

Figure 2. BGPmon architecture.

The XML thread processes events in the label queue,

converts them to XML then places them into the XML

queue. Events from another BGPmon instance can be ag-

gregated into the XML queue to form BGPmon meshes,

discussed later in the paper. Each client thread sends the

entire stream of events from the XML queue to the client.

4.1. XML Event Stream

BGPmon can provide a real-time event stream to a large

number of clients. XML was chosen as the message format

for the even stream because it is extendable, for both clients

and servers, and also readable by both applications and hu-

mans. Also, XML allows BGPBrokers to route, filter, and

aggregate events use XPath queries.

However, to scale to the demand for a large number of

clients, there is no provision for a single client to request a

table transfer from BGPmon. Instead, when a route-refresh

is triggered by the router, BGPmon will incorporate the

transfer directly into the event stream. Real-time applica-

tions must operate on partial information (without RIB in-

formation) until the route-refresh is initiated from a router

in the event stream.

Several example clients that can make use of the XML

event stream are different types of archivers. A simple log

client can receive the event stream then write it directly to

disk while a more complex log client can filter the XML

messages then write them to disk. Another example of a

client is one that can convert the XML messages back into

MRT format and produce MRT formatted update files and

rib tables.

One concern with XML is the space required to store

the log files. Table 1 shows the space requirements of a

Table 1. Space requirements for text and
compressed data. Ratios relative to MRT for-
mat.

Format Data Size Ratio Compressed Ratio

MRT 26711666 1.00 5614650 1.00

bgpdump 74551628 2.79 5645044 1.01

XML 264824363 9.91 13445451 2.39

XML- 218065044 8.16 6289003 1.12

sample log for a two hour period. MRT data is stored in bi-

nary format, adding only some additional header informa-

tion to each update. The bgpdump [2] tool converts MRT

into ASCII, increasing the size to 2.79 times the MRT sam-

ple. Our XML log includes the packet octets as well as the

XML tags and is 9.91 times the MRT size. Eliminating the

octets (line XML- in the Table), reduces the ratio to 8.16.

However, most data is stored in a compressed format and

after compressing the files using bzip2, the compressed log

with octets is 2.39 times MRT and without octets is 1.12

times the MRT size.

4.2. Stream controller

BGPmon uses a design similar to the Staged Event

Driven Architecture (SEDA)[17]. SEDA provides a reli-

able service that handles a large number of concurrent peers

and clients. It divides the processing into stages connected

via queues. And the resource controller is used to observe

the incoming and/or outgoing rates of queues and adjust the

queue length as needed.

As Figure 2 shows, in BGPmon the event stream flows

215

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 26, 2010 at 20:28 from IEEE Xplore. Restrictions apply.

from peers to clients through three queues. The main dif-

ference between our design and SEDA is that all the queues

in BGPmon have a fixed length. So the key challenge in the

design of BGPmon is to prevent fixed-length queues being

overwhelmed while supporting many peers and clients with

different writing/reading rates. For example, large spikes in

the event stream will overwhelm the queues when the en-

tire routing table is sent. The worst case will happen when

BGPmon starts and all peers send their routing tables si-

multaneously. Route refreshes and other major changes in

topology can also cause significant spikes. A similar situa-

tion can also occur when a slower client is unable to process

events in a timely fashion.

In BGPmon, data is added to the queue by writers and

removed only after all readers have accessed the data. The

writers, which are typically BGP routers, send data accord-

ing to BGP protocol standards. The number of messages

sent by writers is primarily a function of the number of route

changes seen by a peer. At the same time, readers read

data from the queue at varying speeds due to bandwidth

or processing constraints. BGPmon employs two mecha-

nisms that are designed to handle the varying read and write

speeds of the clients and peers.

Pacing writers: The queue paces the writers according

to the average reading rate across all readers. When a queue

length exceeds a configurable threshold, pacing is enabled

until the queue length drops below a second threshold. For

example if the queue length is larger than the pacing enable

threshold, pacing will be enabled. When the system is in

pacing mode it will ensure that no writer can be starved of

resources and may limit the speed at which particular writ-

ers add to the queue.

For example, suppose there are 4 readers and 2 writers

and on average each reader can read 8 messages per second.

Ideal pacing should limit the writing rate of each writer to

8/2 = 4 in order to avoid overwhelming the queue. Our

approach ensures that each writer can add 4 messages per

second and limits writers to 4 messages only if the queue

size is growing too rapidly.

In BGP terms, this may mean BGP updates are read at

a slower rate if the queues are filling too fast. In turn, this

will apply back pressure on the TCP connection between

the peer and BGPmon. If BGPmon does not read data then

the TCP buffers fill and eventually new data cannot be sent

which causes the peer router to delay updates. Ultimately,

if the delay is too long then the peer may terminate the con-

nection with BGPmon. For example, the peer will close the

connection if keepalive messages cannot be exchanged at

a sufficient rate. Our objective is not to permanently limit

the connection, but rather to survive bursts of data. We do

this by using a large queue and by pacing how fast the peers

write.

Dropping slow readers: In the case of a very slow reader,

the queue length may continue grow despite our attempt to

pace writers to the average reader. Ultimately, if writers

add data faster than the slowest reader can consume it, any

queue must eventually fill up. In this case, the readers are

simply too slow and our system detects and eliminates these

slow readers. When the queue length reaches the maximum,

the responsible reader is dropped and the queue is adjusted

to the next slowest reader. This allows the remainder of

the subscribers to continue processing the stream with no

dropped events.

For example, suppose the queue is almost full and again

there are 4 readers and 2 writers. Suppose also that 3 of the

4 readers can read 8 messages per second but one of them

can only read 2 message per second. Data is only removed

from the queue after the all readers have accessed the data

so only 2 messages are removed from the queue per second.

As a result, the average reading rate across the 4 readers is

6.5 messages per second. In this case, even pacing is turned

on and each writer is limit to write 6.5/2 = 3.25 messages

per second the queue will still be overwhelmed because of

the slow reader. When the queue nears capacity, the slowest

reader (2 messages per second) is disconnected.

This deletion has two important effects. First, the queue

size drops immediately. At least one item in the queue is

present only because the slowest reader has yet to read that

item. When the slowest reader is deleted, the oldest queue

item also becomes read by all readers and is deleted, freeing

at least one spot in the queue. If there are multiple equally

slow readers, all of them are dropped to ensure some space

is freed in the queue. Second, the remaining readers can

process the data, possibly at a faster average rate.

Our experiment shows that pacing slows the rate at

which BGP messages are read from the peer routers, but

the connections are not dropped since the admission rate is

still well above the keepalive and hold timers in the BGP

sessions. Our system survives bursts in updates in has

not dropped a connection in several months despite a wide

range of reader speeds.

5. Scaling Out: Chains and Brokers

While we have endeavored to design a BGPmon that

scales to a large number of peers and clients, we allow BGP-

mon to scale out through the interconnection of multiple

BGPmons. This allows the separation of the peer monitor

from the client server with only a single connection main-

tained between them. A mesh of BGPmons may be used

for redundancy as shown in Figure 3. Both BGPmon C

instances monitor a unique set of peers and forward their

events to both BGPmon S instances. Each BGPmon S will

then log the event stream and forward their events to any

clients attached.

The use of separate monitors helps insulate the monitor-

216

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 26, 2010 at 20:28 from IEEE Xplore. Restrictions apply.

Figure 3. BGPmon mesh configuration to pro-
vide redundancy and scale.

ing, logging, and clients from individual failures. Failure of

a BGPmon only affects the connected peers or clients. The

other peers and clients in the mesh are not affected. Recov-

ery is automatic since the failed BGPmon reconnects to the

mesh when it recovers.

BGPbroker is the second stage of development to pro-

vide an overlay network that will support Internet scale and

service extensions. Unlike BGPmons which simply collect

and stream data, BGPbrokers provide a set of services for

filtering and aggregation, allowing clients to subscribe to

non-duplicate requests from a peer or to subscribe to an

autonomous system that aggregates all of the appropriate

peers. A BGPmon (or mesh of BGPmons) becomes a ser-

vice to the broker in this model and provides the base data.

This powerful abstraction allows sites to design networks

of brokers to provide a wide range of new services. For ex-

ample, logging/playback services could allow applications

to access archives through the subscription mechanism by

specifying a time period in the subscription. A hybrid ser-

vice could allow playback from a specific point that tran-

sitions into the current real-time feed. Other services may

add additional information to suspect events in the stream,

such as potential prefix hijacks or other security issues.

6. Deployment Results

This paper introduces a new BGP monitoring system that

supports real-time monitoring, scalability, and extensibil-

ity. The system uses a publish/subscribe overlay network

Figure 4. BGPmon testbed.

involving brokers, publishers, and subscribers to achieve

these goals.

In order to deploy, debug, and evaluate BGPmon, a

testbed has been in operation for roughly one year. This

testbed involves 5 peers and 3 BGPmon sites is shown in

Figure 4. In the Colorado State University (ColoState)

site, BGPmon1 connects to 1 peer, BGPmon2 connects to

4 peers. These instances of BGPmon are then chained to-

gether. Recently, undergraduate course projects have ex-

perimented with clients connecting to BGPmon while other

testing has shown that BGPmon can run smoothly with a

varied client load from 1 to 200.

UCLA has its own local BGPmon which chains to BGP-

mon2 inside the ColoState site. Inside the UCLA site, the

application Cyclops is integrating BGPmon data into its

system. Cyclops will be discussed in detail in section 7.

Similarly, the University of Memphis site also runs its

own BGPmon and chains their own BGPmon to BGPmon2.

They also have a application Netviews[5] which is fed data

by from their local BGPmon. Netviews provides a new vi-

sual interpretation of BGP data which network operators

can quickly understand and analyze their own and others

connectivity across the globe.

BGPmon provides raw data to clients such as Cyclops

and NetViews. The only message processing that occurs in

BGPmon is in the labeling system. By comparing a new

update for a prefix to the last update for the same prefix re-

ceived from the same peer, BGPmon labels updates as fol-

lows. If the peer is not currently announcing a route to a

prefix and then a route to the prefix is reported, the update is

labeled as a new announcement. Similarly if the peer is cur-

rently announcing a route to the prefix and then withdraws

the route, the update is labeled as a withdraw. If a peer is

currently announcing a route to a prefix and then changes

the route to that prefix, BGPmon classifies the update as a

DPATH update for different AS path or SPATH update if the

path remains the same but some other attribute has changed.

In addition to the above, a peer may simply readvertise

the exact same route to a prefix. This is labeled a duplicate
update. In our system, duplicate updates are often the result

217

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 26, 2010 at 20:28 from IEEE Xplore. Restrictions apply.

Figure 5. BGPmon peer statistics.

of a request for routing table transfer. BGPmon periodically

asks a peer to re-report all of its routes. This generates a

large number of duplicate updates, but allows downstream

BGPbrokers and clients to learn the full table of peer and/or

synchronize any state associated with data from that peer.

BGP routers may also withdraw the route to the prefix that

has not been advertised in the first place. These duplicate
withdraws are typically the result of bugs or sub-optimal

implementation decisions at peer routers.

Overall, these labels can help clients or BGPbrokers

quickly parse the vast number of updates. For example,

tools such as Cyclops and prefix hijack detectors are pri-

marily concerned with new announcements and DPATH up-

dates. These tools can typically ignore the duplicate an-
nouncements, SPATH updates, and duplicate withdraws.

Figure 5 show the distribution of update messages re-

ceived from a single peer. Each line represents one of the

labels applied to the updates. As discussed above, the large

number of duplicate announcements results from updates in

the stream generated by the route refresh. Graphs for each

peer are available at the BGPmon website[1] and are up-

dated periodically.

Queue statistics in Figure 6 show the size of the peer,

label, and XML queues.

Spikes typically occur during a route refresh. Pacing

statistics in Figure 7 show the pacing limit, a weighted mov-

ing average, and the number of times pacing was enabled

during the period. Queue and pacing parameters can be al-

tered to change the size of the queue and the points at which

pacing is turned on or off. This allows us to tune a monitor

to the load generated by the peers and clients.

7. A BGPmon Client: Cyclops

Cyclops is a generic framework for routing monitoring

that compares the intended behavior of the network with

Figure 6. BGPmon queues.

Figure 7. BGPmon queue pacing.

BGP

data

Pre-processing

Cyclops DB

Topology

& weight

files

Visualizer
Web

Interface

Raw

data

AS relationship

inference &

AS classification

Alarm

generation

• weight

• lifetime

• PV-GT

…

Figure 8. Cyclops implementation block dia-
gram

218

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 26, 2010 at 20:28 from IEEE Xplore. Restrictions apply.

the observed behavior. The intended behavior can either be

explicitly entered by the user or statistically inferred. Net-

work operators are automatically alerted (e.g. by email or

sms) anytime there’s a change in the network that deviates

from the expected behavior.

Currently Cyclops data is updated once a day, which is

not fast enough to react to network anomalies such as prefix

hijacks. Cyclops is currently being integrated with BGP-

mon so that it benefits from access to real-time BGP data.

For example, observed data may trigger a routing security

event that will be perceived within few seconds, rather than

minutes or hours.

7.1. An overview of Cyclops

Figure 8 summarizes the Cyclops implementation. Daily

collected BGP data from the Public-View first goes through

a pre-processing stage where AS links and timestamps are

extracted. More precisely, for each AS link in an AS path,

we record the first and last times the link was seen, and

whether the link was seen in the beginning, middle or end of

the AS path. In addition, we save the last seen BGP update

message that contained that link.

In the pre-processing stage, we also glean AS paths to

infer business relationships between ASes, i.e. provider-

customer, or peer-to-peer, and this relationship information

is then used to do AS classification. The specific method

we use to do AS relationship inference is deceptively sim-

ple. We extract the AS links from the BGP routes collected

from the Tier-1 ISP monitors over a window of time which

should span several months. In the AS path a0–a1– ... –an,

the link a0–a1 can be either peer-peer or provider-customer

(a0 refers to the Tier-1 AS the monitor resides in), but the

remaining links in the AS path should be of type customer-

provider according to no-valley policy. Furthermore, if a0–

a1 turns out to be a customer-provider link, it will be re-

vealed in routes of another Tier-1 AS, therefore we will be

able to accurately label it. The peer links are inferred by do-

ing the diff between the entire set of links extracted from all

the monitors and the set of customer-provider links, i.e. the

peer links are all the links that are not propagated upstream

to Tier-1s. In addition, we sort ASes into four classes based

on the number of downstream customer ASes: stubs if they

have 4 or less downstream ASes, small ISPs if they have be-

tween 5 and 50 downstreams, large ISPs if they have more

than 50 downstreams, and finally Tier-1 ASes.

To measure how much an AS link is used, we keep

track of the number of BGP routes carried on each AS

link. We call this number the link weight, a concept bor-

rowed from our previous work [12]. To avoid measurement

bias, the link weight measurement only uses data from the

N � 120 monitors in Public-View that provide full BGP

tables and reside in different ASes. We denote wj
i (t) the

number of routes of monitor j that use link i on day t, and

wi(t) = 1
N

∑
j wj

i (t) the average weight of link i over all

the N monitors. We further compute an expected weight

of each link over time using a TCP RTT measurement-like

smoothed average: ŵi(t) = 0.8ŵi(t − 1) + 0.2wi(t), and

keep track of the difference between the instantaneous link

weight on day t and the expected weight of each link i:
Δwi(t) = wi(t) − ŵi(t). A significant difference can be

used to trigger alarms. Furthermore, we keep track of two

different weights depending on the position of the eye of the

Cyclops in the AS link seen in the routes. wto represents the

number of routes using the link x–y, where x is the eye of

the cyclops and y one of its neighbors; wfrom represents

the weight of the link y–x, towards the eye of the Cyclops

x. Usually for stub networks, Cyclops only displays the

values wfrom, since we would need a monitor at the stub

to capture the other direction. Keeping both directions is

important because it gives perspective on how the Cyclops

eye slices routing through its neighbors, as well as how its

neighbors point routes towards it.

All the above mentioned information, the AS links, the

last BGP update reporting each link, the link weights, as

well as the AS relationships and classification, is imported

to the main Cyclops database on a daily basis to provide

input into Cyclops.

7.2 Cyclops Web Interface

Cyclops web interface is designed to provide users a

quick snapshot of AS connectivity surrounding the eye of

the Cyclops, a given AS-x, within a given time window.

It also complements Cyclops visualizer in scaling the topol-

ogy display by allowing one to view a complete list of all the

neighbors of large ISP ASes whose neighbor counts may go

as high as thousands which makes visualization infeasible.

The inputs to the web interface include the eye of the Cy-

clops, AS-x, the time period [t0, t1] of interest, and a choice

between showing all neighbor ASes and showing the con-

nectivity changes only. In connectivity mode, a snapshot of

the neighbors of x at time t1 is displayed in the table. In

change-only mode, all topology changes incident to x that

occurred in the interval [t0, t1] are displayed; the changes

include both new AS links and disappeared AS links.

As an example, Figure 9 shows the Cyclops web user

interface, together with the connectivity listing for AS174

(Cogent, an ISP). The table includes information for each

neighbor of AS174, such as ASN, AS name, AS type (stub,

small ISP, large ISP, Tier-1), number of downstream ASes

within ()’s, relationship with x (customer, provider, peer),

node degree, link appearance and disappearance date, link

lifetime, link weight, and last BGP message observed which

contained the link1. The ”Weight (to)” column shows the

1The value shown in the ”Last BGP Message” column is the prefix in

219

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 26, 2010 at 20:28 from IEEE Xplore. Restrictions apply.

link weight in the direction of AS174 to neighbor AS; the

”Weight (from)” column shows the link weight seen in the

direction from neighbor AS to AS174. To fill in the ”Weight

(from)” column for a neighbor requires a monitor being

hosted in that neighbor AS. The Avg. value is the expected

weight as described in Section 7.1; the Diff. value is the per-

centage of difference between the link weight on the ”End

Date” and the expected weight.

The neighbor listing shown in Figure 9 is in the order of

the node degree (the number of connections each neighbor

AS has); one can click on any other parameter to order the

neighbor list by the values of that specific parameter. For

example, if one wants to know whether the AS is involved

in any route hijack, one can sort the list by link lifetime and

see the AS links with shortest lifetime on the top. The last

BGP message informs the user who originated the BGP up-

date message that caused the links to appear. Other columns

in the table help users observe neighbors by degrees, rela-

tionship or AS types.

Figure 10 shows AS-174 connectivity in change-only
mode, where all topology changes incident to AS-174 that

occurred in the time interval [t0, t1] are displayed. In

this specific case, 18 links changed during the period of

[5/23/08, 5/29/08] (the table is truncated due to space limit).

The first row shows a link that disappeared since 5/25/08

with a lifetime of 947 days; the eighth row shows a new

link to AS10279 that was added on 5/27/08. Note that the

”Weight (from)” column shows no value, this is because

there is no monitor inside any of those neighbor ASes.

7.3. Cyclops and BGPmon

The system above illustrates the potential for BGPmon

data. BGPmon provides the raw data used by Cyclops. By

delivering data from more peers, clients such as Cyclops

can offer better analysis and improved inference. By deliv-

ering data in real-time, BGPmon allows Cyclops to report

potential problems and attacks in real-time. Finally, by scal-

ing to vast numbers of clients, BGPmon is not restricted to

Cyclops alone. Any number of other services can obtain the

same raw data.

As the BGPmon system matures, we anticipate a large

mesh of BGPmon collectors and BGPmon chains. Large

numbers of peers connect directly to one or more BGPmon

collectors. The collectors in turn establish chains to other

BGPmon instances and clients then connect to one of these

instances. By providing a robust mesh, BGPmon instances

can provide data from large numbers of peer routers and

serve a large number of clients.

BGPmon intentionally does not process data. BGPmon

instances simply collect and report data. But one can clearly

that update, embedding a hyperlink to the message.

envision scenarios where more robust data processing is re-

quired. BGPbrokers take this raw data as input and provide

filtered output. For example, a BGPbroker might pass only

BGP path changes to a client and filter out all other data

such as keepalive messages and duplicate route announce-

ments. Cyclops may one day receive BGP data from just

such a BGPbroker. Cyclops primarily requires path changes

and thus a broker that filters out all updates other than path

changes could simplify the processing for Cyclops.

The distinction between a BGPbroker and client is some

arbitrary. To a BGPmon instance, the distinction is irrev-

elant. BGPmon simply provides unfiltered data via a TCP

stream. This data may be fed directly to a tool such as Cy-

clops or may be fed a collection of BGPbrokers which pro-

vide filtered data to tools such as Cyclops. Finally, Cyclops

itself may be viewed as a broker in the sense that it filters

BGP and reports only events that deviate from the expected

behavior.

8. Conclusions and Future Work

This paper presented the design of a new BGP monitor-

ing system and showed how clients such as Cyclops can

make use of the resulting data to better understand BGP be-

havior.

Based on discussions and user feedback, we are very en-

couraged by the deployment thus far. We have also learned

a few critical lessons that have influenced the next release of

BGPmon, BGPmon version 7. Chief among these lessons

are a revised approach to handling slow clients, a revised ap-

proach to managing routing tables, and a new addition for

integrating BGPmon into existing systems such as Route-

Views. Each of these version 7 enhancements is discussed

below.

8.1 BGPmon v7: Handling Slow Clients

Our current implementation of BGPmon (version 6)

drops slow clients, as described in Section 4. It is essen-

tial that some action be taken to address the problem of

slow clients. If no action is taken, a slow client can cause

the BGPmon queues to overflow and eventually data would

be dropped. This is particularly problematic if most clients

could read at a high rate and receive all the data, but a few

slow clients fill the queues and cause data loss. In BGPmon

version 6, our solution is to identify and then terminate the

slow clients. This has worked well in the deployment thus

far.

However, a potential problem is that the slow client may

simply re-connect and thus drive the overall system into a

state of persistent oscillation. The system runs well until

the slow client joins. The slow client then causes queues

to build up and the client is eventually killed. The queue

220

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 26, 2010 at 20:28 from IEEE Xplore. Restrictions apply.

Figure 9. A snapshot of Cyclops web interface: connectivity of AS174.

Figure 10. AS174 connectivity changes during the period of [5/23/08, 5/29/08].

221

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 26, 2010 at 20:28 from IEEE Xplore. Restrictions apply.

then quickly drains when the slow client is killed. Note that

the queue contains at least one update that has been read

by everyone except the slow client. When the slow client

is killed, that update can be discarded. In our experiments

thus far, a typical slow client has hundreds of updates that

are waiting only for the slow client; killing the slow client

immediately removes these updates and frees hundreds of

slots in the queue. But oscillation occurs if the slow client

immediately connects. The queue of unread updates begins

to build again as soon as the slow client joins and the cycle

repeats. One can easily imagine a poorly written slow client

that automatically reconnects anytime it is disconnected.

An alternate approach is to better manage, but not kill the

slow clients. In BGPmon version 7, the slow client is not

deleted from the system. Instead, slow clients are forced to

skip messages. From a queuing standpoint, the effect is sim-

ilar to killing the slow client and works as follows. When

BGPmon determines a client is reading updates too slowly,

all messages that have yet to be read by that slow client are

immediately marked as read. The client is informed it has

missed several messages, but it is allowed to continue. If

the message loss is unacceptable to the client, we leave it to

the client to terminate the connection.

For example, suppose 100 messages have been read by

everyone except a slow client. Rather than waiting for the

slow client to read the 100 messages, the client is sent

an XML message indicating that 100 messages will be

skipped. All 100 unread messages that are waiting only on

the slow client are immediately marked as read and removed

from the queue.

The same pacing rules discussed for killing clients apply

to skipping clients forward. The algorithm works exactly as

described in Section 4, but rather than terminating the TCP

connection BGPmon instead skips the client forward. A

command line interface allows the BGPmon administrator

to set minimum client rates. The BGPmon administrator

can also terminate clients that fall behind too often, but this

now becomes a decision by an administrator rather than an

automated behavior.

8.2 BGPmon v7: Sending Routing Tables

BGPmon version 6 sends both incremental updates and

periodic RIB table transfers in the same XML stream. The

periodic table transfers are added to the stream using the

BGP Route Refresh capability. This works as follows. At

periodic intervals, BGPmon sends a route refresh request

the ISP router. In response to the request, the ISP router

re-announces all routes in its table. This allows clients who

have recently joined the XML stream to learn the full table.

It also minimizes the possibility of monitoring errors since

the re-announced table comes directly from the ISP router.

However, periodic route refreshes have two major nega-

tive consequences. First, ISP routers may not be willing to

periodically resend the entire table. Sending a route refresh

requires processing and bandwidth from the ISP router. In

some cases, this added load may be considered too costly

for the ISP router. This problem is easily solved by storing

the routing table at BGPmon. Rather than requesting a ta-

ble from the peer, BGPmon simply re-announces its copy

of the routing table. No action by the peer router is re-

quired. In fact, the peer router is not aware that BGPmon

is re-announcing the table. All updates related to this BGP-

mon generated table transfer are clearly labeled so a client

can easily distinguish an actual update by the peer router

from a simulated table transfer generated by BGPmon. This

functionality already exists in BGPmon version 6 and we

believe this will become the standard way to periodically

re-announce the routing tables.

Second and perhaps more problematic, the re-announced

table is added to the XML stream and received by all clients.

This is desirable for new clients who would like to learn the

full table and may also be useful for existing clients who

want to refresh their state, but the re-announcement adds

a vast number of messages. Clients who do not want (or

need) a routing table are forced to receive and ignore pe-

riodic bursts of table transfer messages. Worse still, these

periodic bursts increase the number of updates by an order

of magnitude; a high price to pay if these updates are to be

simply ignored by many (if not most) clients.

Our solution in BGPmon version 7 is to introduce a sec-

ond XML stream. The first XML stream contains only

BGPmon updates. As updates are received from peer

routers, they are immediately added to this stream as dis-

cussed above. A new second XML stream will contain

only periodic routing table snapshots. The BGPmon ad-

ministrator (not the clients) chooses how often routing table

snapshots are announced via this stream. In this model, a

new client who wants both an initial table and incremen-

tal updates subscribes to both the standard update stream

and the periodic table stream. Once an table transfer is re-

ceived over the periodic table stream, the client can discon-

nect from this stream and receive only the BGP updates sent

in the first stream. Clients who do not want periodic table

transfers will not be subscribed to the periodic table transfer

stream and thus will not receive them. Clients who do seek

periodic table transfers can subscribe to this stream when-

ever a table transfer is needed. As with BGPmon version 6,

the clients who have subscribed to the stream must wait for

the next periodic transfer interval before the table transfer is

sent by BGPmon.

8.3 Integration With Existing Monitors

Along with the RouteViews team, our objective is to re-

place this routing software with BGPmon. However, the

222

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 26, 2010 at 20:28 from IEEE Xplore. Restrictions apply.

transition can be challenging. Ideally, one would like to

gradually phase in the new BGPmon collectors before dis-

connecting the existing collectors. Existing collectors use

open source routing software and log updates to files. In

a transition to BGPmon, the monitored ISPs routers could

peer with both the existing collector and a new BGPmon

collector. But this places a burden on the monitored ISPs

to modify configuration files and adds additional load to the

production BGP routers being monitored. We instead have

developed an alternate incremental deployment plan.

In order to phase BGPmon in, we are working to modify

the existing collectors slightly so they feed updates to BGP-

mon rather than writing updates to files. An existing collec-

tor already writes BGP updates to a file. If one thinks of a

file as simply another stream, there is no conceptual reason

why these updates can’t be written to a stream and BGP-

mon could read from this stream. In other words, the ex-

isting collector opens the BGP connection to the ISP router

and begins receiving updates. Each update is written to a

stream instead of written to a file. BGPmon then processes

the update stream. Rather than directly receiving an update

from a peer, BGPmon indirectly receives the update via this

stream. BGPmon labels the updates, converts it to XML,

publishes to the event stream, and so forth. This allows us to

test BGPmon on the full RouteViews update load. The only

part of the BGPmon code not tested is the actually open-

ing on the peering session itself, which can be thoroughly

evaluated using other means.

Once BGPmon has proven itself handling the full Route-

Views update load, BGPmon can replace the existing open

source collection software. Note the ISP routers do not

know or care what underlying software is used to establish

and maintain a peering session. We believe this approach

will allow a rapid rollout of BGPmon into RouteViews and

provide a potential model for other monitoring sites to de-

ploy BGPmon.

Overall, we believe BGPmon represents an important

change in how BGP route monitoring is accomplished in

the Internet. We hope that the addition of BGPmon will

make it much simpler for researchers and operators to ob-

tain BGP data and the addition of widely available real-time

BGP data will lead to the development of new tools for bet-

ter understanding Internet routing.

9 Acknowledgments

Many of the design insights and current BGP peering

sessions would not have been possible without the help

of the Oregon RouteViews team, the UCLA Internet Re-

search Lab, and the Networking Research Lab at University

of Memphis, and the many contributors from the Colorado

State Network Security Group.

References

[1] Bgp monitoring system. http://bgpmon.netsec.
colostate.edu/index.html.

[2] bgptools. http://nms.lcs.mit.edu/software/
bgp/bgptools/.

[3] A border gateway protocol 4 (bgp-4). http://www.
ietf.org/rfc/rfc4271.txt.

[4] Mrt routing information export format. http:
//www.ietf.org/internet-drafts/
draft-ietf-grow-mrt-07.txt.

[5] Netviews. http://netlab.cs.memphis.edu/
projects_netviews.html.

[6] Ripe (rseaux ip europens) routing information service.

http://www.ripe.net/projects/ris/.
[7] University of oregon route views project. http://www.

routeviews.org/.
[8] A. Bremler-Barr, Y. Afek, and S. Schwarz. Improved

bgp convergence via ghost flushing. In INFOCOM 2003.
Twenty-Second Annual Joint Conference of the IEEE Com-
puter and Communications Societies. IEEE, 2003.

[9] Y.-J. Chi, R. Oliveira, and L. Zhang. Cyclops: The Inter-

net AS-level Observatory. In ACM SIGCOMM Computer
Communication Review, 2008.

[10] N. Feamster, R. Johari, and H. Balakrishnan. Implications of

autonomy for the expressiveness of policy routing. In SIG-
COMM ’05: Proceedings of the 2005 conference on Appli-
cations, technologies, architectures, and protocols for com-
puter communications, pages 25–36, New York, NY, USA,

2005. ACM.
[11] L. Gao. On inferring autonomous system relationships in

the internet. IEEE/ACM Trans. Netw., 9(6):733–745, 2001.
[12] M. Lad, R. Oliveira, D. Massey, and L. Zhang. Inferring the

Origin of Routing Changes using Link Weights. In Proc.
IEEE ICNP, 2007.

[13] D. Pei, M. Azuma, D. Massey, and L. Zhang. Bgp-rcn:

improving bgp convergence through root cause notification.

Comput. Netw. ISDN Syst., 48(2):175–194, 205.
[14] L. Subramanian, M. Caesar, C. T. Ee, M. Handley, M. Mao,

S. Shenker, and I. Stoica. Hlp: a next generation inter-

domain routing protocol. In SIGCOMM ’05: Proceedings
of the 2005 conference on Applications, technologies, archi-
tectures, and protocols for computer communications, pages

13–24, New York, NY, USA, 2005. ACM.
[15] L. Subramanian, V. Roth, I. Stoica, S. Shenker, and R. H.

Katz. Listen and whisper: security mechanisms for bgp. In

NSDI’04: Proceedings of the 1st conference on Symposium
on Networked Systems Design and Implementation, pages

10–10, Berkeley, CA, USA, 2004. USENIX Association.
[16] L. Wang, X. Zhao, D. Pei, R. Bush, D. Massey, A. Mankin,

S. Wu, and L. Zhang. Observation and analysis of BGP

behavior under stress. Proceedings of the 2nd ACM SIG-
COMM Workshop on Internet measurment, pages 183–195,

2002.
[17] M. Welsh, D. Culler, and E. Brewer. Seda: an architecture

for well-conditioned, scalable internet services. In SOSP
’01: Proceedings of the eighteenth ACM symposium on Op-
erating systems principles, pages 230–243, New York, NY,

USA, 2001. ACM.

223

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 26, 2010 at 20:28 from IEEE Xplore. Restrictions apply.

