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Abstract—The DNS Security Extensions (DNSSEC) are among
the first attempts to deploy cryptographic protections in
an Internet-scale operational system. DNSSEC applies well-
established public key cryptography to ensure data integrity and
origin authenticity in the DNS system. While the cryptographic
design of DNSSEC is sound and seemingly simple, its develop-
ment has taken the IETF over a decade and several protocol
revisions, and even today its deployment is still in the early stage
of rolling out. In this paper, we provide the first systematic ex-
amination of the design, deployment, and operational challenges
encountered by DNSSEC over the years. Our study reveals a
fundamental gap between cryptographic designs and operational
Internet systems. To be deployed in the global Internet, a
cryptographic protocol must possess several critical properties
including scalability, flexibility, incremental deployability, and
ability to function in face of imperfect operations. We believe
that the insights gained from this study can offer valuable inputs
to future cryptographic designs for other Internet-scale systems.

I. I NTRODUCTION

Cryptographic mechanisms can provide effective means
to secure the Internet, and the DNS Security Extensions
(DNSSEC) [2], [4], [3] are among the first attempts to add
cryptographic protection into one of the Internet’s core systems
(the DNS). The goal of DNSSEC is to add data integrity and
origin authenticity to DNS query replies so that users can
verify that the answers received are indeed originated from
the intended DNS server and have not been altered. Securing
the DNS service not only can defeat emerging threats like
DNS hijacking and cache poisoning but also may provide a
foundation for deploying other cryptographic-based security
applications. Specifically, the DNS can be used to store and
serve the public keys of various entities. After twelve years of
development efforts by IETF, the DNSSEC standards were
finalized in March 2005 and a number of testbeds, pilot
deployments, and services have been rolled out in the last
few years [12], [11], [21], [10], [27].

In this paper, we take as inputs the discoveries and lessons
accumulated by the DNSSEC development community and
present the first systematic examination of the design, de-
ployment and operational challenges DNSSEC has encoun-
tered over the years. However the goal of our study is
not only to document how these challenges manifest, but
more importantly to understand where they come from. We
show that many challenges arise from a few fundamental
factors: the large scale and distributed nature of the operational
DNS system, the existence of DNS data caching, and the

inherent heterogeneity in the operations of DNS by different
autonomous administrations. Along the way, we also offer
suggestions on how to address some of these open challenges
using simple yet effective techniques.

The main contributions of this paper are three-fold. First,we
document and classify the challenges in the DNSSEC deploy-
ment and operations; to date many of such issues have only
been discussed in various informal channels (e.g., mailinglists,
expired Internet drafts, or personal communications). Second,
we critically analyze the continuous efforts in the DNSSEC
community for addressing these operational challenges, and
offer our own solutions for some of the open issues. Finally,
and perhaps most importantly, we summarize the evolution of
DNSSEC into a set of design lessons, which we hope can help
the designs of other cryptographic systems to be deployed on
the Internet.

The rest of the paper is organized as follows. Section II
provides background information on the design of DNS and
DNSSEC. Section III discusses the design and deployment
challenges from DNSSEC’s hierarchical PKI. Section IV an-
alyzes the issues due to DNS caching. Section V identifies
challenges from heterogeneous operational practices. Section
VI reviews these operational issues in the context of actual
DNSSEC deployment data, and Section VII discusses the root
cause of these challenges and the importance of distributed
monitoring. Section VIII discusses the related work. Finally,
Section IX concludes the paper with several design lessons
learned from our study.

II. BACKGROUND

The Domain Name System (DNS) [18], [19] is a distributed
database that maps host names such aswww.ucla.edu to IP
addresses and provides a wide range of other mapping services
ranging from email to geographic locations. Virtually every
Internet application relies on looking up certain DNS data.
In this section we introduce a basic set of DNS terminology
which is used throughout the text, followed by an overview of
the DNS Security Extensions.

A. Domain Name System

All DNS data is stored in core data structure called
a Resource Record(RR), and each RR has an associ-
ated name, class, and type. For example, an IPv4 ad-
dress forwww.ucla.edu is stored in an RR with name
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www.ucla.edu, class IN (Internet), and type A (IPv4 ad-
dress). The set ofall RRs associated with the same name,
class, and type is called anResource Record Set(RRset).
Since DNS resolvers issue queries for name, class, and type
tuples, they are inherently querying for RRsets (and not
individual RRs). For example, when a browser queries for
〈www.ucla.edu, IN, A〉, the reply will be the RRset for
www.ucla.edu with all of the IPv4 addresses for that name.
Thus, the smallest unit that can be requested in a query is an
RRset, and all DNS actions including cryptographic signatures
discussed later, apply to RRsets rather than individual RRs.

The global DNS is a distributed database organized in a
tree structure. At the top of the tree, the root zone delegates
authority to top level domainssuch as.com, .net, .org,
and.edu. The.com zone then delegates authority to create
ibm.com, .edu delegates authority to createucla.edu,
and so forth. The information repository that makes up the do-
main database is divided into sections calledzones. Each zone
belongs to a single administrative authority and is served by
multiple authoritative name servers to provide name resolution
services for all names in the zone. By definition, a zone can
contain one or more connected domains in the DNS name tree;
in practice, many zones contain only one domain–this is the
case for top level domains as well as large domains in general.
In the rest of this article, we use the terms domain and zone
interchangeably when a zone contains a single domain.

Every RRset in the DNS belongs to a specific zone and is
stored at the nameservers of that zone. For example, the RRset
for 〈www.ucla.edu, IN, A〉 belongs to theucla.edu
zone and stored in theucla.edu nameservers. Two impor-
tant types of RRs, the NS RRs which hold the names of
DNS servers, and the corresponding A RRs which hold the IP
addresses of the NDS servers (called “glue records”), play a
critical role in establishing and maintaining the DNS hierarchy.
The NS RRset of each zoneZ is stored both locallyandat the
parent zoneP , so that the parent zone can refer the queries for
Z ’s DNS names toZ ’s DNS servers. When a zone changes
any of its DNS servers, it must notify its parent to update the
NS RRset and A RRset stored at the parent zone.

End users and applications resolve a DNS name by querying
the DNS for the corresponding RRset. Typically, a simple
stub resolver is implemented on every host which sends
DNS queries to a localcaching resolverwhich takes the
responsibility of walking the DNS hierarchy to get the final
answer and then sends the answer back to the stub resolver.

B. DNS Security Extensions

DNS was designed without security as a central concern,
and a variety of possible attacks against DNS have been
identified [6]. An attacker can exploit these vulnerabilities to
inject spoofed DNS data and re-direct user traffic (e.g., Web
browsing) to incorrect and often malicious sites, leading to
various denial of service and/or security breaches. A detailed
threat analysis for DNS can be found in [5]. To defend against
these threats, the DNS Security Extensions (DNSSEC) is de-
signed to achieve two security goals:data integrityandorigin
authenticity. DNSSEC uses public-key cryptography (RSA for
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Fig. 1. An illustration of the DNSSEC system.

example) to enable each zone to prove the authenticity and
integrity of its DNS data. To do so, each zone creates a
public-private key pair, stores the public key in a new RR type
called DNSKEY RR, signs its data (in units of RRsets) using
the private key, and stores the signatures at the authoritative
servers in another new type of RRs, called RRSIG. Whenever
a DNSSEC-enabled server returns an RRset, it also returns
the companion signature. A resolver uses the zone’s public
key to verify whether a received RRset matches the signature;
a match indicates that the RRset was indeed originated from
that zone and was not altered in transit. To resist replay
attacks, each signature carries an expiration time, specified
by a definitive timestamp, and becomes invalid beyond this
timestamp. Accordingly, the cache discards an RRset when
either its TTL or the companion signature expires, whichever
comes first.

To verify the signature of an RRset, a resolver can query
a zone for its DNSKEY RRset. To verify the keys, DNSSEC
leverages the existing DNS delegation hierarchy to providea
Public-Key Infrastructure (PKI). In this PKI, each parent zone
signs its children zones’ DNSKEY RRs1, while the public
key of the root zone is distributed to all resolvers in a secure,
out-of-band mechanism2. As such, starting from a root zone’s
public key, resolvers should be able to walk down the DNS
hierarchy and verifying the public keys for each zone along the
way. For example theroot public key is used to authenticate
the org public key, which in turn is used to authenticate the
foo.orgpublic key, and so on.

In addition to authenticating RRsets through RRSIGs, a
zone must also provide authenticated answers when it receives
queries for RRsets that do not exist. Because of the desire to
keep the private keys offline, upon receiving the query for a
non-existing name, a zone cannot sign a denial of existence
response in real time. Instead, authentication of denial of
existence is achieved in the following way. A zone first sorts
all the existing names in a canonical order, then creates an RR
of a new type, called NSEC, for each of its names, and signs

1The exact mechanism is slightly more complex: the parent zone stores and
signs a DS RR that is a hash of one of the child’s DNSKEY RRs. Section III-A
discusses DS RRs in more detail.

2Although this approach looks similar to that used in distributing the
DNS root servers’ IP addresses, one fundamental differencehere is that
cryptographic keys need to be changed periodically, however long the period
may be, while the IP addresses for root servers do not have this requirement.
Rolling over the root public keys requires updatingall DNS resolvers on
Internet; how to do it effectively remains an open issue.
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these NSEC RRs using the private key. The data portion of an
NSEC RR indicates which RRsets exist under the name and
identifies thenext existent name in the zone. An NSEC RR,
together with its signature, can prove the non-existence ofthe
queried data. In the example of Figure 2, four distinct names
exist in the zonefoo.com, and four NSEC RRs are created.
The NSEC RR athost.foo.comindicates that only an A RR
exists under this name, so it can be used to prove the non-
existence of an NS RR underhost.foo.com. It also shows that
nameserver.foo.comis the next name afterhost.foo.com, which
proves that the namemailserver.foo.comdoes not exist.

From a cryptographic standpoint, DNSSEC aims at a rather
moderate goal, the design should be simple, and the deploy-
ment should not be difficult either. However the reality shows
otherwise. The DNSSEC development efforts started in mid-
1990’s, and it took more than a decade and three rounds
of revisions to have the DNSSEC specifications finalized in
March 2005 [2], [4], [3]. Although some pilot DNSSEC
deployments are underway, e.g., efforts by VeriSign,.org,
.se and.br registrars, a number of issues remain open. The
goal of our study is to understand why it is so difficult to
add simple cryptographic protections to DNS, and what the
fundamental challenges are.

III. D ESIGN ISSUESWITH A H IERARCHICAL PKI

As we described in the previous section, DNSSEC builds
a Public-Key Infrastructure (PKI) by leveraging the existing
DNS delegation hierarchy. Specifically, each zone signs the
public keys of all its children zones. However this seemingly
simple PKI design ran into unforeseen problems when it was
implemented and started to be deployed. In this section we
show four specific examples of the problems encountered in

practice: scalability, handling data that crosses administrative
boundaries, coordination across these boundaries, and incre-
mental deployability.

A. Scaling

DNSSEC authenticates a zone’s public key by verifying a
corresponding signature from its parent zone. Throughout the
rest of this paper, we refer to this signature simply as the
parent’s signature. The choice of where to store this signature
has no impact on its cryptographic security. Following the
convention of storing the data and its associated signatures
in the same place, the first DNSSEC specifications [9], [8]
store both a zone’s public key and its parent’s signature in the
(child) zone.

However this straightforward design decision overlooked
one important factor: a DNS zone may have a large number of
child zones. For example the.comzone has tens of millions
of delegated children zones. With this design, whenever a
zone changes its key, it must contacteachof its child zones
to update the signatures for their public keys, a process that
is operationally infeasible for large delegation-centric zones,
such as.com, .org, .net, or .edu. In addition, a zone must
contact its parent to get an updated signature every time it
changes its public key, and the frequency of such update
requests at the parent zone also goes up linearly with the
number of children zones.

Subsequent DNSSEC specifications made two changes to
address the above mentioned scaling concerns. First, a new
Delegation Signer (DS) RR is defined to store the hash of
a child’s public keyat the parent zoneand is signed by the
parent key3. Thus whenever a zone changes its key, it can re-
sign all its children’s DS RRs storedlocally, without notifying
any of the children zones. A child zone stores its public key
in a DNSKEY RR, which is verified if the corresponding DS
RR’s signature can be verified by the parent’s public key.

The second change is to allow a zone to havemultiplepublic
keys; one is called the Key Signing Key or KSK (because its
only job is to sign other keys) and the rest are called the Zone
Signing Keys or ZSKs (because their job is to sign zone data),
as shown in Figure 3. The hash of the public part of KSK is
stored as a DS RR at the parent zone. The private part of KSK
is used to sign the DNSKEY RRset (which includes both the
KSK and the ZSKs). The ZSKs are used to sign the zone’s
data records, and these signatures are verified by first verifying
the zone’s KSK, which is then used to verify the signature
of DNSKEY RRset that contains the ZSKs, and finally the
ZSKs are used to verify the signature of the data. With this
separation of KSK from ZSK, a zone can change any of its
ZSKs locally, and contacts its parent to update the DS RR
only when its KSK changes. Because the KSK is used to sign
the DNSKEY RRset only, it can also be better protected (e.g.,
kept offline), and its vulnerability to cryptanalysis attacks is
reduced. For example, [13] recommends that a zone should
change its ZSKs once per month and its KSK once per year.

3The main motivation for storing a hash of a child’s public key, instead of
the key itself, is to save the storage overhead.
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From a cryptographic standpoint, both the original DNSSEC
specification, as documented in [9], [8], and the current
revision with the above two changes (i.e. storing a child’s DS
RR and its signature at parent zone and the separation of KSK
and ZSKs) give the same level of cryptographic protection.
From a system viewpoint, however, the two later changes
brought significant scalability improvement over the original
design and made it feasible to deploy.

B. Boundary Crossing: Unsigned DNS Data

In an ideal cryptographic design, all data should be signed to
assure authenticity and integrity. When applying cryptographic
protection to a distributed system, however, new issues arise
due to disjoint ownership of the data.

Because DNS is a distributed database that is managed by
different administrative domains, it provides a strict definition
of data ownership. Each RRset belongs to one, and only one,
zone, and each zone signs all its authoritative data, including
the DS RRs from all its children zones. However, as we
described in Section II, the NS RRs and glue A RRs of each
zone are stored inboth the local zone and the parent zone
so that DNS queries can perform a top-down lookup to find
the intended server. Since the NS and glue RRsets are defined
to be the child zone’s authoritative data, the DNSSEC design
left them unsignedin the parent zone. It is believed that the
authentication chain should provide sufficient protectionon the
delegation, thus leaving the NS and glue RRsets unsigned at
the parent zone causes no harm. For example, even if a man-in-
the-middle can forge a false delegation NS RR to mis-direct
DNS queries to a host of the attacker’s choice, the attacker
still cannot forge any DNS data in the child zone, because he
does not have the child’s private key to produce a verifiable
signature for any false data.

However, a thorough analysis shows otherwise. Consider
a scenario where an attacker obtained the private key of the
zonefoo.combut did not gain the control over the zone’s DNS
server: the attacker can forge a referral from.comand re-direct
the queries forfoo.comto a host of his choice. The forged
answers will be accepted by DNS resolvers as the attacker
knows foo.com’s private key. Had the.com zone signed the
delegation NS RRs, the attacker would not have been able to
forge a referral to re-direct the queries in the first place. This
example shows that letting the parent zone sign its children’s
delegation NS RRs can bring additional protection in case a
child’s private key is exposed. This signing can be readily
implemented with today’s DNS practices, since a child zone
is required to notify its parent of any changes in its name
servers (through mostly a manual process).

Cryptographic design decisions require thorough analysis
and good judgment to ensure both that all data gets protected
and that the original system constraints are not violated. In
the specific case of DNS delegation records, we believe the
judgment call should fall on the side of protecting critical
infrastructure records rather than mechanically adheringto
the data ownership rule. Fixing this flaw requires revising the
DNSSEC signing and verification rules to include the parent-
side NS and glue records. Although the data is owned by the
child zone, the handling is similar to that of DS RRs.

C. Cross-domain Coordination

As we discussed earlier, DNS maintains its name dele-
gation chains through coordinating NS and glue A records
between parent and child zones. Any changes made to these
records by a child zone must be promptly propagated to
the parent. However, because this coordination is done by
human operators and human actions are prone to errors, a
recent measurement study [26] shows that at least 15% of the
zones suffer from configuration errors across the child and
parent zone boundaries. Nevertheless, DNS can tolerate such
imperfect parent-child coordination through the redundancy in
DNS servers, and DNS name resolutions can succeed as long
as the parent knows at least one correct authoritative server
used by the child zone.

The cross-domain coordination required by DNSSEC is
more demanding, because each parent and child pair need to
coordinate not only DNS server changes but also periodic key
changes. A more fundamental difference in the coordination
is that DNS name resolution tolerates inconsistencies in NS
and glue A RRsets between the parent and child zones. The
delegation link works as long as the parent knows at least one
correct nameserver of the child, and the chance of success
increases when a child zone has more DNS servers. In contrast,
DNSSEC fails whenever an attacker breaks one public key
that matches the DS RR, thus having multiple DS RRs may
decrease the strength of cryptographic protection, ratherthan
increasing it.

There is no reason to believe that the DNSSEC deployment
will do a better job in keeping the DS RRs updated than
DNS has done in keeping NS and glue A RRs updated.
Providing operational guidelines may help reduce such errors
in cross-domain coordination, but human errors, especially in a
global scale system, are inevitable. Recently there have already
been evidences [1] that the uptake in DNSSEC adoption
has included an increase in DS-related misconfigurations. A
number of DNS monitoring tools and services have emerged to
check cross-domain configuration errors [25], and similar tools
such as [12] have begun to prove themselves as an integral
component in the DNSSEC deployment.

D. Incremental Deployability

At first glance, it seems a natural choice to leverage the ex-
isting DNS delegation hierarchy to build a PKI for DNSSEC.
Unfortunately this choice overlooks a fundamental constraint
in deploying any new function in a decentralized operational
system: the decision to deploy a new functions lies in the hands
of individual DNS domains, thus it can only be rolled out
incrementally over time, if it gets deployed at all. This reality
runs counter to the DNSSEC design because an authentication
chain from the root to a given zoneZ can only be formed
wheneveryancestor ofZ has deployed DNSSEC. Individual
zones cannot benefit from DNSSEC unless and until all of
their ancestors have also deployed DNSSEC.

Given DNS is a distributed system maintained by millions of
autonomous administrative domains, when individual domains
make independent decisions to turn on DNSSEC, the result is
multiple isolatedislands of security. An island of security is
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a subtree in the DNS hierarchy in which DNSSEC has been
deployed. The public key for the root of this subtree is called
a trust anchor [14]. Since the trust anchor KSK cannot be
verified by its parent zone which has not deployed DNSSEC,
other means are needed for resolvers to collect, verify, and
maintain the trust anchor KSKs. Unfortunately, the DNSSEC
design does not provide a mechanism for a resolver to obtain
the KSKs from a large number of DNSSEC islands in a secure
and scalable manner.

As DNSSEC is being slowly rolled out, a set of operational
guidelines have been developed. The current guidelines sug-
gest that each caching resolver be manually configured with
the trust anchor for each isolated DNSSEC island. Although
this manual configuration approach can work in a small scale,
its feasibility decreases as the size of the deployment base
increases. Because each caching resolver has to update its
configuration file whenever a trust anchor KSK changes, when
the deployment base grows, this approach will suffer from the
scalability problems in both the number of DNSSEC-capable
caching resolvers and the number of trust anchors.

A few proposals have been made to overcome the difficulty
of manually configuring all the trust anchors in all DNSSEC-
enabled caching resolvers [15], [17]. The basic idea is to
inter-connect the otherwise isolated DNSSEC islands through
cross-signing, in which the roots of different islands can sign
each other’s public keys to form a web of trust, similar
to the PGP model. However specifics and security analysis
of these proposals are missing. A more recent proposal,
DNSSEC Lookaside Verification (DLV), suggests to have a
zone’s public key signed by trusted authorities outside the
DNSSEC system, e.g., VeriSign or ISC. Overall, DNSSEC’s
lack of provisioning for incremental deployment has seriously
hindered its deployment, and all the attempts so far to retrofit
various patches into the original design are yet to be proven
effective. We believe that an effective solution to DNSSEC’s
incremental deployment can be taken from a distributed mon-
itoring framework. In Section VII we outline a proposal that
incorporates a number of advantages of other approaches, and
overcomes a number of their drawbacks as well.

IV. I MPACT OF DNS CACHES

Caching is a fundamental part of the DNS and affects both
the design and operation of DNSSEC. As discussed in Section
II, end hosts implement a minimalstub resolverthat directs
queries to a caching resolver. The caching resolver handles
all the complex functions of traversing the DNS hierarchy,
obtaining the requested data from authoritative servers, and
returning the responses to the stub resolver. Note that stubre-
solvers directly communicate with caches, but only indirectly
communicate with authoritative servers.

To understand the impact of caches, consider a problem
where Alice (the stub resolver) wants to authenticate data from
Bob (the nameserver), despite the actions of malicious player
Eve. However, Alice cannot directly communicate with Bob.
Instead Alice can only send messages to a fourth player, Carol,
who represents the cache. Carol may answer the question using
cached data thatCarol believes to be corrector may contact
Bob to obtain the answer.

Carol’s actions and policies have direct impact on Bob (the
nameserver). During normal operations, Bob may update data
and refresh signatures, change public keys, revoke public keys,
and so forth. But any change made by Bob is not immediately
visible to Alice. Alice may continue to receive cached data
from Carol long after Bob has replaced the data or the keys.
Sections IV-A and IV-B discuss how caching affects Bob’s
approach to key rollover and key revocation.

Carol’s actions and policies also have direct impact on Alice
(the stub resolver). If Carol fails to apply adequate security
policies, Eve can poison Carol’s cache with false data. Alice
may detect the cached data is invalid, but Alice does not
communicate directly with Bob to obtain the correct data.
Carol can also introduce problems by incorrectly rejecting
valid data. For example, an incorrect clock may cause Carol
to believe valid signatures have expired. In this case, Bob
has correctly signed a message and Alice could correctly
authenticate it, but Carol rejects the message and preventsit
from reaching Alice. Section IV-C examines such interplay
between the security policies at Alice (the stub resolver) and
Carol (the caching resolver).

Finally, the lifetime of cached data depends on a relative
Time To Live (TTL) value and fixed signature lifetime. Each
answer from Bob includes a TTL and Carol may cache for
the data for the next TTL seconds. Each signature from Bob
also includes a fixed expiration time and Carol should discard
the data after the expiration date. Section IV-D examines how
the TTL and expiration time interact; some combinations can
lead to update explosions at Bob.

A. Key Rollover

Best operational practices state that zones should not use
the same key pairs forever, and that the keys will need to
change over time. The objective of key rollover is to phase out
an old key and replace it with a new key, as part of routine
operational practices. Section III-A described the parent-child
coordination that is needed to admit the new key. However,
deleting the old DNSKEY RR (or DS RR in cases of KSK
rollover) from the nameservers does not remove it from the
system. It may continue to exist in the caches around the
Internet, and the old signatures generated by this key may
have also been cached. These cached entries are deleted only
after their TTLs or signatures expire.

Ignoring the effect of caching can break the authentication
chain. For example, a stub resolver may receive an old
signature from cache and query for the key to verify the
signature. If the caching resolver does not have the key and
the authoritative server replies with a new key, then the stub
resolver cannot authenticate the cached data and hence has to
reject it.

Operational guidelines [13] introduce a grace period for the
old key during the key rollover process. Consider the scenario
where a zone changes its KSK. The zone first adds the new
KSK to its DNSKEY RRset, but keeps the old KSK to preserve
the authentication chain. Eventually, the old DNSKEY RRsets
will time out (e.g., after one TTL), and every cache will either
have no DNSKEY RRset or have a DNSKEY RRset with both
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the old and the new KSK. At this point, the DS RR at the
parent is changed to match the new KSK. The authentication
chain is still preserved because any cache with the old DS RR
will match the old KSK and any cache with the new DS RR
will match the new KSK. Again the zone waits until all cached
DS RRs expire. At this point, all caches either have no DS RR
or have the new DS RR. The old KSK can now be removed
from the DNSKEY RRset, and the new authentication chain
through the new KSK/DS RR starts to take effect4.

A similar approach [30] uses multiple keys and multiple DS
records. In this approach, a zone can publish both anactive
KSK and astandbyKSK. Both KSKs have corresponding DS
records stored at the parent zone. In a key rollover, the active
KSK is retired, the stand-by KSK becomes active, and a new
KSK is added as the new standby KSK.

In addition to the intricacies of changing the zone keys,
operators also need to consider the possible need to evolve the
cryptographicalgorithmsin use, e.g., from RSA to GOST. The
processes governing such cryptographic algorithm rollover are
still not fully specified, but they will likely follow similar steps
used for key rollover.

B. Key Revocation

The single key rollover process from [13] (described above)
assumes that the old key is still secure during the rollover
period. It also assumes that the TTL value is honored and
an attacker is not actively trying to replay old information.
However in case of key compromise incidents (or suspected
compromise), referred to as “emergency key rollover” by [13],
prompt key revocationactions are needed. During the key
revocation period, the old private key is presumably known
by the attacker and may be used to forge records in the zone;
the attacker is also not constrained by the TTL in replaying
the old (compromised) public key. In fact, the attacker can
continue to replay the old key until the definitive expiration
time of the associated signature (e.g., the signature on theDS
RR for a KSK, or the signature on the DNSKEY RRset for
a ZSK) expires, which may take a few days or even a month
[13]. Until then, DNSSEC authentication in the zone and all
its descendant zones is essentially compromised. Ideally,one
would like to revoke the compromised key as soon as possible.

The multiple key rollover process from [30] uses both active
and standby keys. If only the active key is compromised, one
can revoke that key and immediately switch to the standby
key. Similarly, if only the standby key is compromised, one
can immediately revoke the standby key.

Unfortunately, the DNSSEC specifications did not provided
an explicit key revocation mechanism until the publicationof
[30] in late 2007, and currently the choice to implement this
new specification is left to individual zone operators5. In the
absence of universal key revocation support, regardless ofwhat
actions the zone operators take, an attacker can always replay
the compromised key and use it to successfully forge DNS

4ChangING a ZSK does not involve the parent zone, but similar reasoning
holds with respect to caches.

5Some notable TLDs, such as .com, have asserted that they do not intend
to implement RFC 5011.

records until its signature lifetime expires. It is stated in [13]
that “zone operators have to make a tradeoff if the abuse of
the compromised key is worse than having data in caches that
cannot be validated”.

C. Cache-Stub Verification Policies

In the current DNS, caching resolvers handle all the com-
plexities of traversing the DNS hierarchy and obtaining any
requested data. With the transition from DNS to DNSSEC,
a natural choice is for caching resolvers to handle the com-
plexities of building an authentication chain and verifying
all received data. However this approach presents a security
concern if the stub resolver does not trust the caching server.
For example, a user accessing the Internet from a hotel may
use a caching resolver offered by the hotel network. Although
the caching resolver may not be malicious, the user does not
know whether the caching resolver is configured with desired
trust anchors and security policies. Different configurations
may result in verification conflicts, namelyfalse negatives
when the caching resolver rejects answers that the stub resolver
considers valid, orfalse positivesthat the caching resolver
returns answers that would have been rejected by the stub
resolver.

To reduce the stub resolver’s dependency on the caching
resolver, DNSSEC allows a stub resolver to enforce its own
local policy through a Check Disabled (CD) bit in the query.
When a caching resolver receives a query with the CD bit
on, it should forward answers to the stub resolver without
performing verification. As such, the CD bit allows a stub
resolver to use the caching resolver solely as a DNS cache,
rather than a DNSSEC verifier. This addresses false negatives,
but false positives are more difficult to overcome. There is
currently no mechanism for a stub resolver to flush the cache at
a caching resolver. Once a caching resolver accepts an answer
as valid, that answer is entered in the cache. Even though
the stub resolver may consider the answer invalid, the caching
resolver will continue to return the same answer until the TTL
expires. The only way for the stub to obtain a different answer
is to use another caching resolver or directly resolve the query
itself.

DNS heavily relies on caching to reduce server load and
improve query resolving performance, with animplicit as-
sumption that stub resolvers trust whichever caching resolvers
they may default to. DNSSEC exposes this trust relationship
issue between stub and caching resolvers. Instead of using a
default caching resolver by the Internet connectivity provider,
as in the current practice, stub resolvers must now make an
explicit decision of either performing verification on its own,
which defeats DNS caching, or being configured to use a set
of trusted caching resolvers only.

D. Cache Synchronization

DNS caches rely on therelative TTL value in a RRset to
decide when to remove this RRset from cache. On the other
hand, DNSSEC puts adefinitiveexpiration timestamp in each
signature, beyond which the signature becomes invalid. To
support both TTL and signature lifetime, DNSSEC modifies
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the DNS caching rules as follows. A cache should discard a
RRset as soon aseither its TTL expiresor the companion
signature expires, which ever comes first.

However, this seemingly reasonable change can lead to syn-
chronized actions among caching resolvers. When a RRset’s
signature expires, all the caches that hold this RRset discard it
exactly at the same time. If the record is popular and frequently
queried, such as the case forcnn.comor google.com, these
caching resolvers are likely to fetch the RRset again more
or less simultaneously, leading to a query implosion at the
authoritative servers. We call this phenomena caused primarily
by the definitive signature expiration time thecache-sync
effect. Note that TTL expiration does not lead to this problem
because the fetching time of popular DNS names by different
caching resolves are likely different, thus their TTL expiration
time differs as well.

A DNSSEC operator is likely to sign and re-sign an entire
zone at the same time to minimize the operational overhead.
Consequently all the DNSSEC signatures are likely to be
assigned the same expiration time. This can further exacerbate
the cache-sync effect since all RRSIG RRsets of the zone will
expire simultaneously, leading to an instant high volume of
queries to the zone’s authoritative nameservers.

To quantify the impact of cache-sync effects, we develop a
simple analysis that considers a singleA RR served by one
authoritative server and fetched by multiple caching resolvers.
The queries are sent to each cache following a Poisson process
with an arrival rate ofλ, which represents the popularity of
the RR. We first analyze the average load at the authoritative
server. Because signature life time is typically orders of
magnitude longer than query inter-arrival time [13], we neglect
the signature lifetime and consider only the TTLs. It can be
easily seen that each cache sends queries at an average rate of

λ

1+λ·TTL
. Next we analyze the peak load at the authoritative

server by taking into account DNSSEC signature expiration.
When the signature expires, both the A RR and its RRSIG
are immediately deleted from all caches, and the next query
causes the cache to request the A RR from the authoritative
server. The peak outgoing query rate per cache is equal to the
incoming query rate, i.e.,λ. The impact of cache-sync effects
can be shown by the ratio between peak and average load as:

γ =
λ
λ

1+λ·TTL

= 1 + λ · TTL (1)

For example, if we assume the TTL value is 1 day and the
query rate (λ) is one per minute, the peak load would be 1380
times of the average. The cache-sync effect becomes more
pronounced with globally popular RRs, i.e., whenλ increases,
and with larger TTL values, because a large TTL lowers the
server load by more effective caching, but fails to suppressthe
queries upon signature expiration.

Such unintended synchronization behavior is not unique
to DNSSEC signature lifetime. A naive reliable multicast
design using either ACK or NAK can trigger an ACK (or
NAK) implosion at the source upon a successful delivery
(or a packet loss). It is well-known among the protocol
design community that protocol designs must avoid triggering
synchronized actions in large-scale distributed systems.We

hope this guideline will be followed by future cryptographic
designs as well.
Avoiding Cache Synchronization Recall that the caches
are synchronized when they simultaneously delete a RRset
upon its signature expiration. One can reduce cache-sync by
making the TTL of a RRset expires before the companion
signature. The DNSSEC operational guideline [13] requires
the zone operator to replace all signatures at least one TTL
before their expiration time. In practice, however, the cache
synchronization problem still exists. First, the zone operators
may ignore this guideline or accidentally forget to update
the signatures in time. Secondly, even when the operators
carefully follow the guideline, cache-sync effects may still
occur, e.g., when the authoritative servers are configured with
wrong clocks, or a network partitioning prevents a secondary
server from performing zone transfer from the master server.

A second line of defense against cache synchronization is
to performTTL trimmingat the caching resolver. Specifically,
when a caching resolver receives a RRset, it checks whether
the TTL or the signature expires first.LetTr denote the time
the RRset is received andTe denote the signature expiration
time. If Tr + TTL > Te (i.e., the signature expires first), the
caching resolver trims the TTL into a random value in the
range[0, Te − Tr]. This makes TTL expires at a random time
within the signature lifetime.

V. I MPACT OF HETEROGENEOUSOPERATIONS

Another important issue in DNSSEC operations is whether a
zone should keep its private keys online or offline. A DNSSEC
zone must ensure the secrecy of its private keys yet sign all
its authoritative RRsets using these keys. To this end, the
foremost operational concern is where to store the private keys
and which entity has access to them. In this section, we first
identify the fundamental conflict between the need to keep
keysonline, as required by signing dynamically generated or
changed data, and the desire to keep keysoffline for better
protection. We then examine two open issues resulted from this
conflict, namely authenticated denial of existence and secure
dynamic updates.

Ideally, one would prefer the offline key approach to better
protect the secrecy of the keys. In this approach, a zone stores
its private keys offline, e.g., in a non-networked and physically
secured computer called asigner. When the zone data needs
to be signed, the master server sends the zone data file to
the signer, which signs it using the private key, and sends
resulting signed zone file back to the master server. The master
server then sends this updated signed data to all the secondary
servers. Because the private keys are not accessible online, the
chance of their exposure is greatly reduced. For this reason, the
DNSSEC specification [4] recommends the practice of using
offline keys. However, offline keys make it difficult to sign
dynamic updates, it is infeasible to invoke the offline signer
every time a piece of new data needs to be signed. We will
further elaborate on this issue in Section V-A.

On the other hand, although keeping the private keys online
makes signing dynamic updates easy, it exposes the keys
to greater security threat in DNSSEC operations for two
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reasons. First and foremost, putting the private key online
at multiple DNS servers may impose high security risks.
In global DNS, each zone deploys redundant authoritative
servers, also calledsecondary servers. To maximize service
reliability, it is recommended that the redundant servers be
placed in topologically different locations, i.e., locations that
are managed by administrators other than the zone’s owner.
Therefore, keeping the keys online opens a large margin for
errors. Second, the compromise of a single private key may
incur a domino effect. In DNSSEC, the private key of a zone is
used not only to sign the DNS data in the zone but also to sign
the delegations of all the child zones. The compromise of one
zone’s key may cause chain effects leading to the compromise
of multiple DNS zones.

A. Handling Dynamic Updates

Dynamic DNS has become a popular practice due to the
widespread use of DHCP. When a host is allocated a new
IP address by DHCP, it needs to update itsA record. DNS
has adopted an automatic update mechanism which greatly
reduces the administrative burden in accommodating frequent
DNS data changes. In the future, dynamic DNS may also be
used to handle IP address changes caused by host mobility.
When a host moves to a new location and obtains a new IP
address, it can use the dynamic DNS update mechanism to
change itsA record.

A dynamic update may change several records in the zone,
including the updated RRset itself, the NSEC RRs under this
name and adjacent names, and the SOA RR6. All these new
records must be promptly signed. However, if the zone key is
kept offline, the DNS operator must be involved in invoking
the offline signer, which defeats the purpose of having an
automatic update mechanism in place. The current DNSSEC
specifications (see RFC 3833) acknowledges this conflict: “a
zone-signing key must be available to create signed RRsets
to place in the updated zone. The fact that this key must be
online (or at least available) is a potential security risk.” Note
that the resolution of this conflict is not a theoretical but an
operational issue, and only careful engineering can lead toa
sound solution in practice.

B. Authenticating Denial of Existence

The second challenge resulting from the different practices
of online and offline keys is authenticated denial of existence,
which requires DNSSEC to provide authenticated answers
to queries asking for nonexistent records. The online key
approach offers a straightforward solution to the problem.
When DNS answers with a “non-existent record” reply to a
query, the server can use the online key to construct and sign
the non-existence proof, but at the cost of keeping a zone’s
private keys online atall its name servers.

To avoid putting private keys online, the zone must construct
and sign the proofs of non-existencea priori. The NSEC
scheme in the latest DNSSEC specifications [3] (described

6A dynamic update may trigger a change to the zone serial number, which
is a part of the zone’s SOA RR.

in Section II) takes this approach. Unfortunately, it suffers
from the so-called “zone walking” problem, as one can easily
retrieve the complete list of records in a zone in the following
way. Consider an example offoo.comzone. One first queries
for the foo.comNSEC RR, and the answer reveals all record
types that are present at namefoo.com, as well as the next
name afterfoo.com. Suppose that thefoo.comNSEC record
lists a.foo.comas the next name. One then queries for the
a.foo.comNSEC RR to learn all types ata.foo.comand the
next name aftera.foo.com. By repeating the same step until
reaching the end of the zone, one retrieves the entire zone data
in the number of steps equal to the distinct names in the zone.
In addition to zone walking, the NSEC scheme also incurs
high cost as the addition of NSEC RRs roughly doubles the
zone file size, even when only a few RRs are signed at the
beginning. This initial overhead is particularly troublesome for
large delegation zones, such as .com, with millions of records.

A number of DNS operators raised concerns on this expo-
sure of privacy introduced by NSEC. In fact, the different
views on NSEC RR’s legitimacy created a road block in
DNSSEC development for a while. People who did not view
zone walking as an issue argued that, as an open database,
DNS does not, nor should it attempt to, protect the privacy of
data in a zone. However others felt strongly that, compared
to the current DNS, NSEC made it much easier to obtain the
entire zone data, which should be prevented for security and
legal reasons. For example, a complete zone file may be used
by the spammers as a source of probable e-mail addresses,
or by the scanners to infer the internal network topology and
services. Together with WHOIS queries, the complete zone
data can be used to reveal registrant data, the information that
may be protected under the law (e.g., in Europe).

The debate over NSEC ended with the recognition that,
to move DNSSEC forward, the design must accommodate
different requirements. One proposal to remove the privacy
concern is the minimally covered NSEC [32] scheme which
assumes the private key is online. When a server receives a
query for a non-existing name (QName), it generates and signs
a minimally covering NSEC RR. Theownerandnextnames in
this NSEC RR areQName−ǫ1 and QName+ǫ2, respectively,
whereǫ1 andǫ2 are two small, randomly chosen values such
that no existent names fall into this range7.

More recently NSEC3 [16] was proposed as another so-
lution to avoid zone walking without keeping private keys
online. It hashes all existent names and sorts these hash values,
as opposed to the original names, as a chain. It generates
an NSEC RR for each hop in the hash value chain, i.e, the
owner and next names in each NSEC RR are two adjacent
hash values. Thus, a signed NSEC RR in this design proves
that no name exists whose hash value falls into the specified
range. While it is still subject to dictionary attacks, the use
of hash chains, instead of name chains, makes zone walking
much more difficult. On the other hand, NSEC3 (as well as
NSEC) introduces significant protocol complexity, in termsof
both zone signing and response validation, due to the use of

7With online keys, a simpler design would be to directly sign the non-
existence replies. However, the minimally covered NSEC wasproposed for
compatibility with the NSEC scheme in the DNSSEC specifications [3].
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wildcards and the existence of unsigned delegations. It also
increases the size of the zone file because one NSEC3 record
and an accompanying signature are created for each name.

Perhaps one of the most direct concerns with NSEC3 is also
one of the most unforeseen: Path Maximum Transmission Unit
(PMTU) limitations. Prior work [24] has illustrated that over-
sized DNSKEY messages can exacerbate PMTU limitations
and lead to availability problems for zones. One of the
unforeseen side effects of NSEC3’s design is that its messages
can be as large as, and in some cases larger than, DNSKEY
messages. Thus, a zone that is trying to prove the denial of
existence for a name may generate a NSEC3 reply that cannot
be received by the querying resolver.

VI. DNSSEC MONITORING AND DEPLOYMENT STATUS

In this section, we use the results from the first DNSSEC
monitoring system, called SecSpider [12], to review the pre-
ceding discussions in the context of actual DNSSEC deploy-
ment. SecSpider is a distributed monitoring system that is-
sues the same DNSSEC queries simultaneously from multiple
polling locations (or pollers) distributed around the Internet.
The goal of SecSpider is to monitor certain important facets
of zones to test them for DNSSEC RFC compliance, to check
the zones’ operational statuses, and to observe the served
data from multiple diverse locations over time. By tracking
DNSSEC-specific records (e.g., DNSKEY sets) from multiple
locations and over time, SecSpider can detect Man-in-the-
Middle attacks that resolvers may fear. At the time of this
writing, SecSpider has installed pollers in America, Europe,
and Asia and is in the continuous process of adding more
locations.

As we mentioned previously, DNSSEC has been undergoing
its rollout phase for the last several years. Yet, it is still
in its nascent stages. Based on the latest monitoring results
from SecSpider, we estimate that there are only about 10,523
DNSSEC enabled zones operating in the wild. Furthermore,
the corpus of zones monitored includes both production zones
that represent operational entities who serve production data
and have opted to augment their DNS zones with DNSSEC
protection,and test zones who have rolled out DNSSEC in
some form of test capacity. Testing zones may have any
number of agendas for deploying DNSSEC, but in our loose
classification we attempt to identify and separate their behavior
from those zones which appear to be more operationally
attended to.

We perform a very simple test to determine if a zone is
a production zone or a test zone. This test is in no way
conclusive, but is used as a low-pass filter to get a general
sense of which zones operate in which capacity. For each
DNSSEC (or secure) zone in our corpus, we presume any Top-
Level Domain (such as.se, .br, .org, etc.) or any zone
under the.arpa TLD to be defined as a production zone. For
all other zones, we query to see if there is an active webserver
at awww recordor if there is anMX (or mail exchanger) record
that corresponds to an active mail server. If either of theseis
true for a zone we broadly classify it as a production zone.

As an example, this simple, automated, litmus test success-
fully distinguishes test zones like:
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Fig. 4. This Figure is drawn in log-log scale and shows the distribution of
the RRSIG lifetimes of RRsets in the production zones.
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from production zones likenanog.org.. Indeed, many of
the test zones undertake operational practices that would be
ill-advised for production zones. For example, the distribution
of RRSIG lifetimes for non-production differs from most pro-
duction zones. The RRSIG lifetime distribution of production
zones can be seen in Figure 4. Previous work has observed
that production zones and test zones behave very differently,
and separating out the latter from the former can allow for
much more precise analyses [24]. Based on this, each of the
following analyses are done using production zones only.

Based on the above classification, we currently estimate that
there are roughly 1000 production DNSSEC zones at the time
of this writing. While the size of DNSSEC deployment is still
quite small, many of the operational complexities may startto
reveal themselves to operators as the size grows.

The status of the DNSSEC hierarchy also indicates the
immaturity of the deployment. Currently SecSpider tracks
approximately 730 independent islands of security. The im-
plication of this statement is that each of these islands is a
secure zone whose parent has either not enabled DNSSEC,
or who does not currently have a valid DS record that
securely delegates to the island’s root. One can see that this
number represents 76.6% of the total number of secure zones.
Moreover, 97.5% of these islands are of size 1 (i.e. with
no secure parent or secure children). If a resolver were to
manually configure a trust anchor for each island of security,
it would have to manage rollovers, and churn for a list of
730 DNSKEY RRsets. While this number may be manageable
today, as the deployment size grows this process could quickly
become unrealistic.

In addition to the size of this trust anchor list, the admin-
istrative composition of these islands is interesting too.By
examining the specific nameservers that serve each zone in
an island we can generally estimate how many independent
administrative authorities make up an island. In other words,
by looking at which zones are served by the exact same
nameservers, we can guess how many zones in an island
belong to the same operational group, versus how many islands
are actually composed of independent parties that represent an
increasing adoption of DNSSEC. Figure 5 shows a selection
of some of the larger DNSSEC islands and compares their
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Fig. 5. This figure shows the size of several DNSSEC islands ofsecurity
in contrast to the apparent number of independent administrative domains for
each. Some islands of relatively large size appear to be run by a small number
of independent administrative domains, while other islands are more diverse.

RRSIG lifetime Average time of use of DNSKEY
0 - 30 days 83.20 days
31 - 60 days 209.19 days
> 30 days 156.76 days

TABLE I
THIS TABLE SHOWS THERRSIGLIFETIMES OF DNSKEY RRSETS

VERSUS THE ACTUAL AMOUNT OF TIME THESEDNSKEYS WERE SERVED.
MANY KEYS ARE RE-SIGNED MULTIPLE TIMES BEFORE BEING REPLACED.

sizes to the number of administrative domains that they are
composed of. One can see that some large DNSSEC islands
do not actually represent an increase in DNSSEC’s adoption.

It is important to distinguish a key’s lifetime from its
signature’s lifetime. More specifically, many DNSKEYs are re-
signed multiple times before being rolled over. Operators may
generate a key on one day, sign it every 30 days, and continue
to use the same key for years. Table I shows a breakdown of
observed keys lifetimes as compared to signature lifetimesof
DNSKEY RRsets.

VII. D ISCUSSION

So far we have scrutinized a number of operational issues
as DNSSEC rolls out from a simple cryptographic design
on paper to a deployed system in the Internet. We have
also witnessed how these operational issues, which largely
arise from the Internet’s large scale and heterogeneity, have
challenged, complicated, and sometimes even invalidated the
DNSSEC protocol design. In this section, we seek to unify
the otherwise piecewise analysis of individual problems and
provide aroot causeview on the challenges in deploying cryp-
tographic solutions in large-scale systems. We will also discuss
the importance of distributed monitoring and address two open
issues raised in previous sections: incremental deployment and
key revocation.

A. Why Is It So Difficult?

The aforementioned operational issues clearly reveal a fun-
damental gap between cryptographic designs and deployable
solutions in Internet-scale systems, which is often overlooked.

As the saying goes, “In theory, there is no difference between
theory and practice. But, in practice, there is.” [33] A crypto-
graphic design is normally considered successfully completed
when it is proven to meet the required cryptographic proper-
ties; specifics in its deployment are seen as having no impact
on the cryptographic correctness. To real Internet systems,
however, a cryptographically correct design is useless unless
it is deployable. Deployability on the existing DNS requires
the design to be scalable with large numbers of zones at any
level, to enable incremental rollout, to effectively co-exist with
DNS caching, and to tolerate the wide range of operational
heterogeneity that necessarily exists in the global Internet.

One fundamental challenge in operating DNSSEC is that
the system spans over tens of millions of independent admin-
istrative domains, while the provision of security, as defined in
DNSSEC, requires symphonic actions from all of them. Such a
cross-domain operational challenge manifests itself in several
aspects in DNSSEC. First, the public keys of different zones
are authenticated through a single hierarchical PKI. Any local
change in a zone’s public key may require synchronization
across administrative domains, because the new key must be
authenticated by the zone’s parent and used to authenticate
the zone’s children. This causes serious scaling issues forthe
domains that may have millions of children zones underneath
them. The coordination process is also lengthy and error-
prone as it involves human operators, yet any out-of-sync
configurations can break the chains of trust and disrupt the
DNS service due to authentication failure.

The hierarchical PKI also presents challenges to incremental
deployment, which is the only viable strategy to roll out any
new functions in Internet. The DNSSEC design had assumed
a systematic rollout from the top to the lower layers of the
DNS name hierarchy, and thus did not provision for individual
zones to turn on DNSSEC independently from their parents.
But the latter is the reality, and during this time, the PKI is
incomplete and there exist many isolated islands of DNSSEC-
deployed zones, which cannot authenticate their public keys
through the planned chains of trust, as each cannot demand
its parent zone to turn on DNSSEC. As such, letting all the
DNSSEC-aware resolvers securely acquire the public keys of
all these islands becomes a new problem of its own.

In addition, caching is a fundamental part of the DNS that
imposes a unique challenge to DNSSEC operations, setting
DNSSEC apart from other cryptographic designs. Due to the
existence of DNS caching, which often uses a long timeout
value to improve DNS scalability, changes to the public keysof
a zone will not be immediately visible to all resolvers. Rather,
the old keys will continue to be used by caching resolvers
all over the Internet until they run out their cache lifetime.
Handling the co-existence periods of old and new keys leads
to both the design complication and system vulnerability.

Lastly, zones in different administrative domains necessarily
operate with different practices. For example, some zones may
desire the privacy of their data due to legislative or security
concerns, while others may not. Some zones may prefer to
store the private keys offline for better protection, while others
may choose to store them online at the name servers and
protect the keys by other means, e.g., through the use of
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specialized hardware. Cryptographic designers may eitherbe
unaware of such heterogeneity in practice, or fully appreciate
the importance to accommodate the heterogeneity. That is
why the original specification of DNSSEC dictated a uniform
policy for all zones. It remains a design challenge to develop
a cryptographic protection system that can simultaneously
provide provable security while leaving the implementation
policies and flexibilities to individual zones operators.

B. Importance of Distributed Monitoring

Our DNSSEC monitoring efforts have exposed a number
of problems that only surfaced in actual deployments. First,
data in Internet systems is not always universally available.
Issues such transient failures, misconfigurations, and in par-
ticular roadblocks due to the existence of middleboxes are a
fact of life for these systems. Second, cryptographic opera-
tions represent a new challenge on their own, lack of basic
understanding and experience have led to additional errors
besides misconfigurations. Furthermore, our results confirmed
our analysis that the DNSSEC’s design assumptions are not
congruent with the common requirement that every party in the
Internet tends to make their own decision about whether/when
they may deploy new functions, or if deploy them at all;
the result is a large number of isolated DNSSEC islands that
simply does not scale.

Our monitoring results show that even in its early deploy-
ment stage, DNSSEC is a highly dynamic and a continuously
evolving system. Thus, its behaviors must be continuously
monitored to capture new failures and challenges. By mea-
suring one gets data and that can inform a system’s design,
by quantifying data one can decipher its meaning and gauge
the progress, and by monitoring one is able discover problems
as they arise so that designs can be revisited.

Our monitoring system also inspired us to develop a practi-
cal and effective solution to DNSSEC incremental deployment
problem, as we discuss next.

C. Facilitating Incremental Deployment

The incremental deployment of DNSSEC requires that, in
the absence of a PKI, a caching resolver find the public key of
each DNSSEC-enabled zone in a trustworthy way. We believe
that a distributed monitoring system, such asSecSpider[12],
can help fulfill this requirement.SecSpiderhas already made
available the collected keys from all the known DNSSEC
enabled zones. The remaining question is: how trustworthy
are these results?

First, SecSpideris a distributed monitoring system, which
makes it difficult for an adversary to compromise the results
collected by each of all the monitors that are diversely located,
assuming that the servers for each zone are also diversely
located. If any mismatch between the replies received from
different monitors is detected, instead of trying to determine
which one is correct, the repository will provide thecomplete
information to resolvers, allowing them to make an informed
decision on which trust anchor to use, perhaps through con-
sultation with additional information. An error will also be
logged for the repository administrator to take actions.

Second, each DNSSEC enabled zone can register itself with
SecSpider and periodically check the correctness of its own
public keys as displayed on SecSpider, and promptly inform
SecSpider of any discrepancies. We believe that each zone
would have strong incentives to do such checking, which
further increase the validity of SecSpider data.

Third, simple approaches exist to fetch SecSpider data
in a secure way. SecSpider’s public key is posted on its
website. SecSpider will also watch its own key from multiple
vantage points. Caching resolvers can get SecSpider’s public
key through either an offline secure channel, or simply grab
it from SecSpider website, perhaps through multiple diverse
lookup paths to minimize man-in-middle attacks. Caching
resolvers can then querySecSpider for the latest trust anchors
of any DNSSEC zone, and the authenticity and integrity of
SecSpider’s replies are ensured by its signatures.

The above proposed solution leverages the public nature of
the SecSpider repository to achievesecurity through publicity
[22]. Because data inSecSpider is available to everyone as
public knowledge, any errors are exposed to the affected zones
when they check their own keys periodically. Upon detectinga
trust anchor conflict, the zone owner can resolve it out-of-band
with the repository administrator.

We note that the trust anchor repository isnot meant to
be a replacement to DNSSEC’s PKI. Rather, its goal is to
serve as a readily deployable, and a complimentary, solution
to facilitate the incremental rollout of DNSSEC. When a parent
zone enables DNSSEC, its children can have their public
keys signed by the parent, and the parent may register with
the repository as a means, external to the DNSSEC PKI, to
advertise and authenticate its public key.

D. Addressing Key Revocation Problem

Whenever a zone’s private key is compromised, it must
immediatelyreplace the compromised key with a new one
to minimize any potential damage. The challenge is how to
revoke the old keys from all the caching resolvers that still
hold a copy of the old key. Problems may occur if a resolver
tries to use the old (compromised) key to verify a signature
generated by using the new key.

Two similar approaches have been proposed for explicitly
marking public keys as revoked. [30] adds arevoked flagto
the DNSKEY record itself; setting this bit to 1 indicates the
public key has been revoked. [23] creates a new REVKEY
record, similar to the DNSKEY record; if a public key appears
in a REVKEY record then the public key has been revoked.
Both mechanisms require self-signatures by the corresponding
private key. The self-signature ensures that a public key can
be revoked only by someone with access to the private key.

The revocation bit and REVKEY record allow an authori-
tative nameserver to declare a public key revoked, it remains
an open issue how to convey this information to caches that
might hold the data. Meanwhile an attacker may continue to
replay the old revoked key and signature. The REVKEY and/or
revoked bit are only effective if cache learns them.

Because a zone cannot know whether or where its data
may have been cached, we believe an effective key resolution
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solution should put the responsibility of tracking key status
on caching resolvers. The caching resolvers can handle such
abrupt key revocation by two techniques:periodic key re-
validation and on-demand data re-fetching. The basic ideas
are to let the caches actively synchronize with the zones about
their latest public keys, and to use the signature inceptiontime
as an implicit sequence number to arbitrate which keys should
be used.

1) Periodic key re-validation:For each public key in its
cache, a caching resolver can periodically re-fetch it fromthe
corresponding zone’s nameservers. If the newly returned key
set is different from the cached one and has a later inception
time on the signature, the resolver knows that the zone has
changed its keys. Given two public key sets that both have
valid signatures, the one whose signature has a more recent
inception time is more recent, hence should override the other.
Once the caching resolver decides to replace the cached public
keys with the newly fetched ones, it also deletes all cached data
and companion signatures that are signed by the old (revoked)
keys.

The signature inception time can also be used to resist replay
attacks, in which an adversary replays the revoked key to a
caching resolver. Upon detecting a key change, the caching
resolver stores the new key’s signature inception time until the
old key’s signature expires. This way, any attempt to replaythe
old key will be rejected, because either the old key has expired
or the cache knows a more recent inception time than the old
key. However, we note that key re-validation works only if the
attacker cannot intercept and modify on-the-fly traffic between
the caching resolver and the zone’s authoritative nameserver,
or the caching resolver may also consult SecSpider for further
validation.

2) On-demand data re-fetching:After a zone changes its
keys, a caching resolver will obtain its new keys at the next
periodic checking. However, before that, the stub resolvers be-
hind the cache may experience temporary failures in resolving
a name in this zone, because the cache does not have the
public keys that are needed to verify the cached signatures,
as we elaborated in Section IV-A. To address this problem,
we enhance the caching resolver with a new capability as
follows. When it sends a reply to a stub resolver, it checks
whether it has stored the public key that is required to verifying
the returned signature. If not, it will query the corresponding
zones for the missing public key. If it cannot fetch the specific
key from the authoritative nameservers, it deletes the dataand
signatures in question and re-fetch them from the authoritative
nameservers. This way, it can guarantee that whenever it
returns a signature, it always has the corresponding public
key to verify the signature.

Techniques have been proposed to improve the re-fetching
and signal that new data is available. For example, [23] aug-
ments the RRSIG inception/expiration values with a numerical
lease(a number that is based on the zone’s SOA serial number)
that compliments the lifetime. The lease simply adds a notion
that indicates if the zone has not changed its state much
since the signature was generated, then resolvers may use
the RRSIG’s lifetime. If, however, the zone’s state (serial
number) has transitioned, and exceeded the lease specified

by the signature, the record must be flushed from the cache
and re-fetched and the resolver should query the zone for any
REVKEYs or keys with the revoked bit set.

For example, suppose on April 28th target.sec’s SOA
serial number were 2008042801 and an operators (Bob) signed
the zone’s records with a expiration date of May 5th, 2008 and
a lease of 2009042801. If a day laterBobwished to revoke the
zone’s key, he would simply create a REVKEY and increase
the zone’s SOA serial to something large, such as 4155526449
(current serial number +231). This signals caches that a key
revocation may be in progress, and they can then request the
REVKEY for target.sec and verify this is indeed the case.

E. Handling Dynamic Update

In order to sign the dynamically updated records, some keys
must be kept online. However, storing the zone’s private key
online poses excessive security risks for the zone as well asits
descendants. To address this dilemma, we propose azone split
technique to minimize potential damages by the compromise
of online keys.

Since offline keys provide stronger key protection and online
keys are needed for signing dynamic data, we suggest a hybrid
approach of utilizing both. Assuming a zone can differentiate
the manually updated and the dynamically updated records,
it can create a subzone and place all dynamically updated
records in this subzone, which we call thedynamic subzone.
After the zone is split, the private key of the original zone is
kept offline, while the private key of the dynamic subzone is
kept online at the master server to sign dynamic data.

Note that the hosts do not need to be explicitly re-
named to reflect the zone split. Consider the example of
the zonefoo.comand its dynamic subzonedyn.foo.com. A
host host.foo.comwith a dynamically updatedA record can
keep its current name, and add an alias name in the zone:
host.foo.com CNAME host.dyn.foo.com. The use of such alias
names keeps the canonical names stable yet accommodates
dynamic updates through one level of indirection. In our
example, the namehost.foo.comis stable, while its associated
IP address is changed indirectly through the updates to theA

record ofhost.dyn.foo.com. As such, the hosts can keep their
old names despite the zone split.

Zone split can achieve the best of both online and offline
keys. Since the private key for the dynamic subzone is online,
the master nameserver can directly sign the new records after
it receives a dynamic update. On the other hand, the security
risk of this online key being compromised is minimized. An
attacker having access to this online key can forge any records
in the dynamic subzone, but he cannot compromise the original
zone. This effectively prevents the cascaded damage to the
zone’s descendants because the delegation records of NS and
DS RRs cannot be dynamically updated [31], thus must be
placed in the original zone.

VIII. R ELATED WORK

Since the seminal work of [6], DNS security has attracted
much attention in both research and operation communities.
In response to the ever increasing importance of DNS yet its
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vulnerabilities to security attacks, IETF has chartered the DNS
Extensions (dnsext) Working Group to lead the development
of DNSSEC in the past decade. To date, a number of DNSSEC
related specifications have been published by IETF. The list
includes, but is not limited to, [9], [8], [5], [13]. After years
of developments and several rounds of protocol revision, the
current set of DNSSEC specifications [2], [4], [3] is believed
to be relatively stable and mature, although some aspects ofthe
DNSSEC design continue to evolve [16], [32], [29], [22], [23].
A comprehensive list of DNSSEC documents are maintained
on the website http://www.dnssec.net.

However, most of these DNSSEC specifications focus on
what has been done, rather thanwhy we have been doing it.
Each of them documents some specific designs for solving
individual problem that has manifested as the system evolves.
Yet many of the rationales and insights behind these effortsare
missing from the public archives, except for those comments
loosely documented in the IETF mailing list. In contrast,
this paper is the first effort to systematically document the
DNSSEC design and deployment issues and classify them in
a unified framework. Our study shows that many of these
issues are related to each other and can be traced back to
a few fundamental properties of the DNS as a large-scale,
distributed system. These insights also enable us to propose
several practical techniques that can facilitate the DNSSEC
rollout and operations.

In a broader context, our case study on DNSSEC reveals
that a sound and simple cryptographic design can be very
difficult to deploy in a large-scale system. Such a gap between
cryptography designs and secure systems has long been rec-
ognized [28]. In fact, while we focus on operational issues in
this paper, it is shown in [28] that a security system also faces
non-trivial challenges in terms of implementation, usability
and application integration. However, there is no case study
in [28] that illustrates and analyzes these challenges through
concrete examples.

Another work directly related to ours is a previous study
on the deployment of a large-scale PKI for the United States
Department of Defense [20]. Many of the observations in [20]
are also applicable in DNSSEC, e.g., the lack of motivation for
kicking off the adoption, system maintenance and personnel
training. In particular, it shows that key revocation is oneof
the biggest technical challenges in the PKI deployment and,
as a result, the system migrated from the CRL approach to the
online query (OCSP) approach. We made similar observation
that key revocation is one fundamental challenge in DNSSEC.

IX. CONCLUDING REMARKS

It is well known that “security mechanisms are not magic
pixie dust that can be sprinkled over completed protocols”
[7], and our study serves as a concrete evidence – a simple
cryptographic design can face multiple grand challenges when
applied to an Internet-scale operational system. While cryp-
tography is widely recognized as a powerful tool for securing
the Internet, the exercise of adding cryptographic protection
into DNS has proven to be more challenging than anyone had
expected. Even in hindsight, the setbacks in the early stages

of DNSSEC design are probably inevitable, as DNSSEC is
perhaps the first attempt to apply cryptography to an Internet-
scale system and the practical challenges in this endeavor were
only learned in hard ways. In the process of identifying these
challenges, we have also articulated a short list of lessons
learned, which we hope would prove useful to future designs
of cryptographic protection for other Internet-scale systems.

Lesson 1: Design for scalability. One lesson repeatedly
observed is that the growth of new technologies or applications
tends to be grossly underestimated. A cryptographic design
must take great care about operational feasibility as the size
of a distributed system grows. The original DNSSEC design’s
decision of putting the parent’s signature of each child zone’s
public key in the child domain can serve as a thought-
provoking lesson. The placement of the signature does not
affect the cryptographic correctness, yet it can have profound
impact on the required coordination among a large number of
administrative domains when a parent zone changes its key.

Lesson 2: Design for heterogeneity. The Internet has no cen-
tralized authority. As a direct consequence, different adminis-
trative domains tend to operate with different practices based
on their own judgment regarding the best engineering tradeoff.
Cryptographic designers can hardly foresee or arbitrate how
the system is implemented or operated. Thus the design should
accommodate different practices. For example, the DNSSEC
design should not mandate keeping the private keys either
online or offline. Instead the design should offer alternatives
with operational guidelines to explain the necessary precaution
and potential consequence of each practice.

Lesson 3: Design for incremental deployment. Incremental
deployment is a fundamental requirement for rolling out
any new functions in the Internet. Because the Internet is
collectively operated by a large number of independent admin-
istrative domains, individual parties make their own decisions
regarding when to deploy a new function, or whether to
deploy it at all, based on their perceived gains and cost. No
cryptographic design should rely on universal deployment at
once, or in any specific order.

Lesson 4: Design for imperfect operations. A large-scale
distributed system does not operate in a perfect manner.
Rather, inconsistencies, errors and failures exist all thetime.
A cryptographic design must strive to preserve its protection
despite imperfect operations. For example, in an ideal case,
a zone’s private key should be carefully protected and kept
secret. However, it is inevitable that the administrators may
make mistakes that may lead to the private key being exposed.
Thus, one should design to minimize potential damages of im-
perfect operations, and design to promptly detect and recover
from imperfect operations (e.g., fast key revocation).

One typical place where imperfect operations happen re-
peatedly is the coordination across administrative domains,
thus a cryptographic design should minimize such cross-
domain coordination. The evolution of the DNSSEC PKI can
serve as a good example. Design changes were made to avoid
coordination between a zone and all of its children upon a key
change by introducing DS RR, which reduces coordination
required between zones. Changes were also made to reduce
the frequency of key changes by splitting KSK and ZSK.
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Lesson 5: Design with monitoring as an integral compo-
nent. Generally speaking, cryptographic designs for a dis-
tributed system require strictly defined operations and coor-
dination among all the components. This directly contradicts
the reality of necessarily imperfect operations in an Internet-
scale system. Our experience with running SecSpider over the
last three years shows that distributed monitoring can be an
effective means to observe various operational states and detect
possible inconsistencies and errors, thus monitoring should be
incorporated as an integral part in the cryptographic design.
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