
Universal IP multicast delivery

Beichuan Zhang a,*, Wenjie Wang b, Sugih Jamin b, Daniel Massey c,
Lixia Zhang d

a Computer Science Department, University of Arizona, Tucson, AZ 85721-0077, USA
b EECS Department, University of Michigan, Ann Arbor, MI 48109-2122, USA

c Computer Science Department, Colorado State University, Fort Collins, CO 80523-1873, USA
d Computer Science Department, UCLA, Los Angeles, CA 90095-1596, USA

Available online 2 September 2005

Abstract

A ubiquitous and efficient multicast data delivery service is essential to the success of large-scale group communica-
tion applications. The original IP multicast design is to enhance network routers with multicast capability [S. Deering,
D. Cheriton, Multicast routing in datagram internetworks and extended LANs, ACM Transactions on Computer Sys-
tems 8(2) (1990) 85–110]. This approach can achieve great transmission efficiency and performance but also poses a
critical dependency on universal deployment. A different approach, overlay multicast, moves multicast functionality
to end hosts, thereby removing the dependency on router deployment, albeit at the cost of noticeable performance pen-
alty compared to IP multicast. In this paper we present the Universal Multicast (UM) framework, along with a set of
mechanisms and protocols, to provide ubiquitous multicast delivery service on the Internet. Our design can fully utilize
native IP multicast wherever it is available, and automatically build unicast tunnels to connect IP Multicast ‘‘islands’’ to
form an overall multicast overlay. The UM design consists of three major components: an overlay multicast protocol
(HMTP) for inter-island routing, an intra-island multicast management protocol (HGMP) to glue overlay multicast
and native IP multicast together, and a daemon program to implement the functionality at hosts. In addition to per-
formance evaluation through simulations, we have also implemented parts of the UM framework. Our prototype imple-
mentation has been used to broadcast several workshops and the ACM SIGCOMM 2004 conference live on the
Internet. We present some statistics collected during the live broadcast and describe mechanisms we adopted to support
end hosts behind Network Address Translation (NAT) gateways and firewalls.
! 2005 Elsevier B.V. All rights reserved.

Keywords: IP multicast; End-host multicast; Overlay multicast

1389-1286/$ - see front matter ! 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2005.07.016

* Corresponding author.
E-mail addresses: bzhang@cs.arizona.edu (B. Zhang), wenjiew@eecs.umich.edu (W. Wang), jamin@eecs.umich.edu (S. Jamin),

massey@cs.colostate.edu (D. Massey), lixia@cs.ucla.edu (L. Zhang).

Computer Networks 50 (2006) 781–806

www.elsevier.com/locate/comnet



1. Introduction

IP multicast [16] is designed to provide efficient
and high performance data delivery to potentially
large numbers of receivers. However, its deploy-
ment not only requires router support from all Inter-
net service providers, but also raises new issues and
challenges in network control and management. As
a result, the full deployment of IPmulticast has been
long in coming. Although alternate approaches
(e.g., [36,29,40,14,19]) have been proposed to sim-
plify IP multicast implementation and alleviate the
management issues, they do not remove the router
dependency. Today!s Internet only has spotted IP
multicast deployment within local area networks,
at individual campuses, and by a handful of service
providers. Lack of ubiquitous IP multicast support
in today!s Internet hinders the development of mul-
ticast applications, which in turn reduces incentives
for IP multicast deployment.

In response to the slow deployment of IP multi-
cast, a number of application-layer multicast
mechanisms have been developed. We can sort
these mechanisms into two categories: end-host
multicast and multicast server overlay. In end-host
multicast, group members (usually end-hosts) are
organized to replicate and forward packets to each
other, without any reliance on router support.
However this approach incurs performance penal-
ties because, depending on the locations of individ-
ual hosts, packets are likely to travel along
sub-optimal paths, and packets may traverse the
same links multiple times. Furthermore, since
end-hosts are owned by individual users, they are
less stable and less trustworthy than routers. In
multicast server overlay, dedicated servers need to
be placed over the Internet by application service
providers. These servers receive packets from the
data source and forward them to individual receiv-
ers via unicast delivery. Multicast server overlay
can provide better performance and stability, at
the expense of deployability. None of these ap-
proaches makes use of native IP multicast delivery
that is available in multicast-enabled islands which
widely exist, including enterprise networks, campus
networks, or last hop Ethernet connectivity.

In this paper we propose the Universal Multi-
cast (UM) framework and its associated set of

mechanisms and protocols. Our goal is to provide
ubiquitous multicast delivery service and to utilize
IP multicast wherever it is available. UM offers
scalable and efficient end-host multicast support
in places where native IP multicast does not exist,
and incorporates various infrastructure multicast
support automatically. This approach enables
ubiquitous multicast delivery service immediately,
thus breaking the deadlock between application
development and network deployment. At the
same time, it utilizes existing multicast infrastruc-
ture support to improve both end-user perfor-
mance and bandwidth usage efficiency, thus
encouraging further infrastructure support deploy-
ment where such support provides benefit. Instead
of debating whether the Internet infrastructure
would, or should, deploy IP multicast support,
UM simply takes advantages from existing sup-
port and leaves the final decision to the need of
applications and service providers as the Internet
evolves. In addition, although this paper presents
a specific end-host multicast protocol, the UM
framework does not rely on any specific end-host
multicast protocol or IP multicast routing proto-
col. As both end-host multicast and network
multicast are in constant development and
deployment, protocol independence gives UM
great flexibility to accommodate different net-
work environments and new protocols in the
future.

Our partial prototype implementation of the
UM framework has been used to broadcast several
workshops and the ACM SIGCOMM 2004 con-
ference live on the Internet. Quite unexpectedly,
a major stumbling block we had to overcome in
rolling out a universal multicast framework turned
out to be supporting hosts behind firewalls and
Network Address Translation (NAT) gateways
[17]. We call such hosts guarded hosts. We also
did not fully appreciate the large and increasing
number of hosts whose access links have asymmet-
ric bandwidths. Supporting both guarded hosts
and hosts with asymmetric bandwidths led us to
augment our multicast tree building protocol with
various network measurement and topology con-
straint detection mechanisms. One lesson learned
is that overlay multicast protocols must take into
account whether a host is a guarded host or one

782 B. Zhang et al. / Computer Networks 50 (2006) 781–806



with asymmetric bandwidth when building multi-
cast trees or meshes.

The rest of the paper is structured as follows.
Section 2 describes the overall architecture and
system components, Section 3 presents a simple
and scalable end-host multicast protocol, HMTP,
and Section 4 presents a management protocol
that glues end-host multicast and native IP multi-
cast together. Section 5 describes our prototype
implementation and live broadcasting experiments
on the Internet. We discuss related work in Section
6, and conclude in Section 7.

2. Overview

Like IP multicast, Universal Multicast is not
made of a single protocol but a set of components
at various levels. Fig. 1 shows a sample UM group
illustrating the architecture. In UM!s view, the
Internet is composed of multiple IP-multicast-en-
abled ‘‘islands’’, which are separated by unicast-
only routers. Every group member runs a daemon
program (Agent) in user space to provide the UM
functionality. Of each multicast group, one or
more group members in each island are elected
as designated members (DM) which build dynamic
unicast tunnels connecting to other islands. Appli-
cation data are transmitted via native IP multicast
inside islands and encapsulated in unicast packets
to flow through tunnels from one island to an-
other. The current UM design focuses on provid-
ing the best-effort multicast data delivery service
on the Internet. As demonstrated in our real-world
experiments, it is also important to consider the
quality of service for applications. Adding QoS

support will be a major future work in the UM
architecture.

2.1. Island

An island is a network of any size that supports
IP multicast. It can be as large as a network with
multiple domains (e.g., the MBone), or as small
as a single host. If a host is totally isolated from
IP multicast connectivity, it is an island by itself.
An island!s boundary does not need explicit con-
figuration; it is simply the furthest extent that an
IP multicast packet can reach in the network. If
administrators enable more IP multicast routers,
the island boundary will automatically expand
accordingly as IP multicast packets reach a wider
area.

2.2. Designated member

Of each multicast group, one or more members
are automatically elected as designated members
(DM) in each participating island. A DM!s main
tasks are running an end-host multicast routing
protocol to build inter-island tunnels to reach
DMs in other islands, and forwarding packets in
and out of the island on behalf of the group. When
there are multiple DMs in the same island, coordi-
nation is needed among them.

2.3. Rendezvous point (UMRP)

UM uses a ‘‘rendezvous point’’ to achieve the
goal of dynamic group membership support. Each
group has a rendezvous point, called universal
multicast rendezvous point (UMRP), whose main
purpose is to help a new DM join the inter-island
overlay. UMRP keeps information of which end-
host multicast protocol the group is using, and
corresponding protocol-specific information. A
new DM queries the UMRP first to learn the rout-
ing protocol and its parameters. It then runs the
protocol to join the inter-island overlay. UMRP
is only used to bootstrap new DMs; it is not in-
volved in subsequent overlay construction or data
packet forwarding, thus its location has no impact
on the performance of data delivery. One UMRP
can serve multiple multicast groups. It can be a

IP Multicast Island

Unicast TunnelDesignated Member

Multicast Router

Host

DM

DM
DM

UMRP

Rendezvous Point

Normal Member

Host

Host

Fig. 1. Universal multicast architecture.

B. Zhang et al. / Computer Networks 50 (2006) 781–806 783



normal end host, a dedicated server, or a cluster of
servers. Failure of UMRP prevents new DMs from
joining the inter-island overlay, but does not affect
data dissemination among existing islands. For
important groups, UMRP!s reliability can be im-
proved by adding some redundancy.

2.4. Group identifier (GID)

Since the current Internet lacks a global address
allocation scheme for multicast, we cannot simply
use traditional class D IP addresses to identify
groups. Instead, UM uses the combination of
UMRP!s unicast IP address and a 32-bit group
number as the group identifier, called GID. The
group number is assigned by UMRP upon the cre-
ation of the group and is unique among all groups
served by the same UMRP. Therefore, GID can
uniquely identify a group globally. If a user-
friendly group name is used in place of the group
number, UMRP will be responsible for resolving
group name to group number. The GID is obtained
off-line by users or applications, and passed to the
multicast application to join the group. For exam-
ple, to join a UM group named forest.cs.ucla.edu/
mytalk, applications will use DNS to resolve the
UMRP forest.cs.ucla.edu to 131.179.96.162, and
then contact the UMRP to resolve the group name
mytalk to a group number 1234. Thus the GID is
131.179.96.162/1234. It is then used in both data
packet and routing packet header to identify the
group.

2.5. Local multicast groups

Though GID uniquely identifies a UM group,
IP multicast enabled applications, operating sys-
tems and routers only understand class D IP ad-
dresses. Within each island we use native IP
multicast groups for multicast delivery. For each
UM group, every island with active group mem-
bers will have three local IP multicast groups:
DATA_GROUP for transmitting data packets,
ASSERTION_GROUP for electing DMs, and
DM_GROUP for coordinating multiple DMs.
These local groups are created by the DM in each
island using any address allocation scheme avail-
able in the island. Local multicast groups of one is-

land are totally independent from those of other
islands. The mapping between a GID and the cor-
responding three local groups is done by the Group
Directory. Similar to the multicast session direc-
tory [26], the Group Directory is a well-known
IP multicast address plus a well-known port num-
ber. In each island, the DM multicasts the map-
ping information to this special group, and other
members can tune in to learn the mapping
information.

The key difference between the MBone and UM
is that the former is manually configured and man-
aged by network administrators, while the latter is
fully self-organized by end hosts. We designed two
protocols to accomplish this: host multicast tree
protocol (HMTP) (Section 3) for dynamically
establishing/removing tunnels, and host group
management protocol (HGMP) (Section 4) for
automatically electing and coordinating DMs.

3. Host multicast tree protocol (HMTP)

Existing end-host multicast protocols can be
categorized into tree-based and mesh-based proto-
cols by the type of overlay they build. A tree is an
overlay where there is a single path between any
node pair, while a mesh may support more than
one path between any node pair. BTP [28], TBCP
[33], and Yoid [21] are examples of tree-based pro-
tocols; Narada [12] and Hypercast [31] are exam-
ples of mesh-based protocols. A mesh makes use
of more overlay links; thus it can provide shorter
end-to-end delay. However, it incurs more routing
overhead and requires that each node maintain
more routing states. HMTP is a tree-based end-
host multicast protocol, which builds an efficient
and scalable group-shared tree for multicast deliv-
ery. If there is a need for shorter end-to-end delay,
as [43] has shown, a mesh can be ‘‘grown’’ on top
of HMTP tree by adding some additional overlay
links.

To reduce routing inefficiency, an overlay
should be congruent to the underlying network
topology to the furthest extent possible. In our de-
sign, however, we assume that members have no
knowledge of the underlying physical network.
While tools such as traceroute are available

784 B. Zhang et al. / Computer Networks 50 (2006) 781–806



for discovering such information, they are usually
not very dependable because intermediate routers
could block their probes. Furthermore, running
such tools prior to data delivery may take longer
than the data delivery time itself. Hence without
knowing the underlying physical network topol-
ogy, end-hosts use end-to-end measurements of
some network properties to serve as distance met-
ric. Currently we use member-to-member round-
trip time (rtt) as the only distance metric in tree
building. End-hosts can obtain rtt estimates by ac-
tively probing other hosts, querying distance ser-
vices like IDMaps [23], or calculating from node
coordinates [35,15], etc. In the future we may
add bottleneck bandwidth as a second metric.

3.1. Protocol design

3.1.1. Join
So as to reduce the total cost of the tree and to

maintain a maximum degree constraint at every
host, HMTP tries to cluster nearby members to-
gether. The simplest way to achieve such clustering
would be to let each newmember1 choose as its par-
ent an existing member closest to it. This simple
scheme, however, requires someone to maintain a
list of all group members. Such a list is not neces-
sary if each new member chooses as its parent only
the closest from a random subset of existing mem-
bers. A tree so generated, however, will have a very
random (and most likely grossly sub-optimal)
structure. In HMTP we define some rules to gener-
ate a partial list of existing members. The rules en-
sure that when a new member joins the tree by
choosing the closest member from this list as its
parent, the resulting tree will not be totally random.

In Fig. 2, node H is a newcomer joining a
group. It knows of the group!s UMRP from the
group!s GID. By querying the UMRP, it learns
that node A is the root of the tree. H sets A as
its potential parent and asks A for a list of A!s chil-
dren. From the list of A and A!s children, H picks
the closest one, in this case D, as a new potential
parent. H repeats this process and finds the next

potential parent, F. In the next iteration, H finds
that the new potential parent remains F. So H at-
tempts to make F its parent by sending a join re-
quest to F. It is the potential parent who decides
whether to accept a join request, based on its pol-
icy, bandwidth, traffic load, etc. If F rejects H!s re-
quest, H marks F as invalid and goes back up one
level and resumes the search for a parent. It even-
tually finds G. The detail algorithm is described in
Fig. 3. A node normally is configured with a max-
imum degree constraint to prevent it from accept-
ing too many children. It is not a protocol design
parameter, but a tunable factor based on each
individual node!s bandwidth. Larger maximum
node degree makes the tree structure more com-
pact, thus shortening the delay, but it requires
more bandwidth for the application.

To summarize, a newcomer tries to find a good
parent by searching a small part of the tree. It
stops when it reaches a leaf node, or a node that
is closer than all its neighbors. The algorithm
scales to the number of group members. It does
not guarantee that the parent chosen is the nearest
one among all members; however, since all mem-
bers follow the same rule, the distance information
is encoded into the tree structure and should help
every newcomer. For example, two nearby hosts
will have similar delay to other hosts, so they are
likely to make the same decision at each step.
When one of them joins the tree, it may not choose
the nearest existing member. But when the second
one joins, it probably will choose the first one as its
parent. Therefore nearby members are more likely
to be clustered together.

Clustering nearby members makes the tree
structure congruent to the network topology to

1 In UM, only designated members participate in tree
construction and maintenance. In this section, we use ‘‘mem-
ber’’ to mean ‘‘designated member’’ for ease of exposition.

Fig. 2. H joins a tree consisting of A–G.

B. Zhang et al. / Computer Networks 50 (2006) 781–806 785



the first order. Links with large latency will be tra-
versed fewer times. Members behind such links
(e.g., members on dial-up lines) are likely to be
pushed to the edges of the tree. Given the same
set of members but different join sequences, the
protocol will produce different trees. However,
with periodic tree improvement (Section 3.1.4)
run by every member, these trees will eventually
converge to some stable structures that have simi-
lar gross qualities. For example, if a group has a
dial-up host with large last-hop delay, and some
other well-connected hosts with relatively short de-
lay, the well-connected hosts should form the core
of the tree and the dial-up host will connect to the
core by a single link after the tree stabilizes,
regardless of the members! join order. Even if the
dial-up host is the first member to join the tree
and becomes the root, the shape of the resulting
tree should be similar with similar gross quality.
This is confirmed by our simulations with random
join sequences.

3.1.2. Maintenance
States in HMTP are refreshed by periodic mes-

sage exchanges between neighbors. Every child
sends REFRESH messages to its parent. The par-
ent replies by sending back PATH messages. From
the root of the tree to each member, there is only
one, loop-free path along the tree. The member list
of this path is called the root path. The PATH mes-
sage sent by the parent contains the root path of
the parent. By appending itself to its parent!s root

path, a member constructs its own root path.
Every member must maintain the freshness of its
list of children and its root path. The root sends
REFRESH messages to UMRP, so that UMRP
always knows who is the current root.

3.1.3. Leave
When a member leaves a group, it notifies its

parent and children. Its parent simply deletes the
leaving member from its children list. It is the leav-
ing member!s children!s responsibility to find new
parents. A child looks for a new parent by running
the join algorithm in reverse order (Fig. 4). If the
root is leaving, its children contact UMRP after
a random delay. The first member to contact
UMRP will be assigned as the new root.

3.1.4. Improvement
As network conditions and group membership

change over time, members may need to restruc-
ture the tree, by switching to new parents, to im-
prove performance. Parent switching in HMTP is
done by periodically re-running the join procedure
(Fig. 3). To reduce not only the workload of mem-
bers near the root, but also the time needed to
complete tree restructuring, members do not start
the re-joining procedure from the root, but from
a randomly picked node in their root paths. Fur-
thermore, in step 4 of the re-join procedure, a
member other than the closest one could be picked
as the next potential parent. This will allow mem-
bers to explore other branches of the tree for a

Fig. 3. Join algorithm.

Fig. 4. Repair algorithm.

786 B. Zhang et al. / Computer Networks 50 (2006) 781–806



better parent. After finding a new parent, a mem-
ber may switch to it if the new parent is closer than
the current one.

Periodically running tree improvement raises a
stability concern. The fundamental trade-off is be-
tween keeping the tree structure stable and adapt-
ing it to the changing network environment. In
HMTP, tree improvement runs every several min-
utes. The actual frequency varies for each member.
A member that already has a close parent can run
tree improvement less often. We also enforce a
threshold on delay gain in triggering a parent
switch. This can avoid oscillation caused by tran-
sient network changes. After the parent switch, a
member should push a PATH message down to
its sub-tree to update its descendants! root paths
quickly, instead of waiting for regularly scheduled
PATH messages. These tune-ups make the HMTP
tree both stable and adaptive.

3.1.5. Partition recovery
When a non-leaf member crashes, the tree is

partitioned. Surviving members must be able to
detect the failure and repair the tree. Repairing
the tree upon a member crash is similar to han-
dling a member leave. For example, when the root
node fails, its children will contact UMRP, and
one of them will be assigned as the new root.
The difference in this case is that surviving mem-
bers usually do not receive prior notification of
the crash. Hence node failure is detected by notic-
ing repeatedly missing REFRESH or PATH mes-
sages. When a node failure is detected, the parent
of the failed node simply updates its children list;
the children of the failed node must run the repair
algorithm (Fig. 4). As long as a node on its root
path or the UMRP is available, a partitioned
member can always re-join the tree.

In the rare cases when all hosts in a member!s
root path and the UMRP fail at the same time,
the best thing this member can do is to try con-
necting to other group members in its cache. In
the process of joining the tree or during tree
improvement, a member learns of members in
other branches of the delivery tree. These members
can be cached and used for partition recovery.
Members with short root path may want to cache
more such members. Using cached members does

not, however, guarantee that the tree can be recon-
nected. In the worst case, the group could be par-
titioned into pieces that cannot find each other.
Existing end-host based overlay networks usually
require every member to maintain an accurate
and complete member list to guarantee partition
recovery. Such a requirement limits the scalability
of these protocols. HMTP achieves partition
recovery as long as there is a surviving host in a
member!s root path or the UMRP is not down.

3.1.6. Loop detection and resolution
If a member switches to one of its descendants,

a routing loop is formed. Members in a loop will
see itself in its root path. To prevent loop forma-
tion, a member checks that it is not in its potential
parent!s root path before settling on a new parent.
With this simple algorithm, loops can still be
formed if there are concurrent topology changes,
e.g., in Fig. 2, if C joins F and D joins E at the
same time, a loop will form. When there is a loop,
a member in the loop will detect it after seeing
itself in the root path. In a tree structure the exis-
tence of a loop also means a tree partition. Hence
the member detecting a loop immediately breaks
the loop by leaving its current parent, and re-joins
the tree starting from the root node. If multiple
members detect the loop at the same time, the loop
will be broken into multiple pieces, each piece is
loop-free and will re-join the tree independently.
The loop detection and resolution will take some
time. For detection, it depends on how frequently
the root path is updated (by the PATH messages);
for resolution, it is the same as that of joining the
tree. With HMTP, the formation of a loop re-
quires multiple conflicting topology changes hap-
pen at (relatively) the same time. Thus loops, if
they occur at all, should be relatively rare, and
the overall overhead of loop detection and resolu-
tion should be small.

3.1.7. Join delay and foster care
One problem of the basic join algorithm is long

join latency, especially for large group size and
sparse groups. To reduce join latency, we allow
new members to temporarily attach to a random
member. Existing members must accept a limited
number of temporary (foster) children for a short

B. Zhang et al. / Computer Networks 50 (2006) 781–806 787



period of time. After that time, the parent can re-
move the foster children. Data packets are for-
warded to all of a node!s children, including its
foster children. However, a node does not list its
foster children in reply to a join query (step 3 of
Fig. 3).

3.1.8. U-turn and triangle optimization
Suppose there are three hosts A, B, and C, at-

tached to three routers X, Y, and Z respectively
(Fig. 5), and the delays between A, B, and C are
DAC > DAB > DBC. When constructing a spanning
tree among these three hosts, we prefer to discard
the longest overlay link AC. However, since end
hosts do not have knowledge about the router
topology (i.e., there is no physical link between X
and Z), they may make wrong decisions; for exam-
ple, suppose A initiates a new multicast group. It is
the first member of the group and becomes the
tree!s root. If C joins before B, the tree becomes
A–C–B. Packets from A go to C first, then are for-
warded back to B. We call this the U-turn problem.
Since B is currently a child of C, C will never use B
as a potential parent. And since the B–C distance
is smaller than the B–A distance, B will always
pick C as parent. So tree improvement cannot
solve this U-turn problem.

Our solution is to give B more information to
make the correct decision when it joins the tree.
When A passes its children list to B, it also in-
cludes the delay from A to all its children (in this
case, DAC). B measures the delay DAB and DBC fol-
lowing the join algorithm. Now B knows all three
link delays. The triangle optimization states that, B
will choose A as its parent unless DAB is the lon-
gest one among the three virtual links. After B
joins A, C will discover B during tree improvement

and since DBC is shorter than DAC, C will switch to
B, thus the U-turn problem is avoided. In general,
a node!s latencies to all of its children are always
available because of the periodic exchanges of RE-
FRESH and PATH messages. The triangle optimi-
zation is applied at each step of the join and tree
improvement processes. In the case that the poten-
tial parent has more than one existing children, the
newcomer shall apply triangle optimization be-
tween the potential parent and the child who is
the nearest to the newcomer.

3.1.9. Server backbone
Using end users! computers to forward packets

makes the design deployable. For applications
where performance and stability are critical, how-
ever, there is a need of using dedicated servers to
provide the multicast delivery service. UM does
not require the use of dedicated servers, but it can
easily incorporate them if there are servers avail-
able. One approach is to associate each host with
a rank when it joins the HMTP tree. A node will
only join a parent whose rank is equal to or higher
than its own. A parent can ask a child to leave if
there is a need to make room for another child with
higher rank than the old child!s. Normal end hosts
have default the lowest rank, while servers are con-
figured with higher rank. Security measures may be
implemented to prevent false claims of one!s rank.
But, it is up to applications and is orthogonal to
UM design. After joining the HMTP tree, dedi-
cated servers will occupy the top of the tree, while
regular hosts are pushed down to the edge. Thus
we will automatically have a stable server back-
bone as the core to serve the group.

3.2. Performance evaluation

We conducted simulations to evaluate the per-
formance of HMTP against naive unicast and IP
multicast. For IP multicast, we use both shortest
path source tree (SPST, as used by DVMRP)
and shortest path group tree (SPGT, as used by
CBT).

3.2.1. Metrics
The quality of a tree is judged by the following

metrics: tree cost, delay penalty, and link load.

A C

B

X Z

Y

Fig. 5. X, Y and Z are routers; A, B and C are end hosts;
DAC > DAB > DBC.

788 B. Zhang et al. / Computer Networks 50 (2006) 781–806



Tree cost is the sum of all the tree link latencies.
It is a convenient, though somewhat simplified,
metric to capture total network resource consump-
tion of a tree. The ratio of a tree!s cost to that of a
corresponding SPST is the tree!s cost ratio.

Delay penalty measures how much the overlay
stretches end-to-end latency. Relative delay penalty
(RDP) is the ratio of the latency between a node
pair on the overlay to the latency between them
on the physical network. ARDP is then the average
RDP over all node pairs: The smaller the delay
penalty, the closer node-pair latencies on the over-
lay are to latencies on the physical network. Group
diameter is the maximum delay between any node
pair. It represents the time after which packets are
assured to reach every member. The ratio of group
diameter to the diameter of an SPST is the group
diameter inflation.

Link load of a physical link is the number of
duplicates the link has to carry when a packet is
multicast to the group. IP multicast has load of 1
on all links, while overlay multicast has load great-
er than 1 on some links.

Results presented in this section are based on
simulations on a network topology consisting of
1000 routers, and 3300 links. Some additional
nodes as end hosts are randomly attached to rou-
ters. The maximum node degree constraint when
running HMTP is set to eight. Except for some re-
sults from a single run (Figs. 6, 8, and 11), data
points represent averages over 100 runs with 95%
confidence interval.

3.2.2. Simulations
Fig. 6 shows the result from a typical run to

construct an HMTP tree with 100 members. Mem-
bers join the group one by one within the first min-
ute of simulated time, causing the sharp initial
increase in tree cost ratio (y-axis). In the simula-
tions, members run the tree improvement algo-
rithm once every 30 s. By the second minute, tree
cost ratio has decreased to a stable point, meaning
the tree structure has converged. In most of our
simulations, the tree stabilizes and there is no more
changes to the tree structure after four to five runs
of tree improvement algorithm by each member.
Note that even without running the tree improve-
ment algorithm, the tree cost ratio is relatively low
at peak (about 1.5 times that of SPST). We attri-
bute this to how the join algorithm itself helps
newcomers find a close-by parent. In the simulated
scenario, 50 members leave the tree in random
order during the fifth minute of simulated time.
After the 50 departures, it takes the remaining
members less than a minute to settle upon another
stable tree. We conclude that a HMTP tree can
converge quickly in the face of drastic group mem-
bership changes.

We next experimented with various multicast
delivery trees connecting 20–500 members to com-
pare their tree costs. For each delivery tree, we
randomly pick a member to serve as the source
(for SPST and naive unicast) or rendezvous host
(for SPGT) or root (for HMTP), and calculate
the tree cost of the resulting tree. As expected,
SPST and SPGT have a cost ratio of 1, while naive
unicast have large cost ratio which also increases
significantly with larger group size (Fig. 7).
HMTP!s cost ratio is slightly greater than 1 and in-
creases very slowly with larger group size. There-
fore, in terms of tree cost, HMTP!s efficiency is
close to that of IP multicast. More analysis of cost
ratio results can be found in [45].

Group-shared trees such as SPGT and HMTP
incur penalty on end-to-end delay. Fig. 8 shows
the probability density function (pdf) of RDP
among all pairs of members in an HMTP tree.
Most pairs have RDP less than 5, but the worst
one reaches 12. Note however, high delay ratio
does not necessarily mean large absolute delay.
Large absolute delay is reflected in large group

1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

0  60  120  180  240  300  360  420  480

C
os

t R
at

io

Time (second)

Fig. 6. HMTP tree cost ratio vs. time, with members join and
leave.

B. Zhang et al. / Computer Networks 50 (2006) 781–806 789



diameter inflation. Fig. 9 shows the average and
90%-tile RDP from our simulations as we increase
the group size. The corresponding group diameter
inflation is shown in Fig. 10. As delay ratio in-
creases in the former graph, the group diameter
inflation stays largely flat in the latter graph. More
analysis of RDP results can be found in [45].

Fig. 11 compares the link load of HMTP and
naive unicast in a multicast tree connecting a
group with 100 members. Though most of the
links have a load of 1, naive unicast has a very high
load on a few links. The worst case happens at the
last hop to the source, where the link load is al-
most the same as the group size, as expected. If
one link is congested because of high link load,
all the downstream members see performance deg-

 0.5

1

 1.5

2

 2.5

3

 3.5

4

0  100  200  300  400  500

C
os

t R
at

io

Group Size

naive unicast
HMTP

Fig. 7. Cost ratio of HMTP and unicast star.

0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

1 2 3 4 5 6 7 8 9  10  11  12  13

pd
f

RDP

Fig. 8. Distribution of RDP in a HMTP tree of 100 members.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  100  200  300  400  500

R
D

P

Group Size

HMTP 90%-tile
HMTP mean
SPGT 90%-tile
SPGT mean

Fig. 9. Tree delay of HMTP and SPGT tree.

1

 1.5

2

 2.5

3

 3.5

4

 4.5

5

 5.5

0  100  200  300  400  500

In
fla

tio
n 

of
 G

ro
up

 D
ia

m
et

er

Group Size

HMTP
SPGT

Fig. 10. Inflation of group diameter for HMTP and SPGT tree.

1

2

4

8

 16

 32

 64

 128

 256

1 2 4 8  16  32  64  128

N
um

be
r 

of
 P

hy
si

ca
l L

in
ks

Physical Link Load

naive unicast
HMTP

Fig. 11. Link load of a HMTP and naive unicast tree, with 100
members.

790 B. Zhang et al. / Computer Networks 50 (2006) 781–806



radation. HMTP avoids this problem by reducing
worst case link load significantly. Under HMTP,
an end host can control the load on its last hop
link by adjusting the number of neighbors it con-
nects to. We use a maximum degree constraint of
eight throughout our simulations. In reality, the
degree constraint can be adjusted according to
available bandwidth. Smaller degree constraint re-
sults in a deeper tree, which may have a higher cost
and higher delay, but with lower load on physical
links.

In addition to simulations on random topolo-
gies, we also run simulations on a snapshot of real
Internet topology. To construct the Internet topol-
ogy, we downloaded one day!s (March 1st, 2001)
worth of traceroute data from the NLANR site
[34]. The traceroutes were conducted among every
pair of more than 100 US sites. After removing
incomplete measurements, we obtained a topology
consisting of 978 routers and 96 hosts. We then
ran 1000 simulations on this topology using the
same parameters as the simulations we ran on
the randomly generated topologies. Comparing
the trees constructed by HMTP against that con-
structed by IP multicast2 we computed values for
our various metrics, averaged over the 1000 runs.
Our results are:

• tree cost ratio: 0.99,
• average RDP: 1.76,
• 90%-tile RDP: 2.50,
• group diameter inflation: 2.40, and
• worst link load: 8.

3.3. Improving end-to-end latency

Fig. 12 compares HMTP with two other proto-
cols, Yoid and Narada. It is clear that HMTP has
shorter end-to-end latency than Yoid, but longer
than Narada. Compared with Yoid, HMTP uses
several heuristics to avoid local minima and try
to cluster nearby nodes together in tree construc-
tion. Therefore HMTP is able to achieve shorter

end-to-end latency than Yoid. Narada is a mesh-
based protocol. It uses many more overlay links,
which can serve as ‘‘shortcuts’’ between nodes,
thus it has shorter latency than HMTP. In another
work [43], we show that adding some additional
overlay links to HMTP trees can result in a mesh
structure (TMesh) that has shorter latency than
Narada. Generally TMesh uses less overlay links
than Narada, but as the group size increases,
TMesh!s advantage on end-to-end latency be-
comes more pronounced (Fig. 12). Applying the
same TMesh algorithm on a randomly generated
tree does not have similar results (Fig. 13). This
demonstrates that HMTP can be a good substrate
for more sophisticated protocols if there is such a
need.

2 IP multicast does not create a minimum spanning tree,
which explains the cost ratio below 1 in our result.

1

 1.5

2

 2.5

3

 3.5

4

 4.5

5

0  100  200  300  400  500  600  700  800  900  1000

A
R

D
P

Group Size

Yoid
HMTP

Narada
TMesh w/HMTP

Fig. 12. ARDP performance of various overlays.

1

 1.5

2

 2.5

3

 3.5

4

 4.5

5

0  100  200  300  400  500  600  700  800  900  1000

A
R

D
P

Group Size

TMesh w/ Random Tree
Narada

Fig. 13. ARDP of TMesh overlay built on random tree.

B. Zhang et al. / Computer Networks 50 (2006) 781–806 791



4. Host group management protocol (HGMP)

In HMTP or any other end-host multicast pro-
tocol, the basic assumption is that every member
host is isolated in terms of network multicast con-
nectivity. Considering IP Multicast is available in
every Ethernet, many campus networks, enterprise
networks, and a few ISPs, the assumption of all
hosts are isolated is certainly too pessimistic in
the current Internet, not to mention in the future.
Taking advantage of the installed base of native IP
multicast will not only improve the service perfor-
mance and scalability, but also encourage further
deployment of native IP multicast.

HGMP expands every single node in end-host
multicast into a multicast island. On one hand,
HGMP must retain the deployability of end-host
multicast. It cannot require any administrative
configuration in DM election, DM coordination
and island management, which would be much
easier otherwise. On the other hand, HGMP must
also allow the evolution of multicast service, being
able to automatically take advantage of any infra-
structure support, such as network multicast, ded-
icated servers, etc., if available.

One important feature we achieved in the design
of HGMP is its protocol independence: HGMP as-
sumes the existence of an intra-island IP multicast
protocol (e.g., DVMRP) and an inter-island multi-
cast protocol (e.g., HMTP), but it does not make
any assumption on which particular protocol is
in use as long as they provide multicast functional-
ity at network layer and application layer respec-
tively. In practice, network operators choose
intra-island multicast protocols, and applications
choose inter-island multicast protocols. Since both
network multicast and end-host multicast are in
constant development and deployment, protocol
independence gives HGMP great flexibility to
accommodate different network environments
and future progresses.

4.1. Single designated member

4.1.1. End-host only
When a host joins a UM group with the group

identifier G, it first checks the well-known group
directory in its local island for an announcement

for G. If no such announcement is present, it as-
sumes that it itself is the first group member in this
island and becomes the local DM for G. It then
creates three new IP multicast groups, DATA_
GROUP, ASSERTION_GROUP and DM_
GROUP, in the local island, associates them with
G, and announces the mappings to the group
directory. The DATA_GROUP, ASSERTION_
GROUP and DM_GROUP are not well-known
groups like the group directory. Instead, they are
dynamically allocated and specific to each UM
group G.

The DATA_GROUP is used for transmitting
data packets. Applications send to DATA_
GROUP their data packets, which will be received
by all the group members in the same island,
including the DM. The DM then sends these
packets out to other islands through tunnels and
multicast incoming tunneled packets to DATA_
GROUP. Therefore applications still send and
receive native IP multicast packets without being
concerned about how they are transmitted in the
network (Fig. 14).

The ASSERTION_GROUP is used for DM
election. The DM of a group G periodically sends
ASSERTION messages to G!s ASSERTION_
GROUP. All members of G must continuously lis-
ten to its local ASSERTION_GROUP. When the
DM leaves G, it sends a QUIT message to the
ASSERTION_GROUP. Remaining members will
start an election upon receiving the QUIT message
by scheduling sending their own ASSERTION
messages after random delays. The first member
to send out its ASSERTION message becomes
the new DM, and others cancel their message

Source Island

E1

G1

A0

F1

H1

unicast IP Multicast

A4A3

A1 A2

Fig. 14. Single-DM island.

792 B. Zhang et al. / Computer Networks 50 (2006) 781–806



sending. A tie can be resolved by picking the mem-
ber with the smallest IP address. When the
ASSERTION message is continuously missing
for a number of periods, a new election will be
triggered.

Since the DM is a normal user!s computer, usu-
ally there is no incentive to sharing its bandwidth
and computing power with others when the owner
no longer has interest in the multicast group.
Therefore when all applications on a local host
leave the group, the DM will leave the group
too. For some types of groups the DM is likely
to change as members join and leave the group
continuously. To reduce packet loss during change
of DM, the old DM should continue to forward
packets after sending its QUIT message for a short
period of time. To ensure smooth transition, each
ASSERTION message carries information on in-
ter-island routing (e.g., the parent and children
nodes on the HMTP tree). With this information,
the new DM can quickly establish necessary tun-
nels to other islands or repair the inter-island mul-
ticast tree if the old DM crashes.

One enhancement to the basic DM election cri-
terion is to favor hosts that have more resources.
Each host has a priority computed as a function
of its resources. This priority is included in the
ASSERTION message. A message with higher pri-
ority always wins over, or suppresses, a message
with lower priority, regardless of the messages! rel-
ative sent order. Therefore a host with Ethernet
connection can take over the role of DM from a
host with only a dial-up connection. However
too many priority levels could slow down the elec-
tion process and also lead to many DM changes as
members join and leave the multicast group.
Hence we stipulate the use of only a small number
of priority levels, e.g., based only on the type of
network access technology a host has.

4.1.2. Dedicated server
Using normal hosts as DM is necessary to

meet UM!s deployability requirement. Neverthe-
less, when a dedicated server with more computing
power and network bandwidth is available, using
it as the DM can improve performance and stabil-
ity of data delivery. While a DM of normal host
would leave a group when applications running

on it are no longer interested in the group, a DM
of a dedicated server can keep forwarding a
group!s traffic until the last group member in the
local area network leaves the group. This reduces
the number of DM changes and enhances the sta-
bility of the forwarding service.

A dedicated server can be set up to serve certain
multicast groups within a service area (e.g., a
departmental network). The server is configured
with an election priority higher than that of nor-
mal hosts. The server periodically sends scoped
multicast messages to its service area to query local
membership, and normal members send back re-
ports via multicast too, much like the IGMP
query/report mechanism in IP multicast. In fact,
if the service area is a local area network (LAN)
and has a multicast router in it, the server can just
passively monitor the IGMP traffic to learn group
membership in the network. When there are group
members in its service area, the server will partici-
pate in the DM election by sending its higher-pri-
ority ASSERTION messages, so that it will always
supersede normal hosts in becoming a DM. A ser-
ver ceases its role as DM when there is no longer
any host in its service area interested in the group,
even if there are still some group members in other
network areas. This design decision removes a pos-
sible disincentive network operators may have in
hosting a UM server.

Backup servers can be configured with a prior-
ity higher than normal hosts! but lower than that
of the primary server of the same service area.
During DM election, backup servers automatically
take over if the primary server does not send out
an ASSERTION message. If all servers are down,
a normal host will be elected as DM according
to the election algorithm. Thus the deployment
of servers is totally transparent to hosts, except
performance improvement experienced by appli-
cations.

4.2. Multiple designated members

When there is only one DM in an island, all the
group traffic coming into or going out of the island
must go through the DM. This leads to two poten-
tial problems in large IP multicast islands: longer
latency and traffic concentration. For example, in

B. Zhang et al. / Computer Networks 50 (2006) 781–806 793



Fig. 14, even if E1 is close to A1, packets from E1
must take a detour via A0 before reaching A1. If
A1 is chosen as the DM, longer delay will occur
to packets coming from other islands. In general,
these two problems become worse for large islands
with many members scattering in the islands,
which means that the design cannot take full
advantage when IP multicast is widely deployed.

A natural solution is to allow multiple DMs per
island. In Fig. 15, island A has four DMs. They
share the workload of packet forwarding as each
maintains one unicast tunnel. Packets coming into
or going out of island A now take shorter paths
than always having to detour through a single
DM. In order to have multiple DMs per island,
we need mechanisms to elect multiple DMs, and
coordinate them with each other.

4.2.1. Multi-DM election
In the single-DM model, an ASSERTION mes-

sage travels the full extent of an IP multicast is-
land. Thus the DM!s ASSERTION messages can
effectively suppress all the other members from
becoming a DM. To enable multiple DMs per is-
land, we allow a smaller scope for sending the
ASSERTION message. In this case, members out-
side the assertion scope will not hear the ASSER-
TION message, hence they will start electing a new
DM among themselves, resulting in multiple DMs
in the same island, and each DM has an assertion
coverage around its network neighborhood. These
DMs, however, share the same island-wide data
scope, which means data packets multicast by
one DM will still reach all group members (see
Fig. 16).

The ideal way to set assertion scope is to let
every DM dynamically adjust its assertion scope,
so that there is no overlap between any two asser-
tion scopes while the entire island is covered by
the union of all assertion scopes. However, since
IP multicast scoping is either a circular coverage
(i.e., generic IP TTL scoping) or administratively
configured (TTL threshold and administrative
scope), a host cannot define a scope to cover an
arbitrary network area, and in many cases overlap
of assertion scopes is inevitable. Therefore we
choose to tolerate overlap of assertion scopes.
The only overhead is redundant ASSERTION
messages in the overlapped areas, which should
be low volume traffic. There will be no duplication
of data packets since HGMP ensures that data
packets enter an island only once and only via a
single DM (see next subsection). Not requiring per-
fectly separated scopes enables HGMP to use any
multicast scoping scheme available, which is in
line with our deployment requirement. Better
scoping schemes like administrative scope give
HGMP more choices in setting a suitable assertion
scope.

How to choose an assertion scope appropriate
to a given network environment remains an open
issue. Very small assertion scopes may generate
an excessive number of DMs, which will compli-
cate the inter-island topology and cause overhead
to routing. Appropriate assertion scopes should
give rise to a number of DMs adequate to serve
the large island, yet not excessive to incur much
overhead in inter-island routing. In an ASSER-
TION message, its initial IP TTL value is carried
in the payload. By comparing the initial TTL value
and the received TTL value, a receiver can esti-

Source Island

Transit Island

E1

G1

A1
F1

H1

unicast IP Multicast

A2

A4A3

Host

Host

Host

Fig. 15. Multi-DM Island.

Source Island

Transit Island

E1

G1

A1
F1

H1

A2

A4A3

Host1

Host3 

Host2

Fig. 16. Election of multiple DMs.

794 B. Zhang et al. / Computer Networks 50 (2006) 781–806



mate how many hops away a DM is. If a DM sees
another DM which is very close by, it can cease to
be a DM. Conversely, if a normal member finds
that its current DM is too far away, it can become
a new DM. In this way, even if a DM is mis-con-
figured with an assertion scope too small or too
large, others can offset the effect to maintain an
appropriate number of DMs in an island. In the
current implementation, DMs use a pre-configured
assertion scope corresponding to organization
scope. More experiments and practical experi-
ences are needed to refine how to set the assertion
scope.

4.2.2. Inter-island routing with multiple DMs
A single-DM island has only one point for

packets entering or exiting the island, therefore
an island can be abstracted as a single node in
inter-island topology. In contrast, a multi-DM
island can have multiple entrances and exits for
packets. In this case, IP multicast transmission be-
comes a transit part of the data delivery path,
rather than just the last hop as in a single-DM is-
land. The multiple DMs in the same island are
connected by IP multicast implicitly, but these
DMs are not aware of each other. This invisible
connectivity breaks the inter-island routing
regardless of which end-host multicast protocol is
in use.

For example, in Fig. 17, assume island A!s
DMs, A1 through A4, run an end-host multicast
protocol independently and build tunnels to other
islands as shown. When a data packet is originated
by E1, it will reach both A1 and A3. Not aware of

the other!s behavior, A1 and A3 will both accept
the same packet and multicast it into island A.
When the multicast packet reaches A4, it will be
forwarded to H1, F1 and back to A2, resulting
in more duplicates in island A due to the routing
loop.

Therefore, explicit coordination among multi-
ple DMs in the same island is necessary for pre-
venting routing loops and packet duplicates. This
coordination is done via the local multicast group
DM_GROUP. We designed different coordination
schemes for tree-based and mesh-based inter-is-
land routing.

4.2.3. Tree-based inter-island routing
In tree-based end-host multicast protocols, such

as HMTP and Yoid, multicast delivery is achieved
by simply flooding the shared-tree. In order to
keep this working with multi-DM islands, the
DMs need to be organized into a ‘‘mini-tree’’ as
follows.

All DMs in the same island use the DM_
GROUP to dynamically elect one DM as the Head
DM, while others are Tail DMs. The Head DM
periodically sends ALIVE messages to DM_
GROUP and sends a LEAVE message before it
leaves the group. Tail DMs start a round of elec-
tion upon receiving the LEAVE message or miss-
ing ALIVE message continuously. The Head
DM runs the inter-island routing protocol as usual
to find its parent in other islands. Tail DMs, on the
other hand, must always take the Head DM as
their parent, as illustrated by the dotted lines in
Fig. 18 between Head DM A1 and Tail DMs

Source Island

Transit Island

E1

G1

A1
F1

H1

A2

A4A3

Host

Host

Host

unicast IP Multicast

Fig. 17. Routing problems for multi-DM island.

Source Island

Transit Island

E1

G1

F1

H1

unicast IP Multicast

A2

A4A3
Host

A1

Fig. 18. Multi-DM island with shared-tree inter-island routing.

B. Zhang et al. / Computer Networks 50 (2006) 781–806 795



A2, A3 and A4. From another island!s point of
view, island A now has only one parent (i.e., E1)
and multiple children (i.e., F1, G1, and H1), just
as in a single-DM island. When all DMs run the
inter-island routing protocol with this restriction,
there will be no link E1–G1 or F1–H1 in Fig. 18,
because considering the dotted lines they form
loops explicitly, which is not allowed by the in-
ter-island routing protocol. Therefore, the tree
structure, composed of both unicast tunnels and
IP multicast, is preserved through multi-DM is-
lands, which ensures that the same forwarding
scheme can be used without routing loop or packet
duplicate. Note that the parent–children relation-
ship between Head DM and Tail DMs is only log-
ical. There is no actual unicast tunnels between
them, and data packets are still transmitted via
IP multicast inside the island.

Initially, the first DM in an island becomes the
Head DM. When there are multiple DMs, the elec-
tion of Head DM takes network latency into ac-
count. Every DM runs the inter-island routing
protocol independently to determine its potential
parent in other islands and measures rtt to the po-
tential parent. The Head DM includes its rtt value
in its ALIVE messages. If a Tail DM has a smaller
rtt than that advertised by the Head DM, it as-
sumes the role of Head DM by sending its own
ALIVE message with the smaller rtt value. The re-
sult is that the Head DM is always the DM with
the shortest rtt to its extra-island parent. This elec-
tion criterion favors DMs at island edge over DMs
inside the island, thus IP multicast is utilized better
as packets are multicast at the earliest point into
an island.

Techniques used in single-DM election (Section
4.1) can also be used to improve the stability of
packet forwarding service during Head-DM
election.

4.2.4. Mesh-based inter-island routing
Mesh-based end-host multicast protocols need

to periodically exchange routing updates between
neighbor nodes, and apply a specific forwarding
rule based on routing table to achieve loop-free
multicast delivery. For example, in Narada and
TMesh, every node exchanges path vector routing
tables with neighbors, and uses reverse path for-

warding (RPF)3 to decide how to forward data
packets. Other protocols may use very different
routing information (e.g., a node!s logical address)
and forwarding rule, but the basic behavior is the
same: exchange routing updates and apply the for-
warding rule.

To keep it working in multi-DM islands, in
addition to regular routing exchange with neigh-
bors in other islands, DMs also periodically multi-
cast their routing exchanges to the DM_GROUP,
so that all DMs in the same island will learn oth-
ers! connectivity information. Take Fig. 19 as an
example, and assume Narada is used as the inter-
island routing protocol. After the inter-island
routing exchange and intra-island routing ex-
change, all DMs in island A (i.e., A1, A2, A3
and A4) know that the shortest path from island
E to island A is via link E1–A1. Similarly, F1
knows the shortest path from island E goes
through A2, and H1 knows the shortest path from
island E goes through A4. When E1 sends a pack-
et, the copy going through E1–G1–A3 will be
dropped because it fails the RPF checking. Simi-
larly, the copy between H1 and F1 will be dropped
too. Now, for the purposes of inter-island routing
and packet forwarding, every island can be viewed
as a single node, and every DM has complete rout-
ing information to apply the forwarding rule cor-

Source Island

Transit Island

E1

G1

A1
F1

H1

A2

A4A3

Host

Host

Host

unicast IP Multicast

Fig. 19. Multi-DM island with source-tree inter-island routing.

3 In RPF, a packet originated by source S is forwarded by F
to a receiver R only if R uses F as the next hop in R!s shortest
path to S. The distribution tree generated by RPF is the reverse
shortest path tree rooted at the source. This technique is used in
some IP multicast routing protocols like DVMRP and PIM-
DM.

796 B. Zhang et al. / Computer Networks 50 (2006) 781–806



rectly. More details of the protocol operations are
discussed in [46].

4.3. Simulation

We use simulations to evaluate the performance
gain of the multi-DM model over the single-DM
model. Results presented here are from simula-
tions of 100 islands with 20 group members in each
island. The number of routers in an island varies
from 50 to 500, but is the same for all islands in
the same simulation run. Intra-island IP multicast
routing assumed a per-source shortest path tree
similar to that used in DVMRP; Inter-island rout-
ing uses HMTP. In the single-DM model, the DM
is randomly selected from member hosts with uni-
form probability. In the multi-DM mode, half of
the members in an island are randomly selected
as DMs, again with uniform probability. Clearly
we do not expect half of an island!s population
to serve as DMs in practice. Since in our simula-
tions DMs that are not very well placed, perfor-
mance-wise, will not be selected by the end-host
multicast protocol to be on the inter-island multi-
cast tree, their existence does not effect the perfor-
mance metrics studied. It does mean, however,
that the performance numbers reported corre-
spond to cases in which we can find well-placed
hosts to serve as DMs. This is a topic of our future
work.

Fig. 20 shows that as the island size increases,
ARDP under the single-DM model case increases

whereas those under the multi-DM model actually
decreases. We attribute this to the increasing sig-
nificance of intra-island latency as the island size
increases. The multi-DM model can factor out
large intra-island delays in inter-island latencies.
Fig. 21 shows that while having multiple DMs
per island clearly reduces the maximum node load,
for the scenarios simulated the effect of island size
on maximum node load is not apparent.

5. Implementation and deployment

We have implemented HMTP together with the
TMesh protocol [43]. The implementation consists
of three components: a rendezvous server, an over-
lay daemon, and an overlay library. The rendez-
vous server runs on the rendezvous host
(UMRP), whose main purpose is to bootstrap
newly joining members into the multicast group.
The UMRP replies to members! queries with the
current root of the HMTP tree and a list of mem-
bers already in the multicast group. The overlay
daemon performs tree construction and mainte-
nance functionality, such as join, improvement,
partition recovery, triangle optimization, etc. The
overlay library provides a list of APIs (e.g.,
join_group, send_to_group, recv_from_
group and quit_group) for applications to uti-
lize our multicast protocol.

By leveraging the overlay library, it is straight-
forward to build a multicast application. Fig. 22

1.8

2

2.2

2.4

2.6

2.8

3

3.2

50 100 150 200 250 300 350 400 450 500

A
R

D
P

Island Size

Single-DM Model
Multi-DM Model

Fig. 20. ARDP vs. island size.

4

6

8

10

12

14

16

18

50 100 150 200 250 300 350 400 450 500

W
or

st
 N

od
e 

Lo
ad

Island Size

Single-DM Model
Multi-DM Model

Fig. 21. Worst link load vs. island size.

B. Zhang et al. / Computer Networks 50 (2006) 781–806 797



shows the framework of TMeshV, a video/audio
broadcasting tool we developed to run on our
overlay network. (The UMRP is not shown in
the framework as it does not participate in the tree
overlay.) As shown in the Stream Server part of
Fig. 22, we employ Quicktime Broadcaster [3] to
encode the video/audio input from a camera into
RTP/RTCP streams [38]. The overlay proxy,
which utilizes our library, captures these RTP
messages, wraps them up in TMesh data packets,
and sends them to the overlay daemon. The over-
lay daemon then relays these TMesh data packets
to other members in the multicast group. When
the overlay daemon of a group member receives
these packets, it forwards them to the overlay
proxy, which feeds the application-level data to
the media player. Since the encode software
and media player share the same session descrip-
tion protocol (SDP) [27] setting, our overlay
proxies can handle the network transmission
part transparently, and there is no need to
change either the encode software nor the media
players.

We used TMeshV to broadcast the NetGames
2003 and 2004 workshops, the Network Trouble-
shooting 2004 workshop, and the ACM SIG-
COMM 2004 conference live online [5,6]. In
this section, we present some details of our imple-
mentation in the context of our TMeshV tool, to-
gether with statistics of the SIGCOMM 2004
broadcast.

5.1. A simple case

In the design of the HMTP protocol, we con-
sider all members in the multicast group as identi-
cal. However, on the Internet, this is not the case.
Before delving into the details of how we imple-
ment the HMTP protocol on the heterogeneous
Internet, we first show a simple and ‘‘ideal’’ case
to test the quality of the constructed HMTP tree.
We deployed TMeshV on 10 PlanetLab nodes
[13] from universities and research labs. We call
this an ‘‘ideal’’ case because these nodes share
the same operating system environment, are lo-
cated in well-connected campus or corporate net-
works, and have fast Internet connections. In the
experiment, we set the node degree limit to four.
Fig. 23 shows the resulting HMTP tree. Our over-

Michigan
State U 

Caltech
Columbia

Univ.
Michigan

HP
Bristol (UK)Intel

Seattle

UIUC

Northwestern

HP
Palo Alto

NTU
Taiwan

Fig. 23. HMTP tree built on a multicast group of ten
PlanetLab nodes.

Member

Member

Member

Overlay Links

Overlay Links

Video/audio
Input

Media Streams
(RTP)

Control
Messages

Overlay Network

Overlay
Daemon

Quicktime
Broadcaster

Stream Server

Overlay Links

Data
Messages

Overlay
Proxy

Overlay
Library

Media Streams
(RTP)

Control
Messages

Overlay
DaemonQuicktime Player

or MPlayer

Member

Data
Messages

Overlay
Proxy

Overlay
Library

Fig. 22. Framework of TMeshV implementation.

798 B. Zhang et al. / Computer Networks 50 (2006) 781–806



lay daemons can successfully organize themselves
into an efficient tree as expected.

Compared to PlanetLab deployment, deploying
TMeshV on the broader Internet is far more
complex.We have to consider various network con-
ditions, system configurations, and operating-
system-dependent problems. Furthermore, since
we run a video/audio broadcast application, we
also need to tune some parameters of our protocol
to provide better user perceived quality.

5.2. Bandwidth measurement

Due to the high bandwidth requirement of vi-
deo/audio streaming, a host!s available bandwidth
is more likely to determine user!s perceived video
quality. This is particularly the case for end-host
multicast where one host!s bandwidth is not only
used to receive the video but also to relay it to
other hosts in the multicast group. Saroiu et al.
studied the speed of Internet connections of hosts
in the Gnutella [4] peer-to-peer file-sharing net-
work and found that about 70% of the peers had
connection speed between 100 Kbps and 10 Mbps
[37]. This range of bandwidth indicates that a large
number of these hosts use asymmetric Internet
connections, such as DSL and cable modem. They
may have sufficient bandwidth to receive the video
stream, but may not have enough upstream band-
width to serve content to other peers. Having such
hosts act as internal nodes in the multicast tree will
affect the video quality perceived by all their down-
stream peers. Therefore, we need to set a low limit
(e.g., zero) on the number of peers these hosts
serve.

To check whether a host (H) is behind a slow
upstream connection, our overlay daemon con-
ducts a simple bandwidth measurement when H
initially joins the group. The daemon first sends
a small (64 KB) packet to a randomly selected
member of the group. If the time needed to send
this packet is above a certain threshold, H!s up-
stream speed is considered slow. Otherwise, the
daemon sends a second, larger (256 KB) packet
to the same target host. H!s upstream bandwidth
is estimated based on the time needed to transmit
both packets. The estimated bandwidth is reported
to the UMRP and is used to determine how many

peers H can serve. To overcome inaccurate mea-
surements caused by transient congestion, the dae-
mon repeats this bandwidth measurement
periodically at a low frequency. From their do-
main names and whois database information, we
estimated that during the broadcast of SIG-
COMM 2004, 39.4% of the 221 remote attendees
were behind either DSL or a cable modem.

5.3. Firewalls and NAT gateways

Besides network capacity, we also have to deal
with another heterogeneity of the Internet—the
existence of guarded hosts. A host is guarded if it
is unable to accept incoming connections from
those outside its local area network. This may
happen if the host is behind a NAT gateway [17]
or a firewall. A host that permits incoming connec-
tions as well as outgoing connections is considered
open.

In the presence of guarded hosts, network
reachability is no longer symmetric for every pair
of overlay hosts. This complicates our overlay
implementation in two ways. An overlay link can-
not always be formed between any given pair of
overlay nodes. Trying and failing to connect to
guarded hosts unnecessarily lengthen new mem-
bers! join latency. Furthermore, these guarded
hosts cannot receive data from the group unless
it initiates TCP connections to its peers. We have
limited choices on how to transmit data to these
guarded hosts.

We studied the prevalence of guarded hosts on
the Internet by conducting measurements on two
existing peer-to-peer networks, eDonkey [1] and
Gnutella. As many as 36% of the 180,000 peers
encountered in our experiment were guarded [42].
Clearly, the lack of two-way communication capa-
bility is prevalent in the current Internet. Chu et al.
reported even higher percentages of guarded hosts
in their Internet overlay multicast experiments
[11], even as high as 76%. As shown in Table 1,
74.2% out of the 221 remote attendees of SIG-
COMM 2004 were on guarded hosts. To support
guarded hosts in HMTP/TMesh, we implemented
a guarded host detection mechanism and intro-
duced several mechanisms to accommodate them,
as described below.

B. Zhang et al. / Computer Networks 50 (2006) 781–806 799



Guarded host detection is handled by the
UMRP. To identify whether a host H is behind a
NAT gateway, the UMRP compares the IP ad-
dress it gets from the host!s TCP connection with
the source IP address H sets in its packet header.
H is behind a NAT gateway if these two addresses
are different. In most cases, hosts behind NAT
gateways have known internal IP addresses, such
as 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16, or
169.254.0.0/16. We also handled cases where an
open host uses the loopback address (127.0.0.1)
as its source address. Detecting hosts behind fire-
walls is not as straightforward as detecting a
NAT-ted host. When a new member H joins the
group, the UMRP randomly picks three open
hosts in the group that are not in H!s subnet to
connect back to H. If any of these connections suc-
ceeds, the host is considered open. To pass
through NAT gateways and firewalls, we use
TCP instead of UDP to transmit both control mes-
sages and the multicast content. Once a guarded
host initiates a TCP connection to another host,
two-way communications can be established
through this TCP connection.

If there are more guarded hosts than the total
capacity of open hosts to serve them, new mem-
bers will not be able to join the multicast group.
To alleviate this problem, we seeded the multicast
tree with a number of PlanetLab nodes to ensure
sufficient number of resource-rich hosts residing
on the open network. Next, we give open hosts
higher priority in the tree construction process.
When a new member H that is an open host tries
to join the tree at a potential parent that already
has its maximum number of children, if the parent
has a child that is a guarded host, it can accept H

as its new child and direct its guarded child to
switch its parent to H.

The root of the HMTP tree obviously must be
on an open host. To ensure a shallow tree, which
reduces delivery latency, we further prefer the most
resource-rich host as the root. To this end, we
instrumented the UMRP with a root-contention
mechanism. Hosts are assigned priorities based
on their network reachability. The UMRP main-
tains a list of ‘‘trusted’’ hosts. These hosts have
the highest priority. Guarded hosts have the lowest
priority. When member H joins the group, if H has
a higher priority that of the current root (R), in-
stead of providing H with the current root, the
UMRP accepts H as the new root, and instructs
R to re-join the tree.

Finally, when possible, we direct hosts behind
NAT gateways to connect to existing members
that are located in the same subnet. When a host
H that is behind a NAT gateway tries to join the
tree, the UMRP returns both the root of the tree
and a list of all members co-residing behind the
same NAT gateway as H. Our daemon running
on host H first tries to attach itself to the tree as
a child of one of these co-located members. Usu-
ally hosts behind the same NAT gateway are open
to each other, and also close to each other in terms
of latency. Although we have not implemented
HGMP in our TMeshV tool, this approach is sim-
ilar to HGMP in essence. We did observe several
hosts behind the same NAT gateway during our
broadcast of SIGCOMM 04. Employing IP multi-
cast in such a scenario per HGMP would have
been more efficient.

Several mechanisms to accommodate guarded
hosts have been proposed in the literature. IP next

Table 1
Statistics of the broadcast of SIGCOMM 2004

Conference Broadcast
hours

Total number of
remote attendees

Attendees on NAT/firewall
hosts (percentage)

Maximum concurrent
attendees

NetGames 2004 09:25 70 49 (70.0%) 15
SIGCOMM04 Day1 10:01 85 53 (62.4%) 23
SIGCOMM04 Day2 09:59 62 47 (75.8%) 20
SIGCOMM04 Day3 11:01 59 44 (74.6%) 22
Network troubleshooting 2004 08:41 25 18 (72.0%) 12

Total 49:07 221 164 (74.2%)

800 B. Zhang et al. / Computer Networks 50 (2006) 781–806



layer (IPNL) extends the current Internet architec-
ture by adding a layer above IPv4 to identify and
address hosts behind NAT gateways [22]. We did
not adopt IPNL in our implementation because
it requires modifications to end-host system
and the NAT gateways. Guha et al. design a
mechanism that allows TCP connections to be
established between guarded hosts in different
NAT-ted subnets [25]. Their approach requires
administrator privileges on end systems to run.
Ganjam et al. propose a protocol in which open
hosts give preference to guarded hosts in choosing
a parent [24]. We did not adopt this protocol be-
cause we assume that a large number of guarded
hosts will be behind DSL or cable modems and
are thus not suitable parents anyway. Instead, we
propose a location-based clustering algorithm,
e*, to make efficient use of resources available on
open hosts [44]. The cluster centers in e* are then
inter-connected using HMTP.

While hosts behind NAT gateways and firewalls
are usually not restricted in the port number to
which they can open a TCP connection, some net-
works now allow outgoing TCP connections only
to well-known ports, e.g., SMTP and HTTP ports
only. Such restrictions are usually found in corpo-
rate or government-controlled networks. The
usual method to support hosts behind such re-
stricted networks is to run an HTTP proxy on
the Internet that acts as a relay for the application.
From Table 3, we see that only 10.4% of the SIG-
COMM 2004 attendees were from corporate net-
works. Anecdotal evidence suggests that we
would have seen a higher level of attendance from
corporate and government-controlled networks if
we had an HTTP proxy for TMeshV.

5.4. Portability issues

TMeshV currently runs on four operating sys-
tems: FreeBSD, Linux, MacOS X, and Microsoft
Windows. To playback themedia content, we lever-
age the Apple Quicktime player on MacOS X and
Windows, andMPlayer [2] on FreeBSD and Linux.
On Windows, Quicktime player is a very CPU-
intensive application. To display streamed video
in 320 · 240 frame size with 400 Kbps of data,
Quicktime player alone consumes over 70% CPU

on a 1.13 GHz PentiumIII machine with 512 MB
of memory. When the CPU is fully utilized, a client
cannot relay data fast enough even with adequate
bandwidth. In such cases, the CPU power becomes
the bottleneck. Although this kind of bottleneck cli-
ents does not appear frequently, it may compromise
a large portion of the group if the bottleneck client
appears near the top of the multicast tree.

To address this problem, the TMeshV daemon
collects the hardware configuration of the Win-
dows hosts from the system Registry and adjusts
the node degree limit accordingly. Alternatively,
a host can compare its received data rate against
a published broadcast rate and switch parent if
the received rate is too far below the published
rate. Or we can monitor the real-time CPU load
information and adjust a host!s degree limit
dynamically. Similar to the approach we take for
hosts with low bandwidth, we assign a low (e.g.,
zero) node degree to these slow or busy machines
so that they would stay at the fringes of the overlay
and not slow down other members.

5.5. Statistics from the SIGCOMM 2004 broadcast

For the SIGCOMM 2004 broadcast, our
stream server runs on a MacOS X laptop, which
is connected to the Internet through a DSL with
1 Mbps upstream bandwidth. For the broadcast
media streams, we set the video codec to MPEG4
with resolution 320 · 280 and the audio codec to
MPEG4 32 kHz Stereo. The configured data rate
is around 400 Kbps. When there are only small
movements in the video, which happened quite of-
ten since we pointed our camera at the projector
screen, Quicktime Broadcaster may produce
streams with lower bit rate than the configured
data rate. The broadcast lasted five days: three
days for the main conference, one day for Net-
Games 2004 workshop, and one day for Network
Troubleshooting 2004 workshop. The second col-
umn in Table 1 shows the durations of our broad-
cast for each day.

During the SIGCOMM 2004 broadcast, a total
of 221 unique hosts joined the broadcast. Of these,
164 (74.2%) were guarded hosts (behind NAT or
firewall). The maximum number of concurrent re-
mote attendees was 23, which occurred during the

B. Zhang et al. / Computer Networks 50 (2006) 781–806 801



first day of the main conference. We also had the
largest number of total remote attendees (85) in
the first day. Since we employed about 26 Planet-
Lab nodes to accommodate the expected high
number of guarded hosts, the maximum group size
we encountered during the live broadcast was 49.
Fig. 24 shows the number of concurrent remote
attendees (not including PlanetLab nodes) for each
day of the main conference.

Fig. 25 shows the total viewing time of each re-
mote attendees. We sort the remote attendees in
non-increasing order based on their total viewing
time during the broadcast. Each remote attendee
is then assigned an ID based on its rank. Of the
221 remote attendees, 78 (35.3%) of them watched
the broadcast over one hour. Each remote atten-
dee sends an ‘‘alive’’ message to the UMRP about
once every 60 seconds. Hosts with IDs above 199
left the group before their first ‘‘alive’’ messages,
which explains the flat tail on the ‘‘Total viewing
time’’ graph. Of the 221 remote attendees, 136
(61.5%) of them joined the broadcast multiple
times. Fig. 25 also shows the average viewing time
per visit of each remote attendee, while Fig. 26
shows the number of visits of each remote
attendee.

Tables 2 and 3 present the geographic distribu-
tions of the remote attendees and the locations
they connected from (the locations of remote
attendees are obtained from their domain names
and their whois database information). The major-
ity of the attendees were from the US (79.6%),

about 11.3% from Europe, 5.9% from Asia, and
3.2% from Australia. Not surprisingly, the major-
ity of remote attendees (57.0%) are from campus
network or research labs. More interestingly, a
high percentage (39.4%) were connected through
DSL or cable modem.

0

5

 10

 15

 20

 25

 30

19:0017:0015:0013:0011:009:00

C
on

cu
rr

en
t R

em
ot

e 
A

tte
nd

ee
s

Time of the Day

SIGCOMM 2004 Day 1
SIGCOMM 2004 Day 2
SIGCOMM 2004 Day 3

Fig. 24. Number of concurrent remote attendees for SIG-
COMM 2004.

1

 10

 100

 1000

 10000

 100000

 1e+06

0  50  100  150  200  250

V
ie

w
in

g 
T

im
e 

(S
ec

)

Remote Attendee ID

Total viewing time
Average time per visit

Fig. 25. Viewing time of remote attendees.

Table 2
Geographic distribution of the remote attendees

Country Remote attendees

USA 176
Japan 9
Australia 7
France 6
Netherlands 6
Canada 4
Belgium 3
Italy 3
China 2
Korea 2
Sweden 2
Germany 1

Table 3
Locations of remote attendees

Location Number of
attendees

Universities and educational institutions 103 (46.6%)
Corporations and research labs 23 (10.4%)
Government (.gov) 5 (2.3%)
Home/office with broadband
(DSL/cable modem)

87 (39.4%)

Unknown 3 (1.4%)

802 B. Zhang et al. / Computer Networks 50 (2006) 781–806



5.6. Discussions

As currently implemented, TMeshV provides
delivery service without any transport layer con-
trol beyond those provided by TCP. Due to the
loss-tolerant characteristic of audio/video applica-
tions, we simply throw away new data when the
TCP socket buffer is full (i.e., when the socket is
not ready for writing). One future direction we
can pursue is to allow the application to set differ-
ent levels of priority for its packets. For example,
it may be more important to have audio packets
delivered at the expense of video packets. When
the TCP socket is full, high priority packets can
be buffered at the daemon for later transmission.
Several issues are immediately obvious with such
a scheme. First, if congestion persists, buffered
data may become outdated and it may become
more useful to transmit new data. Second, the
video and audio streams will become de-synchro-
nized and receivers will need to re-synchronize
them. Our implementation currently does not at-
tempt to do any re-synchronization of the video
and audio streams.

Under our current implementation, when a
node switches parent in the multicast tree, data
transmission may be interrupted. We did not
anticipate how disruptive this interruption is to
the audio/video playback. Instead of a few cor-
rupted frames, playback completely freezes for a
period of time that is clearly noticeable to the
viewer. We will need to implement a smoother
hand-off mechanism when switching parent.

As indicated earlier, HGMP is not currently
implemented. Our experience from the SIG-
COMM 2004 broadcast indicates that there will
be opportunity to take advantage of native IP
multicast on local subnets, where IP multicast is
more likely to be available. Our future work on
TMeshV includes implementing HGMP, adding
better QoS support, and testing on a much larger
scale.

6. Related work

The MBone [18] was designed to facilitate the
deployment of IP multicast. It connects IP multi-
cast islands using tunnels, obviating IP multicast
support on intermediate routers between the is-
lands. Nevertheless, setting up the tunnel requires
manual configuration and administrative privi-
leges on routers at both ends, which makes con-
necting to the MBone an expensive proposition.
There are several proposals to automate the pro-
cess of establishing tunnels to MBone. UMTP
[20] uses an intermediate source-specific multicast
(SSM) router to intercept group join requests sent
to the source, and create tunnels on demand. AMT
[41] uses dedicated servers (gateways and relays)
and IGMP to set up tunnels for SSM. Castgate
[32] uses a DNS-like hierarchical, distributed data-
base to support tunnel management. These pro-
posals automate only the setup of static tunnels;
none of them support dynamic auto-reconfigura-
tion of the tunnels. Furthermore, they all require
operational support from routers or dedicated
servers. Since UM makes use of native IP multi-
cast networks, the entire MBone can be viewed
as the biggest island in UM.

End-host multicast has minimal deployment
barriers because the only requirement is for the
users to install a program on their own computers.
There are a plethora of end-host multicast proto-
cols, which differ in their target applications and
routing algorithms. Judging by the type of multi-
cast overlay they use, these protocols can be catego-
rized as either tree-based protocols or mesh-based
protocols. Generally speaking, tree-based proto-
cols maintain less state information at each
node and have less overhead, while mesh-based

1

2

4

8

 16

 32

 64

0  50  100  150  200  250

N
um

be
r 

of
 V

is
its

Remote Attendee ID

Fig. 26. Number of visits for each remote attendee.

B. Zhang et al. / Computer Networks 50 (2006) 781–806 803



protocols utilize more overlay links and are able to
achieve shorter end-to-end delay. Tree-based pro-
tocols include BTP [28], HMTP, NICE [7], TBCP
[33], Yoid [21], etc., mesh-based protocols include
Narada [12], Hypercast [31], Gossamer [9], TMesh
[43], etc. UM uses end-host multicast protocols
for inter-island routing. Due to HGMP!s protocol
independence, applications can choose the end-host
multicast protocol that fits application needs the
best.

Since end-hosts are less stable and less trustwor-
thy, there are many proposals for building multi-
cast server overlays, including Scattercast [9],
Overcast [30], AMcast [39], OMNI [8], Broadcast
Federation [10], etc. In order to provide multicast
service, an application service provider places ded-
icated servers all over the Internet, runs an end-
host multicast protocol among these servers, and
connects end users by unicast. The design issues in-
clude server placement, and making routing deci-
sions with the knowledge about server locations,
traffic load and bandwidth. Multicast server
overlays are expected to provide better multicast
service than pure end-host multicast, but its
deployability is compromised because it requires
deploying a large number of servers by an applica-
tion service provider. UM does not require dedi-
cated servers, but both HMTP and HGMP can
take advantage of them when they are available.

7. Conclusion

In this work, we designed and implemented the
universal multicast (UM) framework to provide
ubiquitous multicast delivery service on the Inter-
net. As a basic service common to most group
communication applications, multicast should be
implemented as part of the network infrastructure
for the sake of performance and scalability. From
the deployment point of view, however, the path of
least resistance evolves from network edges to-
wards the core. UM solves this dilemma by having
a flexible design that provides applications multi-
cast delivery immediately, and allows infrastruc-
ture support to spread gradually at the same
time. We designed HMTP for inter-island rout-
ing, HGMP for intra-island management, imple-

mented a prototype, and conducted live
conference broadcasting. In deploying our proto-
type implementation, we encountered and ad-
dressed several unexpected stumbling blocks with
regards to guarded hosts and hosts with asymmet-
ric bandwidth. To the best of our knowledge, this
is the first effort to integrate both end-host multi-
cast and native IP multicast for ubiquitous multi-
cast delivery on the Internet that also takes into
account the realities of security barriers on the
Internet. Our framework is not limited to a partic-
ular routing protocol: HMTP can be the substrate
for more sophisticated protocols, and HGMP can
be integrated with other routing protocols.

References

[1] Edonkey Network. Available from: <http://www.
edonkey2000.com>.

[2] Mplayer. Available from: <http://www.mplayerhq.hu/>.
[3] Quicktime Broadcaster. Available from: <http://www.

apple.com/quicktime/products/broadcaster/>.
[4] Wellcome to gnutella. Available from: <http://gnutella.

wego.com>.
[5] Netgames 2003. Second Workshop on Network and

System Support for Games. Available from: <http:
//confman.eecs.umich.edu/netgames2003>.

[6] SIGCOMM 2004. ACM SIGCOMM 2004 Conference.
Available from: <http://www.acm.org/sigcomm/sigcomm
2004/>.

[7] S. Banerjee, B. Bhattacharjee, C. Kommareddy, Scalable
application layer multicast, in: Proceedings of ACM
SIGCOMM, September 2002.

[8] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, S.
Khuller, Construction of an efficient overlay multicast
infrastructure for real-time applications, in: Proceedings of
IEEE INFOCOM, April 2003.

[9] Y. Chawathe, Scattercast: An Architecture for Internet
Broadcast Distribution as an Infrastructure Service, Ph.D.
Thesis, University of California, Berkeley, December 2000.

[10] Y. Chawathe, M. Seshadri, Broadcast federation: an
application-layer broadcast internetwork, In Proc. of the
Int!l Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV), May
2002.

[11] Y. Chu, A. Ganjan, T. Ng, S. Rao, K. Sripanidkulchai, J.
Zhan, H. Zhang, Early experience with an Internet
broadcast system based on overlay multicast, in: USENIX
Annual Technical Conference, 2004.

[12] Y. Chu, S.G. Rao, H. Zhang, A case for end system
multicast, in: Proceedings of ACM SIGMETRICS, June
2000, pp. 1–12.

804 B. Zhang et al. / Computer Networks 50 (2006) 781–806



[13] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M.
Wawrzoniak, M. Bowman, Planetlab: an overlay testbed
for broad-coverage services, ACM Computer Communi-
cation Review 33 (3) (2003) 3–12.

[14] L.H.M.K. Costa, S. Fdida, O.C.M.B. Duarte, Hop by hop
multicast routing protocol, in: Proceedings of ACM
SIGCOMM, September 2001.

[15] F. Dabek, R. Cox, F. Kaashoek, R. Morris, Vivaldi: a
decentralized network coordinate system, in: ACM SIG-
COMM, 2004.

[16] S. Deering, D. Cheriton, Multicast routing in datagram
internetworks and extended LANs, ACM Transactions on
Computer Systems 8 (2) (1990) 85–110.

[17] K. Egevang, P. Francis, The IP Network Address Trans-
lator (NAT), 1994, RFC-1631.

[18] H. Eriksson, MBONE: the multicast backbone, Commu-
nications of the ACM (August) (1994).

[19] A. Fei, J. Cui, M. Gerla, and M. Faloutsos, Aggregated
multicast: an approach to reduce multicast state, in:
Proceedings of 6th Global Internet Symposium (GI2001)
in Conjunction with Globecom, November 2001.

[20] R. Finlayson, R. Perlman, D. Rajwan, Accelerating the
deployment of multicast using automatic tunneling. Inter-
net Draft, IETF, February 2001.

[21] P. Francis, Yoid: your own internet distribution. Available
from: <http://www.isi.edu/div7/yoid/>, March 2001.

[22] P. Francis, R. Gummadi, IPNL: A NAT-Extened Internet
Architecture, in: Proceedings of ACM SIGCOMM!01,
2001.

[23] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, L.
Zhang, IDMaps: a global internet host distance estimation
service, ACM/IEEE Transactions on Networking (Octo-
ber) (2001).

[24] A. Ganjam, H. Zhang, Connectivity restrictions in over-
lay multicast, in: Proceedings of NOSSDAV, June
2004.

[25] S. Guha, Y. Takeda, P. Francis, NUTSS: A SIP-based
approach to UDP and TCP network connectivity, Future
Directions in Network Architecture Workshop, August
2004.

[26] M. Handley, Session directories and scalable Internet
multicast address allocation, ACM Computer Communi-
cation Review 28 (4) (1998) 105–116.

[27] M. Handley, V. Jacobson, SDP: Session Description
Protocol, 1998. RFC-2327.

[28] D. Helder, S. Jamin, End-host multicast communication
using switch-trees protocols, in: Global and Peer-to-Peer
Computing on Large Scale Distributed Systems (GP2PC),
May 2002.

[29] H. Holbrook, B. Cain, Source-specific multicast for IP.
Internet Draft, IETF, November 2000.

[30] J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, J.
O!Toole, Overcast: reliable multicasting with an overlay
network, in: Proceedings of the Symposium on Operating
Systems Design and Implementation, October 2000.

[31] J. Liebeherr, T. Beam, HyperCast: a protocol for main-
taining multicast group members in a logical hypercube

topology, in: Networked Group Communication, 1999,
pp. 72–89.

[32] P. Liefooghe, CastGate: an auto-tunneling architecture for
IP multicast, Internet Draft, IETF, November 2001.

[33] L. Mathy, R. Canonico, D. Hutchison, An overlay tree
building control protocol, in: Proceedings of the Interna-
tional Workshop on Networked Group Communication
(NGC), May 2001.

[34] National Laboratory of Applied Network Research, NSF
Cooperative Agreement No. ANI-9807479, NLANR
active measurement project. Available from: <http:
//watt.nlanr.net/>.

[35] T.S.E. Ng, H. Zhang, Predicting Internet network distance
with coordinates-based approaches, in: IEEE INFOCOM,
2002.

[36] R. Perlman, C. Lee, T. Ballardie, J. Crowcroft, Z. Wang,
T. Maufer, C. Diot, J. Thoo, M. Green, Simple multicast: a
design for simple, low-overhead multicast, Internet Draft,
IETF, March 1999.

[37] S. Saroiu, P.K. Gummadi, S.D. Gribble. A measure-
ment study of peer-to-peer file sharing systems, in: MMCN!
02, January 2002. Available from: <http://www.cs.
washington.edu/homes/tzoompy/publications/mmcn/2002/
abstract.html>.

[38] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson,
RTP: A Transport Protocol for Real-Time Applications,
1996, RFC-1889.

[39] S. Shi, J. Turner, Routing in overlay multicast networks,
in: Proceedings of IEEE INFOCOM, June 2002.

[40] I. Stoica, T.S.E. Ng, H. Zhang, REUNITE: a recursive
unicast approach to multicast, in: Proceedings of IEEE
INFOCOM 2000, March 2000.

[41] D. Thaler, M. Talwar, L. Vicisano, D. Ooms, IPv4
automatic multicast without explicit tunnels (AMT),
Internet Draft, IETF, February 2001.

[42] W. Wang, H. Chang, A. Zeitoun, S. Jamin, Characterizing
guarded hosts in peer-to-peer file sharing systems, IEEE
GLOBECOM Global Internet and Next Generation Net-
works Symposim November. (2004).

[43] W. Wang, D. Helder, S. Jamin, L. Zhang, Overlay
optimizations for end-host multicast. in: Proceedings of
the Int!l Workshop on Networked Group Communication
(NGC), October 2002.

[44] W. Wang, C. Jin, S. Jamin, Network Overlay Construction
under Limited End-to-End Addressability, Technical
Report CSE-TR-489-04, EECS Department, University
of Michigan, 2004.

[45] B. Zhang, S. Jamin, L. Zhang, Host Multicast: a frame-
work for delivering multicast to end users, in: Proceedings
of IEEE INFOCOM, June 2002.

[46] B. Zhang, S. Jamin, L. Zhang, Universal IP multicast
delivery, in: Proceedings of the International Workshop on
Networked Group Communication (NGC), October 2002.

Beichuan Zhang is an Assistant Professor in the Department of
Computer Science at the University of Arizona. He received his
Ph.D. in Computer Science from the University of California,

B. Zhang et al. / Computer Networks 50 (2006) 781–806 805



Los Angeles in 2003, and spent a year at USC/ISI as a Post-
doctoral research associate. His research interests include
Internet routing, overlay networks, multicast, network mea-
surement and performance evaluation.

Wenjie Wang is a Ph.D. candidate in Electronic Engineering and
Computer Science Department at the University of Michigan,
Ann Arbor. His areas of research interest include end-host
multicast, peer-to-peer system, DDoS resilient overlays, net-
work protocol and security, video/audio streaming. Previously,
he got his B.S. degree in the Department of Computer Science
and Technology of Peking University, and he received his M.S.
degree in EECS department of the University of Michigan.

Sugih Jamin is an Associate Professor in the Department of
Electrical Engineering and Computer Science at the University
of Michigan. He received his Ph.D. in Computer Science from
the University of Southern California, Los Angeles in 1996 for
his work on measurement-based admission control algorithms.
He spent parts of 1992 and 1993 at the Xerox Palo Alto
Research Center, was a Visiting Scholar at the University of
Cambridge for part of 2002, and a Visiting Associate Professor
at the University of Tokyo for part of 2003. He received the
ACM SIGCOMM Best Student Paper Award in 1995, the
National Science Foundation (NSF) CAREER Award in 1998,

the Presidential Early Career Award for Scientists and Engi-
neers (PECASE) in 1999, and the Alfred P. Sloan Research
Fellowship in 2001.

Daniel Massey is an assistant professor at Computer Science
Department of Colorado State University and is currently the
principal investigator on DARPA and NSF funded research
projects investigating techniques for improving the Internet
routing infrastructures. He received his doctorate from UCLA
and is a member of the IEEE, IEEE Communications Society,
and IEEE Computer Society. His research interests include
fault-tolerance and security for large scale network
infrastructures.

Lixia Zhang is a professor in computer science department at
UCLA. She received her Ph.D. in computer science from MIT
and was on the research staff at the Xerox Palo Alto Research
Center before joining UCLA in 1995. In the past she has served
as vice chair of ACM SIGCOMM and Co-Chair of IEEE
Communication Society Internet Technical Committee. She is
currently a member of the Internet Architecture Board. Her
research interest includes resiliency for large scale distributed
systems such as Internet routing infrastructure and the global
DNS system.

806 B. Zhang et al. / Computer Networks 50 (2006) 781–806


