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Abstract—NDN-JS is a pure JavaScript implementation of a
client-side library for Named Data Networking (NDN). The initial
purpose of designing this library was to simplify the development
and deployment of NDN applications. It enables developers to
create Web applications using the NDN protocol and to deliver
them to end users without the installation of the CCNx package.
This report describes how NDN-JS implements the core protocol
functions and provides a set of high-level APIs that abstract
the communication primitives and packet processing operations.
It also includes a performance evaluation which identifies a
throughput bottleneck caused by the RSA public key operations
implemented in JavaScript, and introduces some optimizations
to mitigate them. The library has been successfully adopted
inside and outside the NDN project team to create various Web
applications shortly after it became available, which provides
evidence for the usefulness and potential value of the library.

I. INTRODUCTION

NDN [1]–[3] is a recent proposal for a future Internet archi-
tecture design. NDN treats data as first-class entities in network
communication and replaces IP addresses with data names at
the narrow waist of the ‘hourglass’ Internet architecture. NDN
defines two packet types, Interest and Data, that carry data
requests and replies, respectively. Since NDN directly names
data rather than hosts on the network, applications issue an
Interest for a specific data name or prefix, which is consumed
by the returned data segment (also called a Content Object)
that has a longest match with the requested name. In order
to achieve flow balance, NDN mandates that one Interest can
only retrieve one Content Object and each Content Object has
a unique data name. If the requested name prefix matches
multiple data segments, NDN uses the Selector fields in the
Interest packet to determine which segment should be returned.
Additionally, every Content Object contains a signature field
that enables data consumers to verify the authenticity of the
received piece.

Up to now researchers experiment with NDN by using
the CCNx user-space package1 that includes a router daemon
(‘ccnd’), command-line tools, and a set of client libraries for
application development. In order to run NDN applications,
users must first install the CCNx package and start ‘ccnd’
as the background service. This requirement has become an
obstacle to large scale NDN experimentation for two reasons.
First, the installation and configuration of ‘ccnd’ requires the
understanding of the protocol design and significant skill in
low-level system management. Second, the CCNx package
is not well supported on some platforms, such as Microsoft

1The CCNx package is a prototype implementation of NDN, available at
http://www.ccnx.org/.

Windows and iOS. Therefore, it is desirable to have a more
‘lightweight’ solution for bringing NDN services to average
Internet users.

From a developer’s perspective, the functionality of the
current CCNx libraries is also rather limited. CCNx provides
APIs in C and Java languages. The C API is optimized for
performance but requires developers to work directly with
low-level protocol details (e.g., the CCNx binary XML packet
encoding format [4]). It also requires one to program explicit
memory management for NDN packets, which can be complex
and error-prone. On the other hand, the Java API hides the
protocol features completely and only exposes data-stream
oriented interfaces. As a result, applications using Java API
have little control over the network communications (such as
disabling the retransmission of Interest packets). Moreover, the
stream-based operations are sometimes unsuitable for certain
types of NDN applications.

To address the above issues, Derek Kulinski and Jeff Burke
from UCLA developed a Python binding, called ‘PyCCN’ [5],
on top of the CCNx C API. This Python API captures the key
elements of the NDN protocol in a straightforward way and
enables developers to create portable programs conveniently
without touching the packet composition operations unless
necessary. PyCCN obtains several important features as a
client library, such as portability, developer-friendliness and
code simplicity. However, it still binds to the C API and
requires installation of the CCNx package for both application
developers and users.

In this paper, we present NDN-JS, an NDN client library
implemented in pure JavaScript. NDN-JS benefits from the
experience of building and using the existing APIs, and it
facilitates the spread of NDN usage by reducing the com-
plexity of protocol deployment. It implements the NDN stack
completely from scratch without dependency on the CCNx
library or ‘ccnd’ service on the local host. It retains the
programming interface design of PyCCN that simplifies the
application development process. (Note that NDN-JS does not
provide packet forwarding; at this time it relies on a remote
‘ccnd’-style daemon to provide the forwarding function.)

The selection of JavaScript is based on the following con-
siderations. First, JavaScript itself is a powerful language that
provides inherent support for object-oriented and closure-based
asynchronous programming styles, both of which are critical to
NDN application development. Moreover, JavaScript runs di-
rectly in Web browsers, which enables NDN-JS applications to
be easily deployed on many network-capable devices. Finally,
an easy-to-program language like JavaScript can encourage



development and experimentation with NDN protocol, and
introduce NDN to a larger audience of developers.

After its release to the public at the end of 2012, NDN-JS
quickly attracted wide interest from both inside and outside the
NDN project team. Several Web applications have been created
using the library, which provide valuable insight into the
evolution of the NDN-based Web architecture and the design
of the library itself. By the time of this writing, NDN-JS has
been widely adopted in building lightweight NDN applications,
creating Web interfaces for distributed NDN services and fast
prototyping in NDN research projects. We believe NDN-JS
will also play an important role in promoting NDN use outside
of our project team and sharing NDN applications with existing
Internet users.

The remainder of this paper is organized as follows: Sec-
tion II describes the design and implementation of the NDN-
JS library; Section III analyzes the performance of the library
through a set of file fetching tests and proposes two algorithms
that can boost the throughput; Section IV and V introduce
new applications created with NDN-JS; Section VI discusses
the current challenges and open questions in developing the
library; finally, Section VII concludes the paper and discusses
future work.

II. SYSTEM DESIGN

A. Design Goals

NDN-JS was designed with the following goals in mind:

1) Pure JavaScript Implementation: The library should
be implemented in pure JavaScript, functioning without any
dependency on the native code, including Java Applet modules
or Flash plug-ins. The library should target compatibility with
popular Web browsers.

2) CCNx Compatibility: The NDN packets generated by
NDN-JS should be wire-format compatible with the CCNx
library [3], allowing Web users to connect to existing NDN
nodes. (Typically, an NDN-JS node will connect to some NDN
router and use that router as the default gateway to access the
NDN testbed.)

3) Easy-to-use API: The library should provide a
developer-friendly API that eases application development
with the NDN architecture. The interface should provide a
level of abstraction that hides protocol details (such as packet
format and encoding, etc.) while still reflecting the general
model of NDN communications.

B. Architecture

Figure 1 shows the class stack of the NDN-JS library. The
important entities in NDN, such as Interests, Content Objects
and Names, are abstracted as JavaScript objects. Security
libraries provide data signing and verification functionality
required by the architecture2. The library also implements
a set of encoding/decoding helpers that are responsible for
converting protocol entity objects to/from ‘ccnb’ [4] formatted
byte streams.

2The RSA cryptography utilities used by NDN-JS are also written in pure
JavaScript.
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Fig. 1. NDN-JS library architecture

TABLE I. TESTED BROWSER SUPPORT OF NDN-JS

Browser Version Test Platform

Chrome 23.0 Windows / Mac OS X

Firefox 17.0.1 Windows / Mac OS X

Safari 6.0.2 Mac OS X

Internet Explorer 10.0 Windows

Firefox Mobile 17.0 Android

Safari Mobile 6.0.1 iOS

The NDN class (at the top of the diagram) exposes abstract
interfaces for common communication operations such as
issuing Interests to the network or registering prefixes in order
to publish Content Objects. This class provides an object-
oriented NDN protocol handle, akin to a file descriptor in
traditional socket programming.

The transport class at the bottom of the stack is responsible
for sending and receiving NDN packets on the network. NDN-
JS employs a closure-based asynchronous communication
style, which is familier to Web developers. The asynchronous
Web communication was first introduced by the XMLHttpRe-
quest [6] interface (better known as ‘AJAX’), where the
HTTP request is issued with a registered callback function.
This function is invoked asynchronously upon the reception
of incoming replies. NDN-JS uses the new WebSocket [7]
protocol, which follows the AJAX communication paradigm
but enables Web applications to set up bi-directional TCP
communications with remote hosts.

Table I shows a list of browsers that support the NDN-
JS library, including browsers running on smartphones3. The
version number shown in the list reflects the version we used
in our tests, which is not necessarily the supported minimum
version.

In the next two subsections, we discuss the WebSocket
transport and the NDN-JS API in detail.

C. WebSocket Transport Service

Traditional HTTP-based Web communication interfaces,
such as synchronous GET/POST and asynchronous XML-
HttpRequest, lack ‘server push’ capability. That is, an HTTP

3Apple currently does not allow third-party JavaScript engines to run on
iOS. All the mobile browsers on iOS use the same Safari engine and thus
support NDN-JS.
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Fig. 2. WebSocket proxies enable browsers to connect to the NDN testbed.

server cannot send data to the client without being requested
by the client first, nor can it send a request to the client.
The WebSocket protocol provides a JavaScript interface to
enable non-HTTP and full-duplex TCP connections from Web
browsers to any remote host. As part of the next generation
Web technologies loosely called HTML5, WebSocket support
has been implemented in many popular Web browsers. Use of
this transport enables NDN-JS to meet the design goal of a
‘pure JavaScript’ solution.

NDN-JS separates the transport implementation from the
rest of the API, enabling developers to extend the library with
their own transport libraries. One recent example has been
support for raw TCP and UDP in the browser add-on, as
described in Section V.

One drawback to the WebSocket approach is that the
current implementation of CCN routers (running ‘ccnd’ dae-
mon) does not support the WebSocket protocol. As a work-
around, we developed a simple proxy that accepts WebSocket
connections from NDN-JS instances and passes the NDN
packets over TCP/UDP to CCN routers.

Figure 2 illustrates the relationship between the three enti-
ties: client Web browser, WebSocket proxy and CCN routers
on the NDN testbed. A client browser runs NDN-JS and
establishes WebSocket connection to a proxy. Upon receiving a
WebSocket frame, the proxy extracts the original NDN packet
and forwards the packet to the pre-configured CCN router via
TCP or UDP. In this case, the router simply functions as the
default gateway for the client browser. When an NDN packet
is received from the router, the proxy encapsulates the packet
into WebSocket frames and forwards to the browser.

The WebSocket proxy is implemented in straightforward
JavaScript and runs on Node.js [8], a widely used JavaScript
execution platform. The proxy listens on TCP port 9696, one
greater than the CCN daemon (9695). This enables operators
to easily deploy the WebSocket proxy on the same host as
a CCN daemon. In the future, we plan to rewrite the proxy
using native C code and/or integrate it into ‘ccnd’, in order to
achieve better performance and eliminate the dependencies on
Node.js and its modules.

D. Application Programming Interface

The design of the application programming interface in
NDN-JS follows the lessons we learned from the design of
PyCCN. The top-level NDN class in NDN-JS exports two

important methods, expressInterest() and registerPrefix(), for
data fetching and publishing, respectively. expressInterest()
will compose an Interest packet based on the information
provided by the caller and send this packet to the remote
CCN router to which NDN-JS connects. registerPrefix() will
register an NDN Name prefix by sending a special type of
Interest packet to the remote CCN router and then wait for
incoming Interests that request data under that prefix. Both
APIs incorporate an event-driven asynchronous programming
paradigm and require the caller to provide closures for event
handling.

The following two pieces of sample code demonstrate basic
the use of these two APIs for fetching and publishing NDN
data.

var onData = function (interest, co) {
// ’Data’ event handler
console.log(co.to_xml());

};

var onTimeout = function (interest) {
// ’Timeout’ event handler
ndn.close();

};

var ndn = new NDN(); // NDN protocol wrapper

ndn.onopen = function () {
var n = new Name(’/ndn/ucla.edu/foobar’);
ndn.expressInterest(n, null, onData, onTimeout);

};

ndn.connect();

Listing 1. Data retrieval example.

var onInterest = function (inst) {
// ’Interest’ event handler
var co = new ContentObject(inst.name,
’Hello, NDN-JS.’);

co.sign(ndn.getDefaultKey());
ndn.send(co);

};

var ndn = new NDN(); // NDN protocol wrapper

ndn.onopen = function () {
var n = new Name(’/ndn/ucla.edu/foobar’);
ndn.registerPrefix(n, onInterest);

};

ndn.connect();

Listing 2. Data publishing example.

NDN-JS exports a set of helper functions to manipulate
the protocol entities, including converting NDN Names from
‘ccnb’-formatted byte array to URI-formatted string represen-
tation and vice versa, and adding a component at the end of an
existing Name object. The encoding/decoding libraries provide
interfaces for processing ‘ccnb’-encoded NDN packets in wire
format, which enables developer to create applications that
need to touch the low-level protocol details in JavaScript.

III. EVALUATION

In this section, we benchmark the performance of NDN-JS
library by measuring the throughput of content retrieval for
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different web browsers. We also compare the throughput with
that of the CCNx command-line utility implemented with the
C library. Additionally, we explore the performance impact of
the signature verification and propose several ways to speed
up that process in the context of fetching large files segmented
into multiple Content Objects.

A. Methodology

We conducted all the experiments in an isolated network
environment with two test machines connected to each other
via a 100 Mpbs Ethernet link as shown in Figure 3. The client
machine executes NDN-JS test scripts in Web browsers, which
retrieve a file from the server machine via NDN. The server
hosts three different processes for the test purpose:

• ‘ccnd’ daemon, which forwards NDN packets to the
proper destination processes;

• WebSocket proxy, which directs NDN packets between
the NDN-JS client and the ‘ccnd’ daemon;

• ‘ccnr’ daemon, which stores the Content Objects that
will be fetched by the NDN-JS client.

During the test, the client retrieved a JPEG image of
917 KB. The source file was pre-published into ‘ccnr’ using
‘ccnputfile’ utility, which automatically cuts the input file into
224 chunks (4096 bytes per chunk by default) with consecutive
segment numbers. The segment number is appended to the end
of the NDN name under which the file is published to give
each each chunk a unique name under the common prefix. The
publishing utility also signs each data segment and includes the
RSA signature the Content Object.

We ran the same test scripts on three popular Web browsers
available on Mac OS X: Firefox, Chrome and Safari. Each test
was repeated twenty times and the average result used. Using
NDN-JS, we implemented a special closure that automatically
fetched all the chunks of the file sequentially. To compute
the throughput, we recorded the start and stop time of the
entire fetching process in JavaScript. To test the C library,
we used the ‘ccncatchunks2’ command in CCNx to fetch the
segmented file and then read the transmission time from the
log information.

TABLE II. BASIC ALGORITHM THROUGHPUT (UNIT: MBPS)

Verification
NDN-JS (WebSocket) CCNx C utility

Chrome Firefox Safari (Raw TCP)

Off 16.01 14.80 17.43 21.68

On 7.202 2.097 2.895 21.19

B. Analysis

1) Basic Fetching Algorithm: The first row of Table II
shows throughput with signature verification turned off for
both NDN-JS and the C utility. The test script used a naive
algorithm that issues one Interest at a time and does not issue
the next Interest until the Content Object for the previous
request is returned (i.e. no pipelining). To be consistent, we
also disabled the pipelining option in the C utility.

The performance of NDN-JS varies slightly across the
browsers due to their different JavaScript engines. Interest-
ingly, in this case, the performance of NDN-JS and the C
utility are not far apart from each other. Both are much lower
than the line-speed of the underlying 100Mbps network. Note
that the direct point-to-point TCP throughput between the two
test machines can easily achieve more than 90 Mbps (measured
by the ‘iperf’ utility) because of the built-in pipelining feature
of TCP.

2) Signature Verification Performance: Signature verifica-
tion is a mandatory operation in NDN protocol and is critical to
the NDN security model. To meet our design goals, NDN-JS
implements the signature verification process with an open-
source third-party RSA library written in pure JavaScript [9].
Since JavaScript is not optimized for big-integer computations
(which is one of the basic operations in RSA cryptography),
signature verification becomes a bottleneck in data packet
processing.

To measure the performance impact of cryptographic com-
putations in NDN-JS, we repeat the same throughput test
with signature verification enabled. The experimental result is
shown in the second row of Table II. We can see that the signa-
ture verification operations greatly reduce the performance of
content fetching of NDN-JS. Chrome achieves about 45% of
the throughput in the non-verification case, which is already the
best performance among the three browsers. In clear contrast,
the performance of the C utility is only slightly affected by
the signature processing.

Currently there is no built-in cryptography API in Java-
Script that performs signature verification in Web browser
kernel using efficient, native code. In order to improve the
performance, another method must be used to speed-up the
fetching process. The application level transmission delay in
NDN-JS is comprised of two parts: the network transmission
delay and the JavaScript processing delay. In the next two
subsections, we consider two possible optimization techniques
that reduce these two types of delay, and we analyze their
effects with experiment results.

3) Optimization Method 1: Pipelining: The throughputs of
both NDN-JS and the C utility are significantly lower than
line-speed (100 Mbps). One reason for such low performance
is that the previous tests used a naive stop-and-wait fetching
algorithm. To improve fetching efficiency, we can borrow the
pipelining technique from TCP and allow the client to issue



TABLE III. PIPELINING ALGORITHM THROUGHPUT (UNIT: MBPS)

Verification
NDN-JS (WebSocket) CCNx C utility

Chrome Firefox Safari (Raw TCP)

Off 51.33 61.60 67.77 72.84

On 10.85 2.352 3.187 72.50

several requests in a row and keep the underlying network
‘pipeline’ full of packets.

We implemented a pipelined fetching algorithm similar to
the TCP ‘slow start’ algorithm. In this case, NDN-JS maintains
a sliding window of outstanding Interests. The window size
starts from 1 and is bounded by a maximum value. Every
time a segment is returned within the Interest lifetime, the
window size is increased by 1 to allow more Interests to be
sent. When the retransmission timer expires, the window size
is shrunk back to 1. The C utility ‘ccncatchunks2’ we used
in the test also implements a similar algorithm, which can be
enabled with a ‘-p’ command option. The maximum pipeline
size is set to 32 for both NDN-JS scripts and the C utility in
our test.

Table III shows the throughput of the pipelining algorithm.
We can see that, for the non-verification case, both NDN-JS
and the C utility achieve significant increase in throughput,
and the NDN-JS throughput still closely follows that of the
C utility. However, when verification is enabled, pipelining
did not improve NDN-JS throughput much, leading to the
conclusion that JavaScript processing delay led to the low
throughput in the previous test.

4) Optimization Method 2: Delayed Verification: With the
understanding that the performance bottleneck comes from
JavaScript processing, we used the JavaScript profiler inte-
grated in three Web browsers to analyze the execution time
of the test scripts. The profiling result indicates that a large
portion of the running time is spent on functions that perform
RSA signature and SHA hash computations. This inspires us
to consider the possibility of reducing the number of times
that the cryptography library is invoked in order to improve
throughput in this case.

In the current CCNx implementation of the ‘ccnputfile’
utility, the signature for different segments of the same file
is generated via a Merkle hash tree [10] when the file is
fragmented and published into the repo. A Merkle hash tree
is constructed by placing n Content Objects at the leaf nodes
of a binary tree with a depth of dlog(n)e+1. Each internal or
leaf node has a hash value; the hash of a leaf node is simply
the hash of the data bytes stored in that node, while the hash
of a internal node is the hash on the concatenation of the hash
values from its two children. The Merkle hash tree ensures
that every internal node has two children. Otherwise the single
child is ‘pushed’ up and merged with its parent. Figure 4 shows
a simple Merkle hash tree with seven leaf nodes.

When signing multiple segments at the same time using a
Merkle hash tree, the signature is computed over the hash of
the root node of the tree and shared by all the segments. Due
to the consideration of flexibility, the protocol used by CCNx
was designed to be able to verify each segment independently,
by including a ‘Witness’ component in the data packet that
encodes the position of the leaf in the hash tree as well as
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Fig. 4. Merkle hash tree with 7 leaf nodes

the hash values of all the sibling nodes along the path to the
root. Upon receiving a Data packet, one can walk up along the
path to compute the hash of the root node using the hash of
the received data and the sibling node information, and then
verifies the signature of the root hash. The default verification
algorithm in the NDN-JS library is implemented in this way.

Consider a full Merkle hash tree with n leaf nodes: the
Merkle hash tree signing scheme was originally proposed to
reduce the signing cost as the publisher only needs to compute
2n hashes and 1 signatures for the entire hash tree. However
signature verification per leaf node will invoke log(n) calls
to the SHA hashing function and 1 call to the RSA signature
computation. Thus to verify each of the n leaf nodes on the
hash tree, the library needs to compute total nlog(n) SHA
hashes and n RSA signatures. In the case of multi-segment
file fetching, given the consumer eventually fetches all the
segments, it can elect to delay the signature verification until
it have collected all the segments and then construct the entire
hash tree only once. In that case, the complexity of computing
O(nlog(n)) hashes and O(n) signatures can be reduced to just
O(n) hashes and O(1) signatures.

To evaluate the performance of a delayed verification
algorithm based on this observation, we disabled the default
signature verification process of NDN-JS and implemented the
new approach for both the basic and the pipelining fetching
algorithm. The throughput results of the new tests are shown
in Table IV4. We can see that delayed verification strategy
can indeed improve the performance of NDN-JS for multi-
segment files. For example, the file fetching throughput in
Firefox reaches about 32 Mbps with the pipelining turned
on, which is a 10-fold improvement from the previous result.
Also note that since the JavaScript execution bottleneck is
alleviated, ttransport pipelining shows more significant impact;
the throughput at least doubles across all browser platforms
compared to the non-pipelining case. Keep in mind, however,
that this delayed verification scheme may place limitations on
progressive display or delay of file usage, given that early
segments are not verified immediately upon arrival.

4We did not implement the delayed verification for the C utility since the
cryptographic computations in C code do not cause much performance penalty.



TABLE IV. DELAYED VERIFICATION ALGORITHM THROUGHPUT
(UNIT: MBPS)

Pipeline
NDN-JS (WebSocket)

Chrome Firefox Safari

Off 8.476 12.88 11.00

On 15.38 32.08 24.79

Fig. 5. Building monitoring platform page.

IV. APPLICATION I: WEB INTERFACES

Since its release the NDN-JS library has been used in
several projects to build Web applications with NDN. These
projects explore the capability and potential benefits from
NDN-based Web services, and provide valuable feedback on
the library design and implementation. In this section, we
introduce a few representative projects powered by the NDN-
JS library, which are either publicly available on the Internet
or integrated with local applications.

A. Building Monitoring Platform Website

The NDN building monitoring platform is being developed
by Wentao Shang from UCLA as part of a larger project
exploring the design of a NDN-based Building Automation
System. In this platform, background processes collect sensor
data indicating, for example, electrical demand, and it as
Content Objects into a repository. When users load the front-
end web page in their browsers, NDN-JS is used to fetch the
data and render it using JavaScript visualization libraries.

The building monitoring platform tests NDN Interest ex-
clusion filter support in NDN-JS, which enables the client to
fetch only the Content Objects under a prefix whose child name
component falls in a specific range. The platform encodes the
data acquisition timestamp as the last component in the NDN
name. The NDN-JS client then specifies in the Exclude filter
the time range it is interested in and issues Interests to retrieve
the data in that range directly.

Figure 5 shows a snapshot of the platform running inside
a browser.

B. NDN Lighting Control Web Interface

Alex Horn and Wentao Shang from UCLA developed
the Web interface for the NDN lighting control system [11],

Fig. 6. Lighting control Web interface.

another pilot component of the NDN Building Automation
System project. Lighting controllers receive Interest packets
that serve as authenticated commands. The control commands
are expressed as NDN names that include a signature as the
last name component, which serves as the access control au-
thenticator. The operators sign their commands and then send
the authenticated Interest packets to the lighting controllers,
which verify the signature and carry out operations (change
lighting levels) accordingly.

The lighting control system was originally implemented
by Alex Horn using PyCCN. A Web control interface was
implemented via a Python-based CGI on the Apache server.
Wentao Shang ported the Interest authentication approach to
JavaScript and used it, together with NDN-JS, to implement a
new version of the control interface which issues commands
directly from Web browsers to the light controllers, without the
server indirection. The prototype system is deployed in UCLA
TV#1 studio in Melnitz Hall. Figure 6 shows a screen capture
of both the control and monitoring interface5.

C. NDN Testbed Router Status Website

Adam Alyyan from the University of Memphis used the
NDN-JS library to build a monitoring website that reports the
status of NDN routers on the testbed. This application uses the
‘ccnping’ protocol [12], which is ported to JavaScript by Jeff
Burke from UCLA. ‘ccnping’ is similar to the traditional ‘ping’
utility that is based on ICMP Echo/Echo Reply messages.
The ‘ccnping’ client issues an Interest with a special name
containing a random number as the last component. The
‘ccnping’ server will simply reply with a Content Object that
includes the same random number as the data content. The
NDN router status website implements the ‘ccnping’ protocol
with NDN-JS and uses it to detect NDN router failures or
reachability problems. Figure 7 shows a snapshot of the router
status page in a browser. This monitoring website is publicly
available at http://netlab.cs.memphis.edu/script/htm/status.htm.

D. ChronoShare File Change History Page

Alexander Afanasyev and Zhenkai Zhu from UCLA incor-
porated an NDN-JS powered Web service in their recently-
developed distributed application called ‘ChronoShare’ [13],

5Due to privacy consideration, the sensing and control pages described
above are not publicly available.



Fig. 7. NDN testbed router status page.

Fig. 8. ChronoShare history page

which provides ‘Dropbox’-like functionalities to synchro-
nize file folders on different devices using NDN protocol.
ChronoShare provides users a Web page that can display the
history of file changes in the shared folders. To view the history
in a Web browser, users just need to click a button on the
application’s menu bar, which will automatically load the web
page in the default Web browser. Figure 8 shows a snapshot
of the ChronoShare file change history page.

E. CCNx Federated Wiki

Ryan Bennett et al. ported an open source wiki imple-
mentation called ‘Smallest Federated Wiki’ to run over NDN.
It enables authors to publish wiki content as NDN Content
Objects over the NDN network in a fully distributed, peer-to-
peer fashion, while enjoying the benefits of intrinsic security
support and in-network data caching. User-generated content is
stored inside the client browser using HTML5’s ‘IndexedDB’
API [14]. The client code calls the ‘registerPrefix’ API in
NDN-JS to register the publisher’s prefix to a remote NDN
router. The Interests for data falling under that prefix will be
forwarded by the NDN router to the client browser, which then
replies with the matching content.

CCNx Federated Wiki shows a typical example of using
Web browsers as NDN Content repositories. It also demon-
strates how the browser-based local storage can be used to
manage user-generated or fetched NDN data, using the latest
HTML5 technologies, and motivates our interest in browser-

based forwarding discussed below. Currently this project is
still under development; the prototype source code is publicly
available [15].

V. APPLICATION II: FIREFOX NDN PROTOCOL
AND TOOLBAR ADD-ON

A. Basic Design

Jeff Thompson employed NDN-JS to create a Firefox NDN
add-on in JavaScript that implements an ‘ndn:’ URI scheme,
which can be entered in the browser location bar or used in
HTML anchor tags. Its goals are to exercise the library and to
provide a familiar browser interface for experimentation with
NDN. Taking advantage of the modularity of NDN-JS, the
add-on implements a new transport service using the Firefox
XPCOM interface [16], enabling direct connection to NDN
routers via raw TCP or UDP sockets without the need for
WebSockets proxy.

For this add-on, an Interest is converted into a URI using
the following naming conventions.

• The Name field of the Interest (including content
version and segment number) is encoded in the URI
according to the CCNx URI scheme. For example,
ndn:/ucla.edu/contact.html/%00%01 refers to the sec-
ond segment of /ucla.edu/contact.html.

• Interest selector fields, such as the ChildSelector,
AnswerOriginKind, etc. are appended to the URI in
the form of ?ndn.SelectorField=value. For example,
ndn:/ucla.edu/maps.html?ndn.ChildSelector=1 selects
the rightmost child of the corresponding content. This
exposes significant features of NDN.

When processing a URI beginning with ‘ndn:’, Firefox
automatically calls the add-on to retrieve the content. The
add-on converts the URI to a Name and requests the content
via NDN. If the content is fragmented (i.e., the name of the
first packet returned contains a segment number) while no
segment number is specified in the original Interest name, all
the segments of that content will be fetched sequentially until
the last segment is met. This approach works directly with files
stored in the CCN Repo using its standard naming conventions.

B. Additional features of the Firefox Add-On

In addition to enabling content fetching via NDN and its
benefits of multicast delivery and in-network caching, the add-
on also helps us explore how to provide various application-
level possibilities to content publishers and consumers via
NDN. A few such features have been implemented in Java-
Script using NDN-JS as described below.

1) Long-term Secure Links: NDN support in the browser
may provide the option for consumers to verify that a piece of
named (static) content retrieved a long time after its creation
is indeed the content originally linked with a URI. This can
be achieved by including a content digest in the URI. Our im-
plementation supports this by enabling an application to create
names with a ContentDigest after the version, using the “guid”
special marker “%C1.M.G” [17]. E.g. a user may express an
interest for a license file ndn:/example.com/license.html which
matches:



ndn:/example.com/license.html/%FD%05%0BZ%94%B4l/
%C1.M.G%C1<binary-XML-encoded ContentDigest>

In this case, the add-on detects the special name component,
computes the digest of the received file, compares this to the
ContentDigest in the name, and shows an error if they do not
match.

This could be used not only by web-based applications but
also by the browser itself. Say, for example, the user views
some content from the network and bookmarks the URI, the
browser can at that time append a ContentDigest to the URI.
Much later, the user can view the same content again by
clicking the bookmark to retrieve the same file, perhaps from a
caching repository. The digest can be verified against the one
in the bookmark, and the user will know if she is viewing the
exact same content, even if the signer’s private key has been
compromised in the meantime. (This, of course, assumes that
the hash algorithm used to generate the digest is secure at the
time of retrieval.)

2) Get Latest Version: In NDN, application-level protocols
often require more than one Interest/Data exchange to retrieve
the desired data. Retrieving the latest version of named content
is an example case: it is typically implemented by iterative
requests for named data using the ChildSelector and Exclusion
fields in the Interests to get the most recent version of the
content6. The add-on implements this design pattern in Java-
Script and exposes it to the user of the browser. If a data name
(URI) uses the CCNx versioning strategy, the user can click
Get Latest in the NDN toolbar to request the latest, which
issues the appropriate requests, and still verifies the overall
ContentDigest if used. Such common routines may likely be
backported to the NDN-JS library.

3) Representing NDN Semantics to the End User: Through
the add-on, we plan to explore how best to convey NDN
semantics and common patterns to browser users and test
the direct application of NDN as an HTTP alternative. For
example, if the user puts a prefix in the address bar that
is matched with a longer name, the browser updates the
address bar with the full name (without segment number) after
retrieval. This is particularly important to show the version
number of content retrieved, whenever applicable.

VI. DISCUSSION

NDN-JS is a young project and continues to evolve with
both the NDN architecture and latest Web technologies. During
the development of this project, we experienced a number of
challenges and open questions, which we discuss briefly here.

A. Local storage

Limitations in JavaScript enforced by the security model
of modern Web browsers are faced by any web application.
The important role of storage in NDN makes local file system
accessibility a key example: Current Web browsers prohibit
JavaScript from accessing local disk storage, which forces
NDN-JS to store all the fetched or self-generated content
objects in memory, either as raw data or organized into
structural storage (such as the IndexedDB used in the CCNx

6For an example, see the discussion of live video streaming in [18].

Wiki project). The HTML5 standard provides a File API [19]
for Web applications to access a sand-boxed file system, which
is, however, not yet widely supported. The lack of permanent
storage capability makes it difficult to implement what we
expect to be standard NDN functionality, such as writing
fetched data into local disk or publishing local files as Content
Objects. This forces otherwise distributed applications like
CCNx Wiki to reply on remote repositories.

The lack of local file accessibility also creates an issue
with security key configuration. In other NDN client APIs
such as PyCCN, it is convenient and easy to load a user-
provided ‘.pem’ key file and use it for data signing. In NDN-JS,
however, a user cannot access a key file from a local disk. The
temporary solution used by NDN-JS now is to hardcode the
default RSA key bytes in the library. We plan to implement
more elegant key configuration methods like fetching key data
via secured links from Web servers or retrieving the key data as
an NDN Content Object from the NDN repository. However,
those methods are less flexible and require a trust relationship
between the end-user and key management server. Currently,
we are still investigating other possible solutions to the Web-
based key configuration issue.

B. Cryptographic performance

A significant performance challenge we encountered ear-
lier is the low efficiency of current JavaScript engines for
cryptographic computations. We have already seen in Sec-
tion III that the signature verification process is the main
burden on the throughput. Since JavaScript is not designed to
support big-integer operations, it is generally hard to optimize
cryptography operations in pure JavaScript implementations.
Recently, there have been discussions about the possibility
of extending the JavaScript native API with cryptographic
features and its implication on the Web security model. For
example, W3C is already working on a draft proposal for
a Web Cryptography API [20]. If such security-related APIs
were added to JavaScript, we would be able to offload the
computation-intensive tasks into browser kernels and boost
the performance of NDN-JS, likely catching up with the C
implementations.

C. Forwarding support

There has been debate inside the NDN-JS project team
about whether to integrate the full ‘ccnd’ functionality into
the library. In particular, like other client libraries, NDN-JS
does not yet implement the forwarding functionality of the
NDN architecture. As a result, NDN-JS clients must connect
to a pre-configured NDN hub and Websocket proxy in order
to access an NDN network. This is equivalent to setting a
default route for the browser-based NDN nodes. In the future,
we may want clients to have a more robust forwarding strategy
(e.g., favoring shorter paths in local communication instead of
going through a remote hub at all times). We are still exploring
the implications of providing this functionality, which would
effectively turn Web browsers into NDN routers.

D. Application conventions

An application-related design challenge is the integration
of NDN protocol into Web services. Both NDN and the current



Web architecture share the same communication paradigm
driven by data request and retrieval. Therefore it is quite easy
to convert the current Ajax-style Web services into NDN-
based applications. However, since NDN Interests support
more expressive features directly, such as Interest selectors,
there is still an open question about how to best employ these
additional features to build more powerful Web applications.

Additionally, how to render NDN ContentObjects in Web
browsers is another issue to be addressed. Current Web
standards extend HTTP with MIME to express content type,
which is likely to be adapted by NDN-JS to specify content
type. Though this is application-specific, we still need some
convention to guide the Web development with NDN-JS.

E. Data-centric security

Another design challenge in NDN-JS is to construct a new
Web security model using NDN’s inherent security features.
Traditional Web security relies heavily on secured transport
support (e.g. HTTPS). While the current solutions attempt to
secure the underlying communication channel, the NDN archi-
tecture secures data directly [21], which can provide a more
flexible and scalable security approach. The data-centric nature
of NDN eliminates the need for traditional origin-based Web
access control model, including the widely-adopted ‘Same-
Origin’ Policy (SOP) and the negotiation-based Cross-Origin
Resource Sharing (CORS) [22]7. However, new standards that
can be easily deployed must be developed. We believe that
Web access control policy could be enforced through the NDN
convention of encryption-based control scheme (e.g. using
authenticated Interest [11]), which provides finer granularity
of data access management, although this is still an ongoing
research topic.

VII. CONCLUSION AND FUTURE WORK

In this report we described NDN-JS, a JavaScript client
library created to facilitate the development and deployment
of NDN applications for the Web. We analyzed the library’s
throughput performance with different optimization strategies
in the context of file fetching. We also discussed several
running Web applications powered by NDN-JS and the chal-
lenges faced in further development of the library. The original
design goal of creating a lightweight and easy-to-use NDN
client library has proven to provide usability and efficiency in
application development.

NDN-JS serves as a first exploration of an NDN-based
Web architecture and how the data-centric semantics of NDN
can provide secure, efficient and scalable Web services. Our
future plan for the NDN-JS project includes implementing the
key configuration functionality, refactoring APIs based on the
experience in using the library and improving the quality of
the source code. We expect this to be a continuous effort and
welcome contributions from all interested parties.

Apart from improving the library itself, we also plan to
make extensive use of the library in future projects during
the next phase of NDN research. One of the new projects

7These models still bundle the data with its location (or ‘origin’), while
NDN-JS effectively enables the client to fetch desired data from any reachable
NDN nodes.

that we have in mind is to design the cyber-physical system
architecture on top of NDN protocol. Both the lighting control
application and the building monitoring platform mentioned in
this paper are part of the initial exploration of this broad field.
We expect NDN-JS to be one of the core technologies in cre-
ating user-friendly interfaces for complex industrial systems,
such as sensor network monitoring or building automation
systems.
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