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Abstract—A unique feature of Named Data Networking
(NDN) is that its forwarding plane can detect and recover
from network faults on its own. Consequently, NDN routers
are able to handle network failures locally without relying on
global routing convergence. This fundamental change prompts
us to rethink the role of routing in NDN networks: does
it still need a routing protocol? If so, what impact may an
intelligent forwarding plane have on the design and operation
of NDN routing protocols? Through analysis and extensive
simulations, we show that a routing protocol remains necessary
in NDN networks. Routing disseminates initial topology and
policy information as well as long-term changes in them, and
computes the routing table to guide the forwarding process.
However, since the forwarding plane is capable of detecting
failures and recovering quickly, routing no longer needs to
handle short-term churns in the network. Freeing routing
protocols from short-term churns can greatly improve their
scalability and stability, enabling NDN to use routing protocols
that were previously viewed as unsuitable for real networks.

I. INTRODUCTION

Named Data Networking (NDN) is a new network ar-
chitecture that changes the basic network service semantics
from “delivering packet to a given destination” to “retrieving
data with a given name.” NDN communication is receiver-
driven: a data consumer sends Interest packets carrying
the names of desired data; any node in the network can
return Data packets that have matching names to satisfy the
Interests. This two-way Interest-Data packet exchange takes
the same network path but in opposite directions.

Symmetric Interest-Data exchange and in-network for-
warding state enable a unique feature of NDN – adaptive
forwarding ([1], [2]). More specifically, a node expects a
Data packet to come back from the same interface where
it forwarded the Interest within a reasonable time period
(e.g., round-trip time), otherwise it should receive a NACK
packet [2] or get a timeout, which signals a failure of this
attempt. Upon detection of a failure, the node can then send
the Interest to other interfaces to explore alternate paths. This
built-in failure detection and recovery capability works on
the forwarding plane, with no intervention from the control
plane. Our earlier work [2] shows that NDN’s adaptive
forwarding can handle link failures, prefix hijacking, and
congestion control more effectively than IP networks.

Having an intelligent adaptive forwarding plane raises
new research questions. Today’s IP networks put all in-
telligence into routing, which disseminates topology and

policy information, computes routes, detects and recovers
from failures while the data plane merely forwards packets
according to the FIB. When the data plane has its own
adaptability, are routing protocols still needed? If so, for
what purpose and to what extent? If some of routing’s tasks
can be offloaded to forwarding, would that bring positive
impact on routing protocols’ design and operation, e.g.,
making routing more scalable and stable?

In this paper we investigate the role of routing in NDN
networks. Through analysis, design, and extensive simula-
tion, we find that routing is important in bootstrapping the
forwarding plane for effective data retrieval, as well as for
efficiently probing new links or recovered links. However,
NDN routing does not need to converge fast following net-
work changes, which can be handled by adaptive forwarding
more promptly. This enables one to significantly improve
the scalability and stability of the routing system using
larger keep-alive timer values that ignore short-term failures.
Furthermore, routing algorithms that would not work well in
current networks may work fine in NDN due to its reduced
role of bootstrapping adaptive forwarding.

The rest of this paper is organized as follows. Section II
reviews NDN with a focus on the adaptive forwarding plane.
Section III discusses the role of routing in both IP and
NDN. The coordination of NDN routing and forwarding
is explained in Section IV. Section V evaluates the per-
formance of the coordination. Section VI discusses other
possible routing schemes for NDN. Section VII presents
related work and Section VIII concludes the paper.

II. NDN FORWARDING OVERVIEW

Each NDN packet carries a name field that uniquely
identifies a piece of data, e.g., /ndn/papers/routing.pdf/seg1.
NDN routers forward Interests based on the names, and
keep forwarding state for each pending Interest. When Data
packets arrive, routers use names to match them to corre-
sponding pending Interests and forward them accordingly.
Each Interest also carries a nonce field that can be used to
detect forwarding loops. In this section we briefly review
NDN’s forwarding process and how it handles link failures.

A. Forwarding Process

There are three key data structures in NDN’s node model,
i.e., Forwarding Information Base (FIB), Pending Interest
Table (PIT) and Content Store (CS). FIB serves as the
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forwarding table. It is different from the FIB in IP routers in
that it is indexed by name prefixes instead of IP prefixes, and
each FIB entry may provide multiple interfaces instead of a
single best interface for each name prefix. Unlike FIB, PIT
and CS are unique to NDN. Both PIT and CS are indexed by
names. A PIT entry records which interface(s) the Interest
is received from and has been forwarded to, and is used to
guide Data forwarding. CS is a temporary cache of Data
packets. If the desired Data is found in the CS, the Interest
is satisfied immediately without being further forwarded.

In NDN, only Interest packets are routed. The forwarding
process is summarized as follows. When a router receives an
Interest, it first checks the Interest name against the CS and
returns the Data if there is a match. Otherwise, the router
checks the Interest name against the PIT. If a PIT entry
already exists, i.e., the Interest has already been forwarded
but no Data has been returned yet, the router simply adds
the incoming interface of the Interest to the PIT entry. If
no PIT entry exists, the router adds a new PIT entry and
further looks up the Interest name in the FIB using longest
prefix match. If a matching FIB entry is found, the Interest
is forwarded by the forwarding strategy module. Otherwise,
the router cannot satisfy the Interest and may send a NACK
back to the incoming interface of the Interest [2]. When
a router receives a Data, it checks the Data name against
the PIT. If a PIT entry is found, the Data is stored in
the CS and further forwarded to the incoming interfaces of
the corresponding Interests, which have been recorded in
the PIT. Otherwise, the Data is dropped since it is either
unrequested or no longer wanted.

The forwarding strategy associated with the name space of
the requested data determines whether and how an Interest
is forwarded. In this paper we adopt the forwarding strategy
proposed in [2]. Each interface is assigned a color code
depending on its current working status. It is Green for a
working interface, Red if the interface is not working, and
Yellow if the status is uncertain. The forwarding strategy
always prefers Green interfaces over Yellow ones, and never
uses Red interfaces to forward Interests. The forwarding
strategy takes information such as interface ranking from the
routing protocol, interface status, round-trip time (RTT) and
congestion level into consideration when making forwarding
decisions. Interested readers may refer to [2] for details.

B. Failure Recovery

NDN’s two-way symmetric traffic flow enables fast fault
detection. Routers can calculate RTT for each Interest-Data
exchange, which can be used as a prediction for future
Interests. After forwarding an Interest, a router starts a timer
based on the average of previous RTT; potential network
problems can be detected if no Data is received before
the timer expires. With Interest NACK [2], fault detection
and notification is even faster. When network problems
are detected, routers can explore alternative paths freely

Figure 1. A simple network example.

without worrying about loops, since they can be detected
by checking the nonce field carried in the Interests. Fast
fault detection and loop-free forwarding are the two unique
features that make NDN’s forwarding plane smart and adap-
tive. As a result, routers are able to handle network faults
such as prefix hijacking, failures and congestion locally at
the forwarding plane [2].

We use the simple example in Figure 1 to illustrate how
NDN routers handle link failures. The cost of the links are
marked in the figure; routers rank the interfaces using the
cost of their best paths towards the destination. When there
is no failure in the network, A uses B as its major next hop
for content provided by D. Interface A-B will be marked
Green if there is continuous traffic. When link B-D fails,
A will keep sending Interests to B at first. However, B
cannot satisfy the Interests due to the failure, so it will send
NACKs back to A. Upon receiving a NACK, A will mark
A-B Yellow and retry the next best interface, in this case
A-C. Since there is no failure on this path, Data will flow
back through path D-C-A. A will then mark interface A-C
Green and start using C as the major next hop.

III. ROLE OF ROUTING

Since NDN’s forwarding model is a strict superset of the
IP model, any routing scheme that works well for IP should
also work well for NDN [3]. However, today’s IP routing
protocols suffer from issues such as slow convergence or
poor scalability. In addition, NDN has a smart and powerful
forwarding plane, which is able to take over part of routing’s
responsibility in IP. In this section, we first review IP routing,
and then rethink the role of routing in NDN.

A. Routing in IP
IP’s routing plane is intelligent and adaptive, but its

forwarding plane is stateless and strictly follows routing.
Therefore the routing plane is also regarded as the control
plane. Routing is responsible for building the routing table
and maintaining it in face of network changes, including
both long-term topology and policy changes as well as short-
term churns. When there is a change in the network, routers
need to exchange routing updates with each other in order to
reach new global consistency. The time period after a change
happens and before all routers agree on the new routing state
is called the routing convergence period. IP routing protocols
need to converge fast in order to reduce packet loss and
resume packet delivery after network changes.

However, fast routing convergence is challenging in large
operational networks. The fundamental reason is that it



conflicts with other design goals for routing protocols, i.e.,
routing stability and scalability. Routing stability ensures
stable routing paths within the network. It is important for
applications that suffer from RTT fluctuation; it also helps
routers achieve traffic engineering goals. Routing scalability
is essential for supporting a large number of nodes, links and
prefixes1 in the network. For link-state routing, each router
knows the entire topology. These protocols can converge
fast, but at the cost of poor stability and limited scalability.
For distance/path-vector routing, routers do not have a full
knowledge of the topology. They are able to achieve better
scalability, but the convergence time may be as long as tens
of minutes. Below we use link-state routing as an example
to explain the issues with today’s routing protocols.

The routing convergence period can be divided into four
phases, i.e., failure detection, update propagation, route
computation and FIB update. In link-state routing, routers
periodically exchange HELLO messages to maintain con-
nection: if no HELLO message is received within the DEAD
interval, the link is considered down. Previous research ([4],
[5]) recommended setting the HELLO interval to be on the
order of milliseconds in order to detect failures quickly.
However, this not only increases overhead but also affects
routing stability, since a temporarily congested link may be
mistakenly considered fluctuating down and up. After a link
failure is detected, attached routers need to generate routing
updates and propagate them to the rest of the network; when
a router receives a routing update, it needs to recompute the
routing table. To achieve fast routing convergence, all these
steps should be done as quickly as possible. However, if the
network is unstable (e.g., there is a flapping link), generating
routing updates and recomputing routing table frequently
will increase bandwidth and computation overhead as well
as harm routing stability. At the same time, shortest path
first (SPF) computation time increases with the size of
the network; FIB update time depends on the number of
prefixes. To achieve fast convergence, both the network size
and the number of prefixes need to be limited, leading to
poor scalability.

There are mechanisms to improve link-state routing stabil-
ity and scalability. Dynamic timers improve routing stability
by limiting the rate of update generation and SPF computa-
tion. However, these timers are increased exponentially each
time, potentially increasing convergence time significantly
when the network is unstable. Therefore, short initial timers
have been suggested [5]. Area was introduced to improve
routing scalability. However, it leads to sub-optimal paths
between areas and increases the complexity of configuration.
Although inter-area routing can utilize distance-vector or
path-vector routing algorithms that may scale better, they
converge much slower.

1Supporting large number of prefixes is particularly important in NDN
since the number of name prefixes will be orders of magnitude larger than
the number of IP prefixes in today’s Internet.

In summary, it is hard to achieve fast convergence, stabil-
ity and scalability simultaneously in a routing protocol. If
there are other mechanisms to handle failures without global
convergence, the requirement on fast convergence can be
relaxed, making it possible to achieve routing stability and
scalability.

B. Routing in NDN

In NDN, the forwarding plane is the actual control plane
since the forwarding strategy module makes forwarding
decisions on its own. This fundamental change prompts us
to rethink the role of routing. The first question is whether
NDN still needs routing protocols. Conventionally, routing
protocols are responsible for disseminating topology and
policy information, computing routes and handling short-
term network changes. For NDN to work without routing,
routers need to be able to do the following things efficiently:
1) retrieve Data when the network is stable; 2) handle link
failures; and 3) handle link recovery. Can NDN achieve these
solely with the forwarding plane?

Another question that arises is if NDN does need routing
protocols, how will they be different from today’s existing
routing protocols? With the intelligent and adaptive forward-
ing plane, can some of the routing plane’s functionality be
offloaded to the forwarding plane, and which? In addition,
how will the design and operation of routing protocols
benefit from this shift of functionality? In the next section
we try to give answers to these questions.

IV. ROUTING AND FORWARDING COORDINATION

In this section, we seek answers to the questions raised
in III-B. Previous research [2] shows that NDN routers are
able to detect and recover from link failures effectively
without routing. In this section we focus on the other
questions: whether NDN routers can efficiently retrieve Data
and handle link recovery without routing. We show that
NDN does need routing protocols to help bootstrap the
forwarding process and handle link recovery. In addition,
we specify how the routing plane coordinates with the
forwarding plane, and present a simple method to improve
routing stability and scalability in NDN.

A. Interface Ranking

The forwarding plane design presented in [2] assumes in-
terfaces are ranked by routing preference. Can NDN routers
retrieve Data efficiently without such interface ranking? The
answer is negative. In the extreme case, we can implement a
forwarding strategy that floods every Interest to all available
interfaces. This way we can always retrieve Data quickly
through the best paths. However, it will also incur substan-
tially large overhead. We can also implement a strategy that
randomly explore the interfaces one-by-one in a round-robin
fashion. Given enough time, routers should be able to find
working paths since all possible paths will be explored. One



Pseudocode 1 ProbingDue Algorithm
1: function PROBINGDUE(FibEntry, Intf)
2: if Intf 6= FibEntry.RoutingPreferredIntf then
3: if FibEntry.LastProbingTime + M ≤ Now() or
4: FibEntry.PacketsSinceLastProbing ≥ N then
5: Return True
6: end if
7: end if
8: Return False
9: end function

big issue with this method is that path exploration may take
extremely long time as shown in Section V-B.

Consequently, NDN routers need good interface ranking
to help bootstrap the forwarding process. The responsi-
bility of providing interface ranking lies in the routing
protocols. Existing routing algorithms such as link-state
or distance/path-vector routing can be used to rank the
interfaces2. The details are explained as follows.

1) Link-State Routing: Link-state routing protocols store
the entire network topology in the link-state database
(LSDB), making it possible to compute optimal interface
ranking. Suppose a node N has n interfaces I1 .. In. For
Data provided by node M , we rank these interfaces using
CM

N,k, which is the cost of the best path from N to M
through interface Ik. One simple method to compute CN,k

for all destinations is to remove all interfaces except Ik from
N ’s LSDB, and run Dijkstra’s algorithm to compute the
shortest paths. This may not be the best method since it will
end up calling Dijkstra’s algorithm once for every interface.
It is just used to illustrate how interface ranking can be
done in link-state routing. Optimization of the algorithm is
possible but out of the scope of this paper.

2) Distance/Path-Vector Routing: In distance-vector or
path-vector routing, routers announce the hop count or
complete routing path towards each destination to their
neighbors. When router N receives a routing announcement
for Data provided by M from interface Ik, it simply records
the hop count HM

N,k
3. The interfaces are then ranked by the

hop count.
Notice that a router may not receive routing announce-

ment from all interfaces, since these routing protocols often
incorporate split-horizon route announcement to prevent
routing loops. If router N learns a route towards M through
interface Ik, it will not advertise its route to M over Ik.
Interfaces that do not receive routing announcement are
assigned infinite hop count to ensure they stay at the end
of the ranked interface list. They will only be used as the
last resort if all higher-ranked interfaces fail to retrieve Data.

These interfaces are useful in many situations. For exam-

2The case of path-vector routing, i.e., BGP is more complex because it
also takes routing policy into consideration. How to accommodate routing
policy in interface ranking is part of our future work.

3Hop count can be easily extracted from the path in path-vector routing.

Pseudocode 2 Probing Algorithm
1: function PROBE(Interest, FibEntry, PitEntry)
2: interface ← FibEntry.RoutingPreferredIntf
3: if interface 6∈ PitEntry.Outgoing and
4: interface 6∈ PitEntry.Incoming then
5: if interface.Available then
6: Interest.Nonce ← GenerateNonce()
7: Transmit(interface, Interest)
8: Add interface to PitEntry.Outgoing
9: FibEntry.LastProbingTime ← Now()

10: FibEntry.PacketsSinceLastProbing ← 0
11: end if
12: end if
13: end function

ple, in BGP if a provider P uses a customer C as the next
hop, it will not make routing announcement to C. If C’s best
path fails, it will not have an alternative path until routing
converges, in which case P will announce its alternative path
to C. RBGP [6] is proposed to address this issue by allowing
P to announce its alternative path to C even without failures.
NDN, on the other hand, is able to achieve the same effect
without changing the protocol.

B. Probing

It has been shown that NDN routers can handle link
failures locally at the forwarding plane [2]. In this subsection
we answer the question of whether the same applies to
link recovery. Routers can detect link failures quickly by
observing Interest-Data exchanges or Interest NACK. How-
ever, there is no explicit signal for link recovery from the
forwarding plane. Again let’s take Figure 1 as an example.
After interface B-D recovers from a failure, interface A-
B becomes the best interface for A to retrieve data from
D. However, A will continue using interface A-C because
the forwarding strategy prefers Green interfaces over Yellow
ones. In this case, A needs to probe interface A-B by
sending a copy of an Interest to it. If the probing Interest
successfully brings Data back, interface A-B will be marked
Green and be used to forward subsequent Interests to D.

There is a research question of when to perform probing.
An Interest copy is used for probing so that regular Data
retrieval will not be affected if probing is unsuccessful.
However, this causes extra Interest and Data in the network.
There is a trade-off between how fast a link recovery is
detected and the amount of overhead caused by probing.
In CCNx [7], a prototype implementation of NDN, routers
probe alternative interfaces periodically in order to detect
better paths. This enables routers to detect link recovery at
the forwarding plane. Fast recovery detection is achievable
through aggressive probing. However, it will incur signifi-
cant overhead.

In fact, routing is able to help with the dilemma. If there
is a routing protocol, it will be able to detect link recovery



Table I
TOPOLOGIES USED IN THE SIMULATIONS.

Topology Before Processing After Processing
Node # Link # Node # Link #

Abilene 12 30 11 28
AS1239-PoP 52 168 32 128
AS701-PoP 83 438 47 366

AS1239-Router 284 1882 N/A N/A

and converge to it. We can take advantage of routing by
only probing a Yellow interface if its ranking is higher
than the Green interface(s). This way we can keep the
probing overhead low, and switch back to the optimal paths
as soon as routing converges. Routing convergence time is
not a concern because the alternative paths found by the
forwarding plane are of good quality [2]. Notice that probing
is also useful in failure handling if the alternative paths found
by the forwarding plane are not optimal.

We propose a probing algorithm as presented in Pseu-
docode 1 and 2. After forwarding each Interest, the strategy
module calls ProbingDueue to check whether probing is
needed. Two thresholds are introduced to further limit the
probing overhead, For each FIB entry, M is the minimum
time interval, and N is the minimum number of packets
forwarded between two consecutive probings. The algorithm
returns true only if at least M time has elapsed or at least
N packets have been forwarded since last probing. Actual
numbers of M and N depends on the traffic load as well as
the probing overhead network operators are willing tolerate.
Pseudocode 2 describes the probing algorithm. It sends a
copy of the Interest to the routing preferred interface using
a different nonce. The nonce is changed so that routers
can distinguish between probing Interests and Interests that
looped back.

C. Improving routing stability and scalability

Link-state routing protocols exhibit poor stability and
scalability in IP due to the fast routing convergence re-
quirement. However, there is a simple method to address
these issues in NDN. Since NDN routers can handle network
failures at the forwarding plane, we can actually mask the
short-lived failures from the routing protocols. Research
shows that the duration of network failures follows a long-
tail distribution, and over 50% of failures last less than one
minute ([8], [9]). Therefore, the number of routing events
can be significantly reduced if routing protocols do not need
to react to the short-lived failures. As a result, the bandwidth
and CPU cycles consumed by routing updates can be re-
duced, and there will be less routing fluctuation. In addition,
since there is no fast routing convergence requirement, larger
networks and more name prefixes become affordable. There-
fore, routing overhead can be greatly reduced, both routing
stability and scalability can be significantly improved.

For link-state routing, we can implement the idea by
increasing the HELLO and DEAD interval. For example,
if we set the DEAD interval to be one minute, over 50%
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Figure 2. CDF of time to find working paths with and without routing.

of the link failures will not be detected by the routing
protocol. Alternatively, we can increase the routing update
generation and SPF computation timers to achieve the same
effect. Although this idea looks simple, it can be applied to
any existing IP routing protocol to improve its stability and
scalability. We will evaluate the effectiveness of this method
in the next section.

V. EVALUATION

In this section we use extensive simulations to evaluate
how NDN’s routing and forwarding plane benefit from each
other. Results show that by masking short-lived failures
from routing, its stability and scalability can be significantly
improved.

A. Simulation Setup

We simulate both NDN and IP in the QualNet sim-
ulator [10], which provides complete implementations of
OSPF and RIP. We implemented basic NDN operations and
the forwarding strategy presented in [2]. We also make
necessary changes to the routing protocols as described
in IV-A to support NDN.

We use the Abilene topology [11] and selected Rocket-
fuel topologies [12] in the evaluation. A summary of the
topologies is presented in Table I. We process the first three
topologies to remove all single-homed nodes. This is because
if links of single-homed nodes fail, these nodes will be
disconnected from the network and therefore cannot provide
any useful result. For OSPF, we use propagation delay as
the cost of the links. Unless otherwise specified, we report
results from the AS1239-PoP topology. Results for other
topologies are similar and lead to the same conclusions.
The AS1239-Router topology is only used to show the
improvement of routing scalability.

For each topology, we generate random link failures as
follows. We use a shifted Pareto distribution to generate
time-to-failure and time-to-recover distributions for each link
independently [13]. We use 120 seconds as the mean-time-
to-recover, and 1000 seconds as the mean-time-to-fail. We
also tune the parameters so that 50% of the failures last less
than one minute [8]. When a link fails, both directions of
the link stop working. With this model, multiple network
events (failures and recovery) can happen concurrently.
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Figure 6. Comparison between NDN and IPFRR.

B. NDN without Routing

In this experiment we show how NDN forwarding works
without routing. Since routers have no idea how to rank
the interfaces without input from routing, we implement a
forwarding strategy that prefers Green interfaces over Yellow
ones, but randomly picks a Yellow interface if no Green
interface exists. If Data is brought back from an interface,
the interface will be marked Green and used to forward
subsequent Interests.

In each run of the experiment we pick one node as the
consumer and another as the content provider. Assuming
the consumer keeps retransmitting Interests until Data is
received, we measure how long it takes. We enumerate all
combinations of consumers and providers and draw the CDF
in Figure 2. In 89% of the cases, the consumer retrieves
Data within one second. However, it can take up to 40
seconds to find a working path in some rare cases. The
situation can get worse as the network becomes larger. In
contrast, Data retrieval always follows the best paths when
routing protocol can provide interface ranking. Therefore,
although NDN’s forwarding plane can find working paths
on its own, it benefits from a routing protocol to provide
interface ranking to make the local search more effective.

C. Handling Link Failures

In this experiment, we study the impact of HELLO
interval on packet delivery performance. We inject random
link failures into the network as described in Section V-A.

In order to measure packet delivery performance in NDN
and IP, we run simple applications among all pairs of nodes
in the network. For NDN, each node announces a distinct
name prefix and provides content under this prefix. Each
node also acts as a consumer requesting data from all other
nodes. A consumer sends one Interest towards each name
prefix every second. If Data is not received, a consumer will
retransmit the Interest every second up to twice. Different
consumers request different pieces of Data from the same
name prefix so that they do not affect each other. Caching is
also disabled so that we can focus on routing and forwarding
behaviors4. For IP, each node acts as both client and server.
Each client sends one UDP request to each server every
second5. The server responds with UDP packet carrying
the content. Similar to NDN consumers, these clients also
retransmit requests if replies are not received. The sizes of
the UDP packets are the same as those in NDN.

Figure 3 and 4 present the packet delivery rate for each
node pair in IP and NDN under different HELLO interval
settings. Figure 3 shows that HELLO interval has a huge
impact on the packet delivery performance in IP. The shorter
HELLO interval, the faster packet delivery can be resumed.
The median packet delivery rate of IP is 99%, 91% and 72%
when the HELLO interval is 1S, 10S and 60S respectively.

4If consumers request the same content and caching is enabled, NDN
would perform even better.

5The packet rate is much lower than real Internet traffic due to
performance limitation of the simulator. In fact, the IP packet delivery
performance will be worse if the packet rate is higher.
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Figure 3 also shows that NDN with 60S HELLO interval
even works slightly better than IP with 1S HELLO interval.

Figure 4 shows the impact of HELLO interval on the
packet delivery rate of NDN. When the HELLO interval
increases from 1S to 10S, the performance degradation is
negligible. When the HELLO interval increases from 10S
to 60S, the packet delivery rate decreases slightly. This is
because only two consumer retransmissions are allowed.
The packet delivery performance can be further improved
by allowing more consumer retransmissions. Overall, the
HELLO interval has little impact on the packet delivery
performance in NDN.

We also evaluate the packet delivery performance under
different routing protocols. Figure 5 shows the CDF of
packet loss rate of NDN and IP when OSPF and RIP are
used. Although RIP is generally considered to have poor
routing convergence properties, it performs quite well with
NDN. NDN with RIP performs much better than IP with
OSPF or RIP. The performance difference between OSPF
and RIP in NDN is due to the difference in interface ranking.
Recall that RIP may not provide hop count for all interfaces,
thus OSPF is able to provide better interface ranking.

D. Comparison with IPFRR

In the previous section we evaluate the packet deliver
performance of plain IP, which totally relies on routing
to handle network failures. However, today’s ISP networks
often adopt solutions that handle network failures without
routing convergence, e.g., IPFRR. In this experiment, we
compare NDN against Loop-Free Alternate (LFA) [14], the
only commercially available IPFRR solution. We implement
LFA in a custom simulator, and repeat the link failure experi-
ment in [2]. In each run of the experiment, we associate each
link with a probability of failure, and randomly generate link
failures. We run each experiment 1000 times and report the
average result.

Figure 6(a) shows the fraction of disconnected pairs
under different failure probability. It shows that NDN is
always able to recover much more failure scenarios than
LFA. Figure 6(b) shows the CDF of stretch of alternative
paths found by NDN and LFA. The 98-percentile of path
stretch for NDN and LFA is 1.06 and 1.13 respectively. In

conclusion, NDN is able to cover more failure scenarios and
find better alternative paths than LFA.

E. Prefix Unreachable

Previous experiments show that NDN performs well in
handling link failures. When a node fails, however, the name
prefix served by the node may become unreachable. In such
cases, path exploration may lead to extra Interests all over
the network. In this experiment we evaluate NDN’s explo-
ration overhead when a name prefix becomes unreachable.
In each run of the experiment we fail one node and let all
other nodes request content from this node before routing
convergence6. Both NDN and IP applications will retransmit
the same request twice. For each flow, we count the number
of hops that each packet traverses in both NDN and IP, and
compute the ratio of hop count of NDN over IP. We run the
experiment for every node failure scenario and present the
CDF of the ratio in Figure 7.

In IP, retransmitted requests will be sent to the same paths,
whereas in NDN, retransmitted Interests may trigger path
exploration, leading to large overhead. Surprisingly, NDN
incurs less overhead than IP in 26% of the cases. This is
because retransmitted Interests do not always trigger path
exploration in NDN. If a node has already explored all its
interfaces, a further retransmission will only get a NACK
back to the application without being further forwarded. In
contrast, IP routers will always forward the packets before
routing convergence. The ratio is smaller than 5 in 93%
of the cases. Only in some rare cases does NDN cause
excessively high exploration overhead.

The exploration overhead becomes significant when pop-
ular content becomes unreachable, as many consumers will
be requesting the content and their Interests will trigger
many attempts by routers to find working paths. But on the
other hand, popular content is usually hosted and served by
multiple servers placed at different locations. In addition,
popular content is more likely to be cached by routers. Thus
its chance of becoming unreachable is slim. The overall
impact in large scale networks needs further investigation.

6After routing converges, routers will learn about the failure and stop
forwarding the requests.
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(a) Number of HELLO messages.
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(b) Number of triggered LS updates.
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Figure 9. Routing overhead under different HELLO intervals in AS1239 PoP-level topology.
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Figure 10. Routing overhead under different HELLO intervals in AS1239 router-level topology.

F. Probing Overhead

We evaluate probing overhead in this experiment. In each
run of the experiment, we fail one link and run applications
to let routers find working paths. Then we bring the link back
up again, and run applications after routing convergence to
measure the number of hops that probing Interests and Data
traverse. Interest NACKs are counted as probing Interests.
Applications are only run between node pairs whose traffic
is affected by the failure. We run the experiment on all link
failure scenarios and report the CDF in Figure 8. In 36% of
the cases, probing Interests and Data only traverse 2 hops;
they traverse no more than 6 hops in 94% of the cases.
Probing Interests traverse more hops than Data in some rare
cases, because a probing Interest does not necessarily bring
Data back, and some of them may loop back to previously
visited nodes and trigger NACKs. This experiment shows
that by taking advantage of routing, probing only incurs very
small overhead.

G. Routing Overhead

In this experiment, we evaluate the routing overhead of
OSPF under different HELLO and DEAD interval settings.
Specifically, we measure the number of HELLO messages,
link-state (LS) updates and SPF computations for each node.
HELLO and LS update messages constitute the majority of
routing messages triggered by failures and recovery. We set
the HELLO interval to be 1S, 10S and 60S; the DEAD
interval is always four times the HELLO interval. Random
link failures are injected into the network as described in

Section V-A, and each experiment is run for 3000 seconds.
Only LS updates and SPF computations triggered by failures
and recovery are counted7. The numbers obtained in this
experiment are the same for both NDN and IP.

Figure 9(a) shows the number of HELLO messages sent
by each node under different HELLO interval settings in
AS1239-PoP topology. As the HELLO interval increases
from 1 second to 60 seconds, the number of HELLO
messages sent by each node is decreased by 98% as one
would expect. Figure 9(b) and 9(c) present the number of
triggered LS updates and SPF computations for each node.
As the HELLO intervals increase, less failure events will
be detected by OSPF. No routing update will be generated
and propagated for the undetected failures, and thus no SPF
computation will be performed. If we increase the HELLO
interval from 1 second to 60 seconds, the number of LS
updates is decreased by 52% to 80%, and the number of
SPF computations is decreased by 77% to 82%. Therefore,
we can effectively reduce the overhead caused by HELLO
messages, LS updates and SPF computation by increasing
the HELLO interval.

We run the same experiments in AS1239 router-level
topology to illustrate how the method works in large ISP
networks. The CDF of number of triggered LS updates and
SPF computations are presented in Figure 10. The median
numbers of LS updates and SPF computations are decreased

7Notice that OSPF also floods refresh link-state announcements period-
ically even in the absence of network event. These refresh updates are not
counted since they are not affected by routing convergence behaviors.



by 87% and 90% when HELLO interval increases from 1
second to 60 seconds. In conclusion, routing overhead can
be significantly reduced by masking short-lived failures from
the routing protocol. Since less LS updates are generated
and propagated and less SPF computations are performed,
routing becomes more stable and scalable.

VI. DISCUSSION

Routing is a necessary subsystem for any large scale
network. Like IP, NDN itself does not dictate what kinds of
routing algorithms or protocols to use. However one can take
advantage of NDN’s adaptive forwarding plane to improve
the stability and scalability of existing routing protocols, as
well as enable routing protocols that deem difficult to adopt
in IP networks.

Traditional Routing Protocols: As we have discussed in
this paper, traditional routing protocols such as OSPF, RIP,
and BGP can benefit greatly from NDN’s adaptive for-
warding plane. Since fast routing convergence is no longer
a requirement, these routing protocols can be tuned for
synchronizing among routers long-term topology and policy
information without handling short-term churns. Routing
assumes a supporting role to forwarding. It provides a
reasonable starting point for forwarding which can then
effectively explore different choices. Its job becomes more
of disseminating topology and policy information than dis-
tributed computation of best paths. This new division of la-
bor between routing and forwarding makes routing protocols
simpler and more scalable.

Centralized Routing: Routing protocols have been de-
signed to operate in a distributed manner to avoid single
point of failure [15]. However with the increasing complex-
ity in network management, Software-Defined Networking
(SDN) has emerged to enable centralized management and
control of networks, including logically centralized routing
scheme. It is much easier to change the routing configura-
tions on a central controller than on all participating routers,
and to implement sophisticated traffic engineering schemes
at the controller than individual routers. Routing overhead
can also be greatly reduced, since routing updates only need
to be sent to the controller instead of being flooded to the
entire network, and only the controller needs to perform SPF
computations.

However, a centralized routing scheme is also associated
with several disadvantages, e.g., single point of failure
and potentially longer convergence delay. One can mitigate
single point of failure by physical replication of the central
controller, which adds both the cost and complexity. A
biggest concern is potentially prolonged convergence delay,
which includes failure detection at local router, report to
the controller, route recompilation at the controller, and
dissemination of new routes to individual routers. NDN’s
adaptive forwarding removes the demands on convergence
delay. As we have shown, NDN routers can adapt to network

changes without waiting for routing to converge, making
centralized routing feasible.

Coordinate-based Routing: In coordinate-based routing,
instead of disseminate the network topology to routers,
the coordinates of nodes are disseminated. The main char-
acteristics of the network topology are embedded in the
coordinates. Routers do greedy routing based on coordinates,
i.e., forward packets to the neighbor whose distance (com-
puted using coordinates) to the destination is the shortest
among all neighbors. One example of such routing scheme
is hyperbolic routing [16]. The advantages of this routing
scheme include smaller routing tables (i.e., only need to
know the destination’s coordinates and neighbor routers’
coordinates) and minimal routing updates (i.e., link failures
and recovery do not affect a node’s coordinates). However,
in IP networks, this routing scheme is not guaranteed to be
able to deliver packets. It is possible that the forwarding
process runs into a local minimal, where all neighbors are
farther to the destination than the current router. Path stretch
may also get large. NDN’s adaptive forwarding can fix these
problems and make this routing scheme a possibility.

VII. RELATED WORK

Francois et al. show that sub-second link-state routing
convergence in large intra-domain networks is achievable by
tuning various timers [5]. But their method incurs extra rout-
ing overhead and may cause routing instability. Fast reroute
(FRR) mechanisms handle link failures by pre-computing
alternative paths. MPLS FRR mechanisms are proposed to
provide backup paths in MPLS-enabled networks to protect
specific link failures. Similarly, IPFRR mechanisms ([14],
[17], [18], [19], [13]) provide temporary alternative paths
before routing convergence in pure IP networks. However,
it is hard for the FRR mechanisms to cover all possible
failure scenarios. In addition, they cannot handle multiple
link failures well. Therefore, the FRR mechanisms still
require fast routing convergence.

Path splicing [20] is an end-to-end multipath solution that
provides link recovery controlled by end hosts. Each router
provides multiple routing tables and let end hosts specify
which one to use at each router. Path splicing may take
long time to find alternative paths, and sometimes may not
be able to find them even if they exist. Therefore fast routing
convergence is still required. Multiple routing configuration
(MRC) [21] also uses multiple routing configurations to
handle network failures. Different from path splicing, MRC
lets routers switch configuration when failures are detected.
However, MRC may not handle multiple concurrent failures
well. Since each router needs to maintain multiple routing
tables, the computation overhead during routing convergence
increases with the number of routing tables.

There are also solutions that carry routing/forwarding
information in packet headers. Failure carrying packets
(FCP) [22] puts failure information into the packet headers,



and let routers recompute the routing tables on-the-fly upon
receipt of FCP. However, the method increases computation
overhead, and the sizes of FCP headers may become arbitrar-
ily large. Packet Re-cycling (PR) [23] reroutes packets along
pre-computed backup paths in case of failures. In addition
to the ordinary routing table, each router also creates a
cycle following table, the generation of which is an NP-
hard problem. When failures are detected, PR bits are set in
packet headers to guide packet forwarding. Liu et al. propose
Data-Driven Connectivity (DDC) [24] to ensure forwarding
connectivity at the data plane. DDC organizes the network as
a destination-oriented directed acyclic graph (DAG) to avoid
loops, and uses two bits in the packet header to notify link
reversal. DDC has its own control plane algorithm, therefore
cannot make use of existing routing protocols.

VIII. CONCLUSION

In this paper we study the role of routing in NDN.
NDN’s adaptive forwarding plane leads to a new division
of labor between routing and forwarding planes. While the
latter can detect and recover from link failures quickly
independent from the former, the former helps bootstrap
adaptive forwarding and handle link recovery. We specify
how NDN routing coordinates with forwarding through
interface ranking and probing mechanisms. Our analysis
and extensive simulations show that NDN routing protocols
can benefit from the forwarding plane due to the relaxed
requirement on timely detection of failures and convergence
delay. Consequently NDN routing stability and scalability
can be greatly improved. Moreover, the adaptive forwarding
plane also enables new routing schemes that may not work
well in IP to be used in NDN.
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