
NDN, Technical Report NDN-0017, 2014. http://named-data.net/techreports.html
Revision 2: February 14, 2014
Revision 3: August 25, 2014

1

Consumer-Producer API
for Named Data Networking

Ilya Moiseenko
UCLA

iliamo@cs.ucla.edu

Lixia Zhang
UCLA

lixia@cs.ucla.edu

ABSTRACT
This paper presents Consumer-Producer integrated process-
ing API that provides a generic programming interface to
NDN communication protocols and architectural modules.
A consumer context associates an NDN name prefix with
consumer-specific data transfer parameters, controls Interest
transmission and Data packet processing. A producer con-
text associates an NDN name prefix with producer-specific
data transfer parameters that control Data packet production
and security, and Interests demultiplexing. Both API con-
texts are extensible to admit the functionality of future pro-
tocols and modules.

1. INTRODUCTION
Today’s Internet architecture stands on IP — a universal

network layer designed to create a communication network
where packets are delivered to specific destinations. One of
the primary design goals of IP was direct process-to-process
communication. This was a premise for introducing the con-
cept of the port, which binds a running process to a commu-
nication channel [1]. IP address, port, and transport protocol
are bound together by the socket, representing a container
for the current state of data transfer between IP endpoints.

The Internet has evolved from a network that intercon-
nects hosts to a network that interconnects information ob-
jects. This suggests that the Internet’s universal network
layer will be much more organic as a distribution network
natively working with information objects instead of com-
munication endpoints.

Named Data Networking replaces the host-based address-
ing scheme and uses names of information objects to move
packets in the network [2], [3]. Instead of sending packets
to a given IP address and port, in NDN end hosts request de-
sired data by sending Interest packets carrying application-
level names of information objects. The NDN network re-
turns the requested Data packets following the path of the
Interests. In fetching Data, NDN treats channel and stor-
age equally. The source could be as close as the cache of
the same-hop or next-hop node, and as far as the original
process-producer of the information. At the same time this
design strengthens information safety with the concept of
content-based security. The data itself is secured with pub-

licly verifiable signatures and encryption, instead of relying
on secure communication channels (Section 2).

As a new architecture, NDN requires an API that is totally
different from IP’s socket API. Socket abstraction cannot be
reused, because it is founded on the concepts of an end-to-
end virtual channel and a port that do not exist in NDN ar-
chitecture. How a brand new API for NDN should look like
is an open question. We advance NDN architecture by going
through the cycles of 1) design 2) trial through pilot applica-
tions 3) revise, aiming to get it right after a number of cycles.

Motivated by our experience with building NDN applica-
tions, this paper proposes:

1. The notion of the consumer context, which associates
an NDN name prefix with various data fetching, trans-
mission, and content verification parameters, and inte-
grates processing of Interest and Data packets on the
consumer side (Sections 3 and 4).

2. The notion of the producer context, which associates
an NDN name prefix with various packet framing, caching,
content-based security, and namespace registration pa-
rameters, and integrates processing of Interest and Data
packets on the producer side (Sections 3 and 4).

3. A Consumer-Producer API declaration for a range of
common programming languages (Sections 4 and 5).

4. A description of API functionality and inner organiza-
tion (Section 4).

2. NAMED DATA NETWORKING
An NDN network works with two distinct types of pack-

ets: Interest and Data (Figure 1). Both types of packets
carry a name, which uniquely identifies an information ob-
ject packaged in a single Data packet. Names in NDN are
supplied by applications, and contain distinct components.
Large information objects that cannot be carried in a single
Data packet are segmented into multiple packets; the seg-
ment number is carried as a component at the end of the
name: /com/foo/data/object/1. Applications are expected to
be designed with the appropriate naming scheme for the kind
of communication they require.

To retrieve data, a consumer requests it by sending an In-
terest packet containing the name of the desired content. An
NDN node uses this name and its Forwarding Information

http://named-data.net/techreports.html

2

Base (FIB) to forward the Interest towards likely sources. A
Data packet whose name matches the name in the Interest
is returned to the consumer by following the reverse path of
the Interest using the information present in Pending Inter-
est Table (PIT). PIT entries keep a record of recently for-
warded Interest packets until the Data packets are returned.
Each PIT entry contains an Interest name, the incoming in-
terface(s) where the Interest has arrived, and the outgoing
interface(s) to which the Interest has been forwarded.

Interest Packet Data Packet
Name Name

(order preference, publisher filter,
exclude filter, …)

Selectors MetaInfo

Nonce

Guiders
(scope, Interest lifetime)

Content

Signature

(content type,
freshness period, …)

(signature type, key locator,
signature bits, …)

Figure 1: NDN packet types.

NDN nodes can cache any passing Data packet in a special
memory buffer called Content Store (CS). Later, a cached
Data packet can be used to satisfy an Interest. Consumers do
not care whether a Data packet was served from the cache or
the original process-producer, because they can validate the
data by the signature.

An NDN network does not secure a communication chan-
nel; instead the process-producer of the information appends
a cryptographic signature to bind the name to the content,
and encrypts the payload of its outgoing Data packets. Later,
consumers can verify the signature of each received Data
packet wherever it has come from. This security model makes
possible to decouple the trust in data from the place and time
the data was obtained.

NDN network is similar to IP in the fact that it does not
provide any guarantees regarding reliable packet delivery or
packet ordering. It is the responsibility of applications and
communication protocols built on top of NDN to provide
services with additional transmission guarantees whenever
it is needed.

3. API DESIGN GUIDELINES
The IP socket abstraction is a container for data transfer

parameters holding the current state of transmission in a vir-
tual channel. With some minor peculiarities, both server and
client applications use sockets in the same way.

In this section, we explain why NDN needs a different
abstraction, what functionality is required, and describe the
basic idea behind the new programming model.

3.1 Functionality
Name construction is the essential part of NDN Inter-

est/Data exchanges. In some cases, name manipulation may
become labour-intensive. Consider IP transport layer pro-
tocols such as RTP that use timestamps to synchronize par-

ticipants and sequence numbers to detect packet losses and
reordering [4]. In NDN, timestamps and sequence numbers
are expressed on the network layer as name components of
Interest and Data packets. A programmer-friendly API will
partially automate name construction and manipulation ac-
cording to the internal logic of NDN communication proto-
cols.

Retransmission includes both the actual protocol machin-
ery (timers, window management) and buffering of the pack-
ets. Socket API provides a programming interface for an
ordered reliable stream (TCP). Our experience with the de-
velopment of NDN applications demonstrates that NDN API
needs to have an interface for both an ordered reliable stream
and a reliable datagram services.

Reassembly is an important aspect of TCP/IP socket API,
because it provides a way for application designers to di-
rectly access the contents of the stream without dealing with
packet headers. Reassembly is a mandatory service for NDN
API, but we also recognize a need for having a program-
ming interface for out-of-order packet processing similar to
the raw IP sockets.

Introspection — set of instrumentation and monitoring
techniques. TCP/IP socket produces numeric error codes
that often have rather generic meaning which prevents ap-
plication designer from understanding what exactly is going
on inside the TCP connection. In NDN, there are multiple
ways of fetching Data objects via Interest selectors, version-
ing, etc. and, therefore, a more fine-grained monitoring tech-
niques are needed.

Segmentation is offered in the socket API via the write()
primitive. This primitive converts a user-space buffer with
the content to a necessary number of TCP segments. A data
packaging service similar to TCP/IP segmentation will be
highly beneficial for designers of NDN applications as well.

Attachment to the network is offered in the socket API
via bind() primitive. Once socket is bound, an operating sys-
tem is able to demultiplex packets for it. In NDN, packets are
demultiplexed based on hierarchical NDN names. In case
producer application wants its Data packets to be globally
routed, it will most likely have to acquire a routable prefix
from an NDN point of presence (PoP) node. The task of
the API is to offer an interface to work with prefix discov-
ery/registration protocol.

3.2 Core concepts
In NDN, name engineering is a crucial stage of applica-

tion development, because the network fetches the data ex-
clusively by its name. This also means that during the data
fetching process, various data transfer parameters are the
properties of the namespace — unlike the point-to-point IP
network, where data transfer parameters are the properties
of the channel between IP endpoints.

NDN applications that consume data are naturally differ-
ent from NDN applications that produce data. As a result,
they have a different set of data transfer parameters. Of-

3

ten NDN consumers care about fetching multiple segments
of data, reliable data delivery, verifying the data, processing
data, and even flow/congestion control. Figure 2 lists data
transfer parameters that are essential to applications consum-
ing data.

Exclude

MustBeFresh

Child Selector

Selectors
Data packet

verification routine

Interest crypto
routine

Security
Reliability, sequencing,

reassembly

Transmission protocols,
their control parameters

Transmission
Data processing

 routine

send / receive
buffers

Processing

Figure 2: Consumer-specific data transfer parameters

We would like to introduce a generic operation (1), which
binds a name prefix to consumer-specific data transfer pa-
rameters and operation (2), which starts the actual data trans-
fer activity. In other words, operation (1) creates an asso-
ciation between a name prefix and transfer parameters that
influence the actual data transfer.

associate(name prefix, transfer parameters) (1)

consume(name prefix) (2)

NDN producers care about packaging content in the Data
packets (segmentation), securing Data packets, controlling
the caching rate, and processing Interest packets (demulti-
plexing). Figure 3 lists data transfer parameters that are es-
sential to applications producing data.

Data
freshness

Buffering

Caching
Data security

routine

Interest verification
routine

Security
Prefix registration

protocols,
their control parameters

Registration
Interest processing

routine

send / receive
buffers

Data packet
framing

Processing

Figure 3: Producer-specific data transfer parameters

The same generic operation (1) can be used to bind a name
prefix to producer-specific data transfer parameters. Opera-
tion (3) is similar to the write() operation in Socket API in a
way that it converts a buffer with actual content to the Data
packets of appropriate size — performs segmentation.

produce(name prefix, payload) (3)

3.3 Design paradigm
Any network communication protocol consists of two parts:

transfer control and data manipulation [5]. The transfer
control part processes the information in packet headers, and
maintains the state needed for the protocol operation. In-
terest retransmission, packet ordering, congestion/flow con-
trol are the examples of transfer control functionality. The
data manipulation part processes packet data. Examples of
data manipulation functions are content segmentation, sign-
ing and encryption of Data packets, verification of Interest
and Data packets. These functions have in common that
they process large amounts of data, which often involves
data transformation and copying between memory buffers.

In a traditional implementation of TCP/IP protocol stack,
transfer control and data manipulation functions are often
executed independently in separate layers. A vivid exam-
ple of the traditional layered design is the HTTP-SSL-TCP-
IP stack. HTTP messages are passed to the session layer,
where they are encrypted and placed in the transport layer,
where a buffer with encrypted content is segmented in TCP
segments.

Layered architecture provides isolation between distinct
layers. A major architectural benefit of isolation is that it fa-
cilitates the design and implementation of subsystems whose
scope is restricted to a small subset of the suite’s layers.
However, it also causes sequential processing of each unit
of information by each layer, which often imposes “prece-
dence” or “ordering” constraints that limit the opportunities
for many useful optimizations [5].

The idea of integrated layer processing is to combine the
data manipulation and transfer control functions of several
traditional protocol layers into one processing loop. Because
NDN operates with Application Data Units (ADUs), it is
more feasible to process packets in one integrated process-
ing loop. ADU-based protocols are more suitable for ap-
plying integrated layer processing than traditional protocols
(i.e. IP), because ADU packets are independent from each
other and therefore can be processed out of order.

To summarize, a generic API for integrated processing
will hide the complexity of communication protocols, while
providing a way to customize data manipulation actions in
critical areas such as security, event monitoring and error
handling. Generic API provides a uniform design “language”
that can be used by programmers to conveniently work with
NDN network, and convey the meaning of NDN application
in a clear and compact way.

4. API
In this section we give technical definitions of the con-

cepts of consumer context and producer context, and provide
necessary API primitives to work with them.

4.1 Consumer context
A process that wants to fetch Data packets performs three

basic steps: creates a consumer context with desired param-
eters, starts data transfer using the consumer context, and
adjusts data transfer parameters if necessary (Table 1).

4.1.1 consumer()
consumer() creates a context that controls how Interests

are expressed and how returning Data packets are processed.
A consumer context is initialized with the following parame-
ters: a) name prefix, b) desired reliability of packet delivery,
c) indication of a possible multi-segment data fetching.

Consumer context contains many other parameters. Some
parameters are already included in the context with the de-
fault values; other parameters can be freely added at any
time. In both cases, to add or modify context parameters,

4

Data packet
verification

routine

Data

 NDN node drop

data
processing

routine
✗

✓

Consumer context

Interest

consume()

Interest
Selectors

content payload

suffix Interest Interest

illicit Data

 Verified Data

Transmission control

send buffer

Stream
service … Datagram

service

Interest name construction
timeline:

name prefix prefix
+ suffix

prefix + suffix
+ sequence number

prefix + suffix + sequence number
+ crypto digest
OR secure (prefix + suffix + sequence number)

Transmission control

receive buffer

Stream
service … Datagram

service

Interest
crypto
routine

Application

name

Figure 4: Integrated processing of Interest and Data packets in the consumer context.

Ini$aliza$on	 consumer	 (name	 prefix,	 type,	 sequencing)	 è	
handle	

Primi$ves	

consume	 (handle,	 name	 suffix)	
stop	 (handle)	
close	 (handle)	
setcontextopt	 (handle,	 op$on	 name,	 value)	
getcontextopt	 (handle,	 op$on	 name)	

Table 1: API primitives for consuming data: consumer()
creates a context, consume() starts data transfer, stop()
terminates data transfer, close() destroys context.
an application designer uses the setcontextopt() primitive.

name prefix — prefix of a meaningful application-specific
name that is expected to bring Data packet(s) back. Name
prefix can contain any components except the sequence num-
ber component as it is appended automatically by the API.

type — specifies type of protocol machinery to be used
for content retrieval. If UNRELIABLE option is used, con-
sumer context will not attempt to recover potentially lost
Data segments with retransmission of Interest packets. With
RELIABLE option, consumer context will perform Interest
retransmission until the exhaustion of allowed number of re-
transmissions for any individual Interest packet.

sequencing — specifies whether consumer context must
append a segment number to the name of each outgoing In-
terest packet, and keep incrementing it in Interests fetching
next Data segments. Default values include: a) DATAGRAM,
b) SEQUENCE. If SEQUENCE is selected, consumer con-
text will keep expressing new Interest packets with incre-
mented sequence numbers until the last segment of data is re-
ceived. How and in what order these Interests are expressed
is controlled by the transmission control protocols (i.e. In-
terest pipelining) which are built in the consumer context
(Figure 4). To change what protocol is used or to modify
its controlling parameters, application designer executes set-
contextopt() primitive.

4.1.2 consume()
consume() starts data transfer for a specified name with

the behavior defined by the consumer context. For example,
if the context was created with the datagram option, then
calling consume() will result in expressing exactly one Inter-
est packet retransmitted the number of times specified in the
reliability option. If the SEQUENCE option was used, then
calling consume() will result in consumer context expressing
automatically sequenced Interest packets until the last Data
packet is received. In such case, Data packets are ordered
and reassembled automatically in the receive buffer, unless
the Raw mode is activated.

consume() accepts the following parameters.
handle — unique identifier of the consumer context.
name suffix — additional name components, which are

appended to the name prefix specified in the consumer con-
text at initialization stage. The name suffix must not contain
sequence number, because it is appended later by the trans-
mission protocol.

Name suffixes can be used to fetch different information
objects using the same transmission parameters specified in
the consumer context. Another motivation for logical sepa-
ration of name prefix and suffix is the necessity to give ap-
plication designers the tool to perform on-the-fly changes
in the data transfer process without the need to recreate a
whole new consumer context for that purpose. For example,
when the desired Data packets cannot be fetched and Inter-
est packets time out, an application designer can decide to
restart data fetching for the information object using another
version number, or timestamp, or simply to fetch different
information object with a different name suffix.

4.1.3 setcontextopt()
setcontextopt() primitive is used to assign or modify pa-

rameters of the consumer context:
• Interest selectors
• Transmission control protocol: flow & congestion con-

5

trol (i.e. Interest pipelining).

• Transmission control parameters: rate limit, retrans-
missions, etc.

• Size of the receive buffer holding the payload of a sin-
gle Data packet (datagram context) or multiple reassem-
bled Data packets (SEQUENCE context)

• Raw mode — deactivates packet ordering and reassem-
bly, and exposes packets in a wire format.

• Callback function that modifies the name of Interest
packet in order to obfuscate some of its name compo-
nents or add cryptographic digest. Digest, for instance,
can be used by the producer to authenticate the con-
sumer.

• Callback function that performs verification of incom-
ing Data packets (Figure 4). It accepts a single Data
packet and returns True if verification succeeds and
False if it fails. If verification fails, the Data packet
is dropped. If verification succeeds, the payload of the
Data packet is placed in the receive buffer of the con-
sumer context and will be available for reading.

• Callback function that processes the payload contained
in Data packets. The routine accesses the receive buffer
of the consumer context, which contains the payload
of a single (datagram context) or multi-segment Data
packets that were reassembled in a SEQUENCE con-
text. Application designers can modify the length of
the receive buffer using a setcontextopt() primitive.

• Callback functions that monitor events such as Inter-
est timeouts, Interest retransmissions, Data packet ar-
rival, Data verification successes/failures, etc. These
instrumentation functions cannot modify packets and
instead serve the purpose of gathering feedback on the
data fetching process that can be used by the appli-
cation designer to adjust data transfer parameters (i.e.
selectors, rate limit, etc.), or restart data transfer with a
different name suffix (i.e. version, timestamp, etc.).

setcontextopt() accepts the following parameters:
handle — unique identifier of the consumer context.
option name — name of the parameter to be modified.
value — new parameter value, which depending on the

type of parameter, can be an integer, enumerator value, string,
or a function pointer.

4.1.4 stop()
stop() terminates data transfer in the consumer context.

Context stops expressing any new Interests and processing
incoming Data packets. Buffers are freed. The consumer
context is not destroyed and application designer can reuse
it by calling the consume() primitive.

4.1.5 close()
close() primitive destroys consumer context. All callback

functions are disconnected.

Ini$aliza$on	 producer	 (name	 prefix)	 è	 handle	

Primi$ves	

produce	 (handle,	 name	 suffix,	 payload)	
setup	 (handle)	
close	 (handle)	 	
setcontextopt	 (handle,	 op$on	 name,	 value)	
getcontextopt	 (handle,	 op$on	 name)	

Table 2: API primitives for producing data: producer()
creates a context, setup() prepares context for demulti-
plexing Interest packets, produce() outputs Data packets.

4.2 Producer context
A process that wants to provide its data for transfer per-

forms four basic steps: creates a producer context with de-
sired parameters, setups Interest demultiplexing, creates con-
tent payload and passes it to the context, and destroys the
context when no longer needed (Table 2).

4.2.1 producer()
producer() creates a context that controls how data is pro-

duced and secured, and how Interests are demultiplexed. Pro-
ducer context is initialized with a single parameter — appli-
cation specific name prefix of the data. Internally, producer
context contains many other parameters. Some parameters
are already included in the context with the default values,
other parameters can be freely added at any time. In both
cases, to add or modify context parameters, application de-
signer uses the setcontextopt() primitive.

name prefix — namespace where the data will be pro-
duced. This namespace (prefix) is used by the localhost
NDN node to demultiplex incoming Interests and pass them
in the producer context.

4.2.2 setup()
setup() primitive activates producer context for receiving

Interest packets and producing Data packets. Activation in-
cludes multiple steps. The obligatory step is FIB entry cre-
ation in the localhost NDN node in order to successfully
demultiplex Interest packets arriving on the host. An addi-
tional step is needed if process-producer wants to be reach-
able from the global Internet. In order to achieve it, two re-
quirements must be met: a) an adjacent NDN node(s) must
forward Interest packets towards the host where producer ap-
plication is running, b) the names of produced Data pack-
ets must begin with routable prefix. These needs are sat-
isfied by the prefix registration and prefix discovery proto-
cols [6]. The application designer executes setcontextopt()
primitive to select prefix registration protocol along with its
parameters (i.e. ACL credentials). Third step initializes
send/receive buffers and connects Data packet security call-
back, Interest verification callback, Interest processing call-
back and other callback functions (Figure 5).

6

Interest
verification

routine

send
buffer

Interest

✗

Data

✗
drop or NACK

 NDN node

receive
buffer

drop or NACK

✓

✗
drop or NACK

Interest
processing

routine

Data
packaging

routine
Data

✗
✓

Producer context

✓

produce()
content

ca
ch

e m
iss

verified

Full illicit

cache hit

Application

Data
security
routine

Data Data

Data

Figure 5: Integrated processing of Interest and Data packets in the producer context.

4.2.3 setcontextopt()
setcontextopt() primitive is used to assign or modify pa-

rameters of the producer context:
• Packet framing — Data packet size, signature type
• Size of the receive buffer holding the demultiplexed In-

terest packets waiting for processing. When this buffer
is full, program has enough work tasks in its queue and
other demultiplexed Interest packets might be dropped
(Figure 5)
• Size of the send buffer holding Data packets recently

produced within this producer context. Send buffer is
a simple cache with FIFO replacement policy, which
resides in the producer context. Send buffer softens the
difference between data production and fetching rates.
This is an important optimization for handling Interest
retransmission without re-producing and re-signing the
same content again.
• Callback function that runs application specific verifi-

cation of Interest packets after they are demultiplexed
by the localhost NDN node and placed in the receive
buffer, but before they reach the send buffer or the In-
terest processing routine. Interest verification is useful
when it is necessary to authenticate Interest sender or
in other ways to authorize data production. Whenever
verification fails, Interest is dropped and not processed
any further (Figure 5)
• Callback functions that monitor events such as Interest

drops, cache (send buffer) hits/misses, Interest verifi-
cation failures, etc.
• Data freshness period, which influences the rate of data

caching by the network NDN nodes
• Prefix registration protocol used to setup proper for-

warding of the Interests from the adjacent NDN node
towards the host running the producer application.
• Prefix registration protocol properties and parameters

(i.e. user credentials).

setcontextopt() accepts the following parameters:
handle — unique identifier of the producer context.
option name — name of the parameter to be modified.
value — new parameter value, which depending on the

type of parameter, can be an integer, enumerator value, string
or a function pointer.

4.2.4 produce()
produce() primitive is used to pass content payload in the

producer context in order to convert it in a single or multi-
ple NDN Data packets. If application designer has specified
a security function callback for the producer context, NDN
Data packet(s) are signed and encrypted by this function,
then placed in the send buffer of the producer context and
immediately passed to the localhost NDN node. produce()
primitive is usually called from the Interest processing rou-
tine, but can also be executed from any other location in the
program.

produce() accepts the following parameters:
handle — unique identifier of the producer context.
name suffix — additional name components, which are

appended on the per-information-object basis, such as ver-
sion number, timestamp, etc.

payload — input buffer containing content payload. If
provided buffer does not fit in a single Data packet of spec-
ified size, producer context performs segmentation of the
content payload into multiple sequentially named Data pack-
ets and places all of them in the send buffer. The send buffer
handles the situation when produce() makes more segments
than currently requested by the consumer. If the next se-
quential Interest packets are still in transit, they are served
from the send buffer, instead of being re-produced and re-
signed again. Send buffer is a very important producer-side
optimization for the multi-segment and reliable data fetch-
ing. Data packets are replaced in the send buffer according
to FIFO policy. If the size of the supplied content payload
buffer exceeds the size of the send buffer, produce() returns
an error.

Normally, the input content payload buffer contains un-
secured content, because the user-specified security function
callback will secure the complete Data packet(s) to give Data
packet standard content-based security properties (Figure 5).

4.2.5 close()
close() primitive destroys producer context. Buffers are

cleaned and function callbacks are disconnected. FIB entries
in a localhost NDN node are removed. Prefix registration
protocol performs cleanup when it is necessary.

7

5. USING NDN API CONTEXTS
In this section we describe how existing NDN applications

can be implemented using Consumer-Producer API.

5.1 File synchronization
We start our explanation of the API with one of the simple

NDN applications that requires a reliable stream service, but
does not have an elaborate security model. NDN FileSync
is a distributed peer-to-peer application that implements file
synchronization in a shared directory [7].

Sample data packet name: /broadcast/apps/filesync/class217
/Reports/Report.pdf/<timestamp>. Application’s Interest pack-
ets contain a name of the file, which needs to be downloaded
from any other peer. When this Interest is received, appli-
cation parses its name in order to locate the file on the disk,
and then packages the file in Data packets.

Pseudocode 1 Sharing a file
1: h← producer("/broadcast/apps/filesync")
2: setcontextopt(h, packet_size, 16KB)
3: setcontextopt(h, interest_callback, ProcessInterest)
4: setup(h)

5: function PROCESSINTEREST(Interest i)
6: Name suffix ← read i.name to understand what

file is needed
7: content← read file from disk
8: Name suffix← append current time stamp
9: produce(h, Name suffix, content)

10: end function
Pseudocode 2 Downloading a file

1: h← consumer("/broadcast/apps/filesync", RELIABLE,
SEQUENCE)

2: setcontextopt(h, receive_buffer_size, 20MB)
3: setcontextopt(h, content_callback, ProcessContent)
4: consume(h, "/class217/Reports/Report.pdf")

5: function PROCESSCONTENT(byte[] content)
6: file← read content
7: Save file on disk
8: end function

5.2 Live video streaming
The second example application that we would like to dis-

cuss is the live video streaming application that requires an
unreliable stream service. NDNVideo also has an interesting
data production technique; instead of processing incoming
Interest packets, it places Data packets, containing recently
captured video frames in the user-space buffer or a localhost
Content Store, and lets incoming Interest fetch the Data from
these buffers [8].

Sample data packet name: /edu/ucla/stream/<timestamp>
/video0/h264-1024k/segments/00%. Components /edu/ucla
are the routable name, followed by the application-specific
name components representing video frames in a specific
video encoding format.

Pseudocode 3 Producing video
1: h← producer("/edu/ucla/stream")
2: setcontextopt(h, packet_size, 8KB)
3: setcontextopt(h, send_buffer_size, 100MB)

4: setup(h)

5: while True do
6: Name suffix← name and quality of the video
7: content← encode captured video
8: produce(h, Name suffix, content)
9: end while

Pseudocode 4 Consuming video
1: h← consumer("/edu/ucla/stream", UNRELIABLE, SE-

QUENCE)
2: setcontextopt(h, receive_buffer_size, 1MB)
3: setcontextopt(h, send_rate, 50ms)
4: setcontextopt(h, content_callback, ProcessContent)
5: consume(h, "%FD%04%F65ub/video0/h264-1024k")

6: function PROCESSCONTENT(byte[] content)
7: video← decode content
8: Display video
9: end function

5.3 Building Automation System
Lighting control system is an example component of a

Building Automation Systems (BAS). The basic idea of the
application is that Interest packets are issued by the con-
troller and represent some action of the user: turning on/off
the light, changing the color of the light, etc. Lightning
panel receives an Interest and performs a requested activ-
ity. Because the user must be sure that requested action was
performed successfully or failed, the application requires a
reliable datagram service. Lighting control over NDN se-
cures BAS with identifying entities on the network via an
asymmetric key pair and authenticating Interest packets for
control, using either RSA signatures or HMACs [9].

An example of data packet name: /ndn/ucla/boelter/3551
/lights/fixture/41/rgb-8bit-hex/<color>/<state>/<signature>.
Where <color> carries the name of the color of the light to
avoid bidirectional Interest-Data exchange, and <signature>
carries signature bits to authenticate request.

Pseudocode 5 NDN gateway for lighting panel
1: h← producer("/ndn/ucla/boelter/3551/lights/fixture/41/

rgb-8bit-hex")
2: setcontextopt(h, verification_callback, VerifyInterest)
3: setcontextopt(h, interest_callback, ProcessInterest)
4: setcontextopt(h, security_callback, SecureData)
5: setup(h)

8

Pseudocode 6 NDN gateway for lighting panel (continued)
6: function VERIFYINTEREST(Interest i)
7: Signature← read signature bits from i.name
8: if Signature is valid then
9: return True

10: else
11: Name suffix ← read <color>, <state>, <sig-

nature> from i.name
12: produce(h, Name postfix, VerificationNACK)
13: return False
14: end if
15: end function

16: function PROCESSINTEREST(Interest i)
17: Color name← read the color from i.name
18: Set the color of the light to Color name
19: content← status of the operation
20: produce(h, Color name, content)
21: end function

22: function SECUREDATA(Data d)
23: Encrypted data← encrypt(d)
24: Secured data← sign(Encrypted data)
25: return Secured data
26: end function

6. CONCLUSION
NDN fetches the data exclusively by its name, which means

that during the data fetching process, various data transfer
parameters are the properties of the namespace — unlike the
IP network, where data transfer parameters are the properties
of the communication channel between IP endpoints.

In this paper, we introduced Consumer-Producer integrated
processing API, which represents a generic application pro-
gramming interface to NDN communication protocols and
architectural modules. The API with integrated processing
of Interest and Data packets provides the following function-
ality to application designers:

1. Retrieval of single-segment and multi-segment content.

2. Reliable transmission services.

3. Reassembly and packet ordering services.

4. Packaging of the content in Data packets of constant
size and buffering recently produced Data segments in
the in-application cache.

5. Plugging-in user defined content-based security actions
such as Interest security routine, Data security routine,
Interest and Data verification routines.

6. Monitoring events related to Interest and Data process-
ing in order to provide detailed feedback to the appli-
cation.

This paper introduces two new programming abstractions:
consumer context and producer context. Contexts keep all

Pseudocode 7 Light controller
1: h ← consumer("/ndn/ucla/boelter/3551/lights", RELI-

ABLE, DATAGRAM)
2: setcontextopt(h, crypto_callback, SignInterest)
3: setcontextopt(h, verification_callback, VerifyData)
4: setcontextopt(h, content_callback, ProcessContent)
5: consume(h, "/fixture/41/rgb-8bit-hex/FAF87F")

6: function SIGNINTEREST(Interest i)
7: Signed Interest← sign(i)
8: return Signed Interest
9: end function

10: function VERIFYDATA(Data d)
11: if verify(d.signature, d.keyLocator) is True then
12: return True
13: else
14: return False
15: end if
16: end function

17: function PROCESSCONTENT(byte[] content)
18: Status← read content
19: Display Status to user
20: end function

necessary state of ongoing data transmission happening un-
der a specific name prefix. Both producer and consumer con-
texts are designed to be used with multiple name suffixes,
but as it was mentioned earlier, different name suffixes share
the common transmission characteristics associated with the
prefix.

Both contexts can include additional parameters that were
not described in this paper, but will be necessary for an ad-
ditional functionality and future communication protocols.
One of the possible extensions is automatic data versioning.
Because every segment of data is immutable in NDN, most
applications have to deal with multi-versioned content. Con-
text abstraction can be used to automate name construction
and manipulation related to the production and consumption
of multi-versioned data.

7. ACKNOWLEDGEMENTS
We are thankful to Jeff Burke, Mark Stapp and David

Oran for providing criticism of earlier drafts of this paper.
The ideas developed in this paper are motivated by the expe-
rience in developing NDN applications by the members of
Internet Research Lab (IRL), Center for Research in Engi-
neering, Media and Performance (REMAP), and students of
UCLA Computer Science department. This work is a con-
tribution to NSF project CNS-1040868 FIA: Collaborative
Research: Named Data Networking (NDN).

8. REFERENCES
[1] J.M. Winett, “RFC 147 - The Definition of a Socket,”

Tech. Rep., 1971.

9

[2] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F.
Plass, N. H. Briggs, and R. L. Braynard, “Networking
Named Content,” in Proc. of CoNEXT, 2009.

[3] L. Zhang et al., “Named Data Networking (NDN)
Project,” Tech. Rep. NDN-0001, October 2010.

[4] H. Schulzrinne, S. Casner, R. Frederick, and
V. Jacobson, “RFC 3550 - RTP: A Transport Protocol
for Real-Time Applications,” 2003.

[5] D. D. Clark and D. L. Tennenhouse, “Architectural
Considerations for a New Generation of Protocols,”
SIGCOMM Comput. Commun. Rev., vol. 20, no. 4, pp.
200–208, Aug. 1990.

[6] [Online]. Available: https://www.ccnx.org/releases/
latest/doc/technical/Registration.html

[7] J. Lindblom, M. Huang, J. Burke, L. Zhang,
“FileSync/NDN: Peer-to-Peer File Sync over Named
Data Networking,” UCLA, Tech. Rep., 2013.

[8] D. Kulinski and J. Burke, “NDN Video: Live and
Prerecorded Streaming over NDN,” UCLA, Tech. Rep.,
2012.

[9] J. Burke, A. Horn, A. Marianantoni, “Authenticated
Lighting Control Using Named Data Networking,”
UCLA, Tech. Rep., 2012.

https://www.ccnx.org/releases/latest/doc/technical/Registration.html
https://www.ccnx.org/releases/latest/doc/technical/Registration.html

	Introduction
	Named Data Networking
	API design guidelines
	Functionality
	Core concepts
	Design paradigm

	API
	Consumer context
	consumer()
	consume()
	setcontextopt()
	stop()
	close()

	Producer context
	producer()
	setup()
	setcontextopt()
	produce()
	close()

	Using NDN API contexts
	File synchronization
	Live video streaming
	Building Automation System

	Conclusion
	Acknowledgements
	References

