
NDN, Technical Report NDN-0028, 2015. http://named-data.net/techreports.html
Revision 2: November 11, 2016
Revision 1: January 27, 2015. (https://named-data.net/wp-content/uploads/2013/07/ndn-0028-1-ndnsim-v2.pdf)

1

ndnSIM 2: An updated NDN simulator for NS-3
Spyridon Mastorakis, Alexander Afanasyev, Ilya Moiseenko and Lixia Zhang

University of California, Los Angeles
{mastorakis, aa, iliamo, lixia}@cs.ucla.edu

F

Abstract—The fundamental departure of the Named-Data Networking
(NDN) communication paradigm from the IP principles requires exten-
sive evaluation through experimentation, and simulation is a necessary
tool to enable the experimentation at scale. We released the first ver-
sion of ndnSIM, an open source NS-3-based NDN simulator, back in
June 2012. Since then, ndnSIM has undergone substantial development
resulting in ndnSIM 2, the first version of which was released in Jan-
uary 2015. This paper reports the design and features of the updated
simulator. The goal of the updated simulator is to match the simulation
platform to the latest advancements of NDN research. Therefore, it uses
the ndn-cxx library (NDN C++ library with eXperimental eXtensions) and
the NDN Forwarding Daemon (NFD) to enable experiments with real
code in a simulation environment.

1 INTRODUCTION

Named Data Networking (NDN) [1, 2, 3, 4] represents a
fundamental departure from today’s Internet architecture
which names the communication endpoints, and aspires
to be the successor of the TCP/IP protocol stack. As a
result, the various design options in the NDN architecture
needs to be evaluated in large-scale experimentation. How-
ever, it is infeasible to conduct such experimentation with
real-world infrastructure and simulation-based evaluation
becomes necessary. The main goal of ndnSIM has always
been offering the NDN community a common, user-friendly,
and open-source simulation platform based on the NS-3
simulator framework [5].

The first public release of ndnSIM took place in June
2012 [6]. Since then, ndnSIM has become a popular tool
used by many researchers around the globe. At the time of
this writing, ndnSIM mailing list has over 400 subscribers,
and more than 290 papers have been published based on
research done using ndnSIM. Since the first ndnSIM release,
the NDN team has released an updated version of the proto-
col, in part featured by the new modular NDN Forwarding
Daemon (NFD) [7, 8] and ndn-cxx library (NDN C++ library
with eXperimental eXtensions) [9] that supports NFD imple-
mentation and is used in other C++ based applications.

The goal of this new ndnSIM release is to match the
simulation platform to the latest advancements of NDN
research and consolidate the code development efforts: the
core of ndnSIM is now fully powered by NFD and ndn-
cxx code with a few minor updates. With this change, the
ndnSIM 2 offers the highest fidelity of the simulation results,
as well as allow simple transfer of simulation experiments to
the real world and vice versa. To summarize, ndnSIM 2 has

the following major enhancements and features compared
to the first release:

• All NDN forwarding and management is implemented
directly using the source code of NFD and ndn-cxx.

• The packet format changed to the latest NDN packet
format [9].

• Real applications written against the ndn-cxx library
can be adapted to run inside the simulated environ-
ment.

This version of the simulator, just like the previous one,
is implemented in a modular way using different C++
classes to model the behavior of each NDN entity: Faces
to communicate with local applications and other simulated
nodes, NFD’s Forwarding Information Table (FIB), Pending
Interest Table (PIT) and Contest Store (CS), etc. This modular
structure allows the easy modification or replacement of
any component with no or minimal impact on the other
components. In addition, the new release provides a more
extensive collection of interfaces and helpers to perform
detailed tracing of every component, as well as of the NDN
traffic flow.

In order to improve the user experience even more, we
encourage the community to provide us valuable feedback
by submitting bug reports. We also welcome requests for
new feature development.1 More information about the
simulator, basic examples, and tutorials are available on the
ndnSIM website: http://www.ndnsim.net/.

2 DESIGN

The design for ndnSIM 2 has been directed by our aim
to achieve full integration with Named Data Networking
Forwarder (NFD) [7, 8]. In this section, we present the
overall design of ndnSIM and demostrate its main structural
components and the way that they interact with each other.

2.1 Design summary
ndnSIM 2 provides integration with NFD, while it also
allows the simulation of applications written against the cxx
library. In this way, ndnSIM offers an integrated simulation
environment for researchers and developers to deploy and
evaluate their real-world applications at large-scale.

1. Bug reports and feature recommendations can be submitted
on the NDN project issue tracking system website: http://redmine.
named-data.net/projects/ndnsim

http://named-data.net/techreports.html
https://named-data.net/wp-content/uploads/2013/07/ndn-0028-1-ndnsim-v2.pdf
http://www.ndnsim.net/
http://redmine.named-data.net/projects/ndnsim
http://redmine.named-data.net/projects/ndnsim


2

TABLE 1: Comparison among the components of ndnSIM 2 and ndnSIM 1.0

Component of ndnSIM 2 Component existed in
ndnSIM 1.0?

Features/Design principles inherited from
ndnSIM 1.0

Features/Design changes introduced in
ndnSIM 2

ndn::L3Protocol Yes The core component of ndnSIM NFD integration
nfd::Forwarder Existed as

ndn::ForwardingStrategy
– As a result of integration with NFD, packet

forwarding is split into forwarding pipelines
and forwarding strategy decisions

nfd::face::LinkService Existed as ndn::Face Base class for ndn::AppLinkService and
ndn::NetDeviceLinkService

Link service abstraction of a nfd::Face
implemented by NFD

ndn::AppLinkService Existed as ndn::AppFace Enables communication with applications Realization of nfd::face::LinkService
abstraction

ndn::NetDeviceLinkService Existed as
ndn::NetDeviceFace

Enables communication with other simulated
nodes

Realization of nfd::face::LinkService
abstraction

::ndn::Face No – Enables the simulation of real applications
written against the ndn-cxx library

ndn::cs Yes Same design NFD integration
nfd::Cs Existed as ndn::cs – 1) Interest selectors handling

2) Not yet flexible to cache policies
nfd::Pit Existed as ndn::pit – Abstraction implemented by NFD
nfd::Fib Existed as ndn::fib – Abstraction implemented by NFD

nfd::fw::Strategy Existed as
ndn::ForwardingStrategy

– 1) Per namespace strategy
2) Different built-in strategies

Applications Yes Equivalent functionality Use of the ndn-cxx library
Trace helpers Yes Equivalent functionality Directly trace events from NFD

As a result of the NFD integration, the installation of
the NDN protocol stack (ndn::L3Protocol) on a simulated
node results in creating of NFD instance and associating
it with the node. The code used for any experiments with
NDN forwarding (e.g., custom forwarding strategies) can be
directly used inside ndnSIM and vice versa. Moreover, the
ability to select different forwarding strategies for different
namespaces, the full-featured support for Interest selectors
and crypto operations, and the use of the full-featured NDN
packet format ensure that the simulations are maximally
realistic. With the added features, ndnSIM 2 has increased
memory and CPU requirements compared to ndnSIM 1.0,
but still allowing a large scale simulations on general-
purpose hardware. The memory overhead per CS and PIT
entry is presented in Table 2. ndnSIM 1.0 can process ap-
proximately 53K packets (Interest and Data) per wall clock
second, while ndnSIM 2 can process approximately 17K
packets (Interest and Data) per wall clock second.

ndnSIM’s NDN stack is implemented as a network-layer
protocol model and can run on top of any available link-
layer protocol model (point-to-point, CSMA, wireless, etc.).
In addition to that, the simulator provides an extensive
collection of helpers (NDN Stack, Application, FIB, Global
Routing, Link Control, and Strategy Choice helpers) and
tracers (packet-level, application-level, content store) to per-
form detailed tracing behavior of every component, as well
as NDN traffic flow.

The basic components of this ndnSIM release are shown
in Figure 1 and a comparison among their design principles
and features for the new and the previous release of the
simulator is presented in Table 1. These components are also
listed below:

• ndn::L3Protocol: NS-3 abstraction of the NDN stack
implementation. Its main task is initialization of the
NFD instance of each node that participates in the
simulation scenario and provides tracing sources to
measure NDN performance (sent/received interest and
data, satisfied/unsatisfied interests).

• NFD: implementation of the Named Data Networking
Forwarding Daemon, including:

ndn::AppLinkService ndn::NetDeviceLinkService

NDN Protocol Stack
{ndn::L3Protocol}

NFD

NetDevice

ndnSIM-specific
Applications

Content 
Store 

{nfd::Cs}
PIT 

{nfd::Pit}
FIB 

{nfd::Fib}

Forwarding 
Strategy

{nfd::fw::*}

 Content Store
{ndn::cs::*}

Face
{nfd::Face}

NFD

ndnSIM
core

Applications 

LinkService
{nfd::face::LinkService}

NS-3

Real-world
Applications

ndn-cxx
Library

ndnSIM-specific 
ndn::Face

{ndn::Face}

Fig. 1: Structural diagram of the ndnSIM design components

– nfd::Forwarder: main class of NFD, which owns all
faces and tables of the NDN router node and imple-
ments NDN forwarding pipelines.

– nfd::Face: NFD Face abstraction that implements the
required communication primitives to actually send
and receive Interest and Data packets.

– nfd::face::LinkService: base class of NFD LinkSer-
vice abstraction. LinkService translates between net-
work layer packets (Interests, Data, and Nacks) and
link layer packets (TLV blocks).

– nfd::face::Transport: base class of NFD Transport ab-
straction. Transport provides best-effort packet deliv-
ery service to the link service of a face.

– nfd::Cs: the cache of Data packets that is used by
NFD. The current release of ndnSIM also includes the
old ndn::ContentStore abstraction (see below) ported
from the previous release to enable richer options for
simulation of content store operations (nfd::Cs is not
yet as flexible when it comes to cache replacement
policies).

– nfd::Pit: the Pending Interest Table (PIT) of NFD



3

TABLE 2: Average memory overhead of ndnSIM 2 and ndnSIM 1.0

Entry Type ndnSIM 1.0 ndnSIM 2
Per CS Entry 1.3 Kb 2.8 Kb
Per PIT Entry 0.8 Kb 5.1 Kb

keeps track of Interest packets that were forwarded
upstream toward one (or more) content source(s). In
this way, Data can be sent downstream to one (or
more) requester(s).

– nfd::Fib: the Forwarding Information Base (FIB) is
used to forward Interest packets toward one (or
more) potential source(s).

– nfd::fw::Strategy: the forwarding strategy in NFD
makes the decisions regarding whether, when, and
where the Interest packets will be forwarded.
nfd::fw::Strategy is an abstract class that needs to be
implemented by all the built-in or custom forwarding
strategies.

– nfd::measurements::Measurements: the table, where
NFD stores measurement information regarding a
name prefix. It is used by the forwarding strategies.

– nfd::strategy choice::StrategyChoice: this table con-
tains the forwarding strategy selected for each
namespace.

• ndn::AppLinkService: realization of the
nfd::face::LinkService abstraction to enable
communication with applications.

• ndn::NetDeviceLinkService: realization of the
nfd::face::LinkService abstraction to enable
communication with other simulated nodes.

• ndn::cs::*: the Content Store (CS) structure as imple-
mented in ndnSIM 1.0. It includes a number of replace-
ment policies and, in general, is more flexible than the
current CS implementation of NFD.

• Basic NDN applications: implementation of built-in
NDN consumer and producer applications that can
generate and sink NDN traffic. These applications in-
clude parameters that can be configured by the user in
the simulation scenario and thus generate NDN traffic
according to a user-defined pattern.

• Trace helpers: a collection of trace helpers that simplify
collection and aggregation of various necessary statis-
tical information about the simulation and write this
information in text files.

• ndnSIM helpers: a collection of helpers, which simplify
the configuration of various parameters that will be
used during the simulation execution.

We used the LinkService abstraction to implement the
basic communication principles instead of implementing
our own Transport. This is a solution to optimize packet
processing and avoid unnecessary memory operations.
Through this approach, we also managed to maintain the
NS3 packet tags attached to each packet sent/received by a
simulated node, which otherwise would be lost.

2.2 Core NDN protocol

The core component of the ndnSIM architecture is
ndn::L3Protocol. This component serves as a consolidator
for the NDN protocol stack and can be installed in each

simulated node in a way simiar to other network protocol
stacks, such as IPv4 and IPv6. When it is installed on a NS-
3 node, it performs the initialization of the NFD instance,
creates the necessary NFD managers (FibManager, FaceM-
anager, StrategyChoiceManager), tables (PIT, FIB, Strategy
Choice, Measurements), and special faces (i.e., Null Face,
Internal Face). In addition to that, the ndn::L3Protocol class
defines an API to handle the registration of new nfd::Face
instances to NFD using the AddFace method and provides
NS-3 TraceSource entry points of NDN-level packet tracing.

2.3 Named Data Networking Forwarding Daemon (NFD)
ndnSIM integrates the NFD codebase with a few small
adaptations to the simulation environment,2. In the rest of
this section we describe NFD structure and list the major
challenges we faced during the integration.

2.3.1 NFD Internal Structure
The basic modules of NFD are the following [7]:

• ndn-cxx Library, Core, and Tools, which provides var-
ious common services shared between different NFD
modules.

• Faces that implement communication abstraction on
top of various lower level transport mechanisms.

• Tables, realizing the Content Store (CS), the Pending
Interest Table (PIT), the Forwarding Information Base
(FIB), StrategyChoice, Measurements, and other data
structures to support forwarding of NDN Data and
Interest packets.

• Forwarding pipelines, a series of steps that operate
on a packet or a PIT entry. Individual pipelines are
triggered by a specific event, such as reception of the
Interest, detecting that the received Interest was looped,
when an Interest is ready to be forwarded out of the
Face, etc.

• Forwarding strategies, a decision maker about Interest
forwarding, which is attached at the end or beginning
of the pipelines.

• Management, allowing applications to configure NFD
and set/query NFD’s internal states.

2.3.2 Challenges of NFD integration
Towards this integration, we had to address the following
challenges:

• We had to enable the use of simulation time in NFD.
Therefore, we took advantage of the CustomClock
class provided by the ndn-cxx library in order to
convert ndnSIM time to system clock::time point and
steady clock::time point.

• The scheduler of NFD was redirected to ns3::Simulator,
so that NFD can schedule events that will be executed
by the simulator.

2. Because of these required adaptations, the version of NFD that
ndnSIM is based on tends to be slightly behind the latest version of
NFD/ndn-cxx



4

• To optimize the signing process used by NFD for the
interaction with its managers through its management
protocol, we designed a custom keychain that provides
high performance (i.e., minor crypto overhead) during
the simulation. However, for simulations that need real
crypto operations, the use of a full-featured keychain
structure can be selected in the simulation scenario.

• The forwarding pipeline of NFD had to be ex-
tended with the beforeSatisfyInterest and beforeEx-
pirePendingInterest signals, so that the tracing of the
SatisfiedInterests and TimedOutInterests events is en-
abled to the simulator.

• We enabled the configurability of NFD parameters in-
ternally using specially designed configuration files to
avoid the overhead of parsing raw external files and
thus optimize the simulation process.

2.3.3 Face abstraction
It is similar to the corresponding abstraction of the previ-
ous ndnSIM version. This abstraction (nfd::Face) contains
the required low-level communication primitives to handle
Interest and Data packets. As mentioned in [7], these primi-
tives include functions to send an Interest/Data packet and
terminate the communication on a Face.

2.3.4 ndnSIM specific ndn::Face
The version of ndn-cxx library bundled with ndnSIM in-
cludes a modified version of ndn::Face to directly send and
receive Interest and Data packets to and from the simulated
instances of NFD. With this modification, ndnSIM enables
support to simulate real NDN applications written against
the ndn-cxx library. A detailed guide on how to simu-
late such applications is available on the ndnSIM website:
http://ndnsim.net/2.1/guide-to-simulate-real-apps.html.

2.3.5 LinkService abstraction
A link service of NFD must translate between net-
work layer packets (Interests, Data, and Nacks) and
link layer packets (TLV blocks). In ndnSIM, we
have implemented a special Link Service base class
(ndn::TracingLinkService), which is used by both the
ndnSIM applications (ndn::AppLinkService) and the layer
2 devices (ndn::NetDeviceLinkService).

2.3.6 NFD’s Content Store
In the NDN communication model, Content Store offers in-
network caching for Data packets. Arriving Data packets
are placed in the cache as long as possible, so that to
satisfy future Interests that would request the same Data.
In this way, the protocol performance is enhanced making
NDN robust against packet losses and errors and capable of
inherent multi-casting.

As with many other forwarding components, this ver-
sion of ndnSIM uses content store implementation from the
NFD codebase. This implementation takes full consideration
of Interest selectors, however is not yet flexible when it
comes to cache replacement policies. The feature to extend
CS flexibility is currently in active development and, for the
time being, we have also ported the old ndnSIM 1.0 content
store to the new code base, which is discussed in 2.6.

Create Signed 
Interest

 for /localhost/fib/

FIB Helper
AddRoute

Sign
using 

DummyKeyChain

Forward to 
NFD’s FIB 
manager

RemoveRoute

Fig. 2: Operations of the FIB helper

2.3.7 Pending Interest Table (PIT)
In our implementation, the class nfd::Pit of NFD is used as
the PIT abstraction. PIT maintains the state for the Interest
packets that have been forwarded upstream toward one (or
more) potential data source(s) of matching Data. It provides
directions for the reverse forwarding of the Data packets
toward the data consumer(s). In addition to that, PIT also
contains recently satisfied Interest packets for the purposes
of loop prevention.

For more information about the PIT structure and the
operations performed on it, one can refer to [7].

2.3.8 Forwarding Information Base (FIB)
The class nfd::Fib of NFD is used as the FIB abstraction.This
abstraction is used by the forwarding strategies for Interest
forwarding toward potential content source(s). For each
Interest that needs to be forwarded, a longest prefix match
lookup is performed on the FIB.

The FIB is updated only through the FIB management
protocol, which is operated on the NDN forwarder side
by the FIB manager. To simplify common operations, we
created a FIB helper that, for the high-level FIB operations,
prepares special signed Interest commands and sends them
towards the FIB manager. Currently, the FIB helper imple-
ments two high-level operations (Figure 2):

• AddRoute: Create a new FIB entry, add a route to the
FIB entry, or update the cost of the existing record in
the FIB entry.

• RemoveRoute: Remove a route record from the FIB
entry (a FIB entry with empty NextHop records will
be automatically deleted).

The Interest commands sent to the FIB manager are
signed using the custom key chain mentioned in previous
section, which is specially designed to eliminate signing
crypto overhead for simulation purposes. If necessary, the
full featured crypto support can be re-enabled by switching
to the standard KeyChain provided by the ndn-cxx library.

2.3.9 Forwarding Strategy abstraction
As mentioned before, the forwarding strategy abstraction of
NFD makes the decisions regarding the Interest forwarding.
That is to say, whether an Interest would be forwarded or
not, the upstream face(s), where it would be forwarded,
and when it would be forwarded to the selected upstream
face(s). ndnSIM/NFD features an abstract interface (strategy
API) that provides the basic implementation of the forward-
ing strategies without the need of re-implementing the full
Interest processing pipeline. An overview of the forwarding
pipeline is presented in Figure 3 and is described in detail
in the rest of this section.

The implemented forwarding pipeline allow per-
namespace selection of a specific forwarding strategy. This

http://ndnsim.net/2.1/guide-to-simulate-real-apps.html


5

1	
  

Incoming	
  
Interest	
  

Incoming	
  
Data	
  

Outgoing	
  
Interest	
  

Outgoing	
  
Data	
  

Interest	
  
reject	
  

Interest	
  
unsa2sfied	
  

Interest	
  
loop	
  

Data	
  
unsolicited	
  

Faces	
   Faces	
  Timer	
  

A9er	
  receive	
  
Interest	
  

Before	
  sa2sfy	
  
Interest	
  

Before	
  expire	
  
Interest	
  

Strategy	
  callbacks	
  

Strategy	
  callback	
  

Fig. 3: Overview of ndnSIM/NFD forwarding pipeline

per-namespace forwarding strategy is registered and main-
tained at the Strategy Choice table. The Strategy Choice ta-
ble is updated through the management protocol, operated
by the Strategy Choice manager. Similarly to FIB operations,
we created a Strategy Choice helper that prepares and sends
special signed Interest commands to the manager when
strategy selection is requested in the simulation scenario.

The following built-in forwarding strategies are cur-
rently available:

• Broadcast: Forwards every Interest to all upstream
faces.

• Client Control Strategy: Allows a local consumer ap-
plication to choose the outgoing face of each sent Inter-
est packet.

• Best Route: Forwards an Interest packet to the up-
stream face with the lowest routing cost.

• NCC: Re-implementation of the CCNx 0.7.2 default
strategy.

A new forwarding strategy can implement a completely
custom processing or override specific actions in the existing
forwarding strategy. The initial step in creating a new strat-
egy is to create a class, say MyStrategy that is derived from
the nfd::Strategy class. This subclass must at least override
the triggers that are marked as pure virtual and implement
them with the desired strategy logic. It may also override
any other available triggers that are marked as just virtual.

If the strategy needs to store information, it is needed to
decide whether the information is related to a namespace
or an Interest. Information related to a namespace but not
specific to an Interest should be stored in Measurements
entries; information related to an Interest should be stored
in PIT entries, PIT downstream records, or PIT upstream
records. After this decision is made, a data structure derived
from StrategyInfo class needs to be declared. In the existing
implementation, such data structures are declared as nested
classes as it provides natural grouping and scope protection
of the strategy-specific entity, but it is not required to follow

the same model. If timers are needed, EventId fields need to
be added to such data structure(s).

The final step is to implement at least the “After Receive
Interest” trigger and any (or none) of the three other triggers
listed below:

• After Receive Interest: When an Interest is received,
passes necessary checks, and needs to be forwarded,
the Incoming Interest pipeline invokes this trigger with
the PIT entry, incoming Interest packet, and FIB entry.

• Before Satisfy Interest: When a PIT entry is satisfied,
before Data is sent to downstream faces (if any), the
Incoming Data pipeline invokes this trigger with the
PIT entry, the Data packet, and its incoming face.

• Before Expire Interest: When a PIT entry expires be-
cause it has not been satisfied before all in-records
expire, before it is deleted, Interest Unsatisfied pipeline
invokes this trigger with the PIT entry.

Actions are the forwarding decisions made by each
forwarding strategy and are implemented as non-virtual
protected methods of the nfd::Strategy class. The provided
actions are listed below:

• Send Interest: It triggers when entering the Outgoing
Interest pipeline.

• Reject Pending Interest: It triggers when entering the
Interest reject pipeline.

To simplify the operations of specifying the desired per-
name prefix forwarding strategy for one, more or all the
topology nodes, we provide a Strategy Choice helper that
interacts with the Strategy Choice manager of NFD by
sending special signed Interest commands to the manager.
The operations of this helper are illustrated in Figure 4

2.4 Application Link Service
This class enables the communication of the simulated ap-
plications with the NDN network. Specifically, this abstrac-
tion provides functions for sending interests, data packets



6

Create Signed Interest
 for /localhost/nfd/

strategy-choice

StrategyChoice 
Helper

Install
Sign

using DummyKeyChain

Forward to NFD’s 
StrategyChoice 

manager
InstallAll Install the helper 

in each specified node

send
command

Fig. 4: Operations of the StrategyChoice helper

and NACKs as well as methods to receive packets from the
NDN stack. It extends the ndnSIM specific link service class
(ndn::TracingLinkService). We should note that the wording
”send” refers to packets that are sent from the NDN stack
and thus are received from the application.

2.5 Network Device Link Service

This component enables the communication between the
simulated nodes. Each ndn::NetDeviceLinkService instance
is permanently associated with a NetDevice object and this
object cannot be changed for the lifetime of this face. For
sending packets between simulated nodes, Interest, Data
and NACK packets are converted into the NDN packet
format, using routines of the ndn-cxx library, and then are
encapsulated to a packet instance of NS-3. It extends the
ndnSIM specific link service class (ndn::TracingLinkService).

2.6 ”Old” Content Store

As mentioned above, because of the fact that NFD’s Content
Store is not yet flexible when it comes to cache replacement
policies, we have also ported the old ndnSIM 1.0 content
store implementations to the new code base (Table 3). These
implementations feature different cache replacement poli-
cies, but have limited support for Interest selectors.

TABLE 3: “Old” Content Store Implementations

Simple content stores
cs::Lru Least recently used (LRU) (default)
cs::Fifo First-in-first-Out (FIFO)
cs::Lfu Least frequently used (LFU)
cs::Random Random
cs::Nocache Policy that completely disables caching
Content stores with entry lifetime tracking
These policies allow the evaluation of CS enties lifetime (i.e., how
long entries stay in CS)
cs::Stats::Lru Least recently used (LRU)
cs::Stats::Fifo First-In-First-Out (FIFO)
cs::Stats::Lfu Least frequently used (LFU)
cs::Stats::Random Random
Content stores respecting freshness field of Data packets
These policies cache Data packets only for the time indicated by
FreshnessPeriod.
cs::Freshness::Lru Least recently used (LRU)
cs::Freshness::Fifo First-In-First-Out (FIFO)
cs::Freshness::Lfu Least frequently used (LFU)
cs::Freshness::Random Random
Content store realization that probabilistically accepts data packet
into CS (placement policy)
These policies cache Data packets only for the time indicated by
FreshnessPeriod.
cs::Probability::Lru Least recently used (LRU)
cs::Probability::Fifo First-In-First-Out (FIFO)
cs::Probability::Lfu Least frequently used (LFU)
cs::Probability::Random Random

2.7 Basic NDN applications

The basic applications included in the current ndnSIM re-
lease are the same applications that have been included in its
previous release with minor changes due to the introduction
of the ndn-cxx library:

• ConsumerCbr: a consumer application that generates
Interest traffic according to a user-defined pattern (e.g.,
predefined frequency, constant rate, constant average
rate with inter-Interest gap distributed uniformly at
random, exponentially at random, etc.). A user-defined
Interest name prefix and sequence number are avail-
able. Moreover, this application provides Interest re-
transmission according to an RTT-based timeout period
similar to the TCP RTO.

• ConsumerBatches: a consumer application that gener-
ates a specified number of Interest packets at specified
time points of the simulation.

• ConsumerWindow: a consumer application that gener-
ates Interest traffic of variable rate. It implements a sim-
ple sliding-window-based Interest generation mecha-
nism.

• ConsumerZipfMandelbrot: a consumer application
that requests contents (i.e., names in the requests) fol-
lowing the Zipf-Mandelbrot distribution.

• Producer: a simple application that sinks Interest traffic
and generates Data traffic. Specifically, it responds to
each incoming Interest packet with a Data packet that
has the same size and name as the corresponding
incoming Interest packet.

The interaction of the applications with the core of
the simulator is achieved using the ndn::AppLinkService
realization of the nfd::face::LinkService abstraction. The base
class ndn::App is responsible for the creation/deletion of the
ndn::AppLinkService instances and their registration in the
protocol stack.

2.8 Trace helpers

The trace helpers simplify the collection and aggregation
of various necessary statistical information about the sim-
ulation and write this information in text files. In our im-
plementation, the capability of tracing events directly from
NFD has been added to the tracers. There are three sorts of
such helpers:

• Packet-level trace helpers: This group includes
L3RateTracer and L2Tracer. The former traces the rate
in bytes and in number of packets of Interest/Data
packets forwarded by an NDN node, while the latter
traces only packets that are dropped on layer 2 (e.g.,
due to a transmission queue overflow).

• Content store trace helper: With the use of CsTracer, it
is possible to obtain statistics of cache hits/misses on
the Content Store of the simulated nodes.

• Application-level trace helper: With the use of Ap-
pDelayTracer, it is possible to obtain data regarding
delays between issuing Interest packets and receiving
the corresponding Data packet.



7

3 LIMITATIONS OF CURRENT VERSION AND FU-
TURE PLAN

Despite the fact that we provide an API to developers in
order to simulate real applications using ndnSIM, these
applications have to satisfy certain requirements. These
requirements are primarily posed by the different logic
between real and simulated apps (as they need to be im-
plemented in NS3 and ndnSIM). A detailed list of those
requirements is available on our website: http://ndnsim.
net/guide-to-simulate-real-apps.html#requirements.

NFD versions 0.4 and above handle and process NACKs
and, thus, support NDNLPv2. In this version, ndnSIM does
not support NDNLPv2 and, as a result, cannot be yet used
to simulate network-level NACKs across simulated nodes.
This will be addressed in the next release of ndnSIM.

4 RELATED WORK

Within the recent years, the interest for NDN research has
grown. As a consequence, the development of common
and handy ways for the evaluation of the proposed NDN
research approaches has been absolutely necessary.

One of the first and popular approaches towards that
goal is the previous version of ndnSIM [6]. This version,
exactly like the current one, is implemented in a modular
way and was optimized for simulation purposes. However,
the previous version included an independent implemen-
tation of NDN packet forwarding and used a deprecated
NDN packet format. Moreover, the ndnSIM 1.0 never imple-
mented the full-featured processing of NDN selectors and,
as a result, has limitations regarding the accuracy of the
simulation results.

Another existing effort is presented by Chioccheti et
al. [10, 11]. ccnSim is a scalable chunk-level simulator
suitable for the analysis of caching performance of NDN
networks. It is developed using the OMNeT++ framework
in C++. However, it is mainly optimized for the experi-
mentation on various cache replacement policies for NDN
routers and does not provide any flexibility of the forward-
ing process. As a result, ccnSim cannot be used for the
experimentation on a vital core component of the NDN
architecture, which is the forwarding strategy layer.

CCN-lite [12] is a lightweight implementation of the
CCNx-NDNx protocol. It offers a simulation mode using the
OMNeT++ simulation platform. CCN-lite supports schedul-
ing, both at chunk and at packet level, and packet fragmen-
tation. It also supports possible native deployment without
any IP layer. However, this effort is mainly intended to run
on resource constrained devices and is not optimized to
offer high performance as its data structures rely on linked
lists.

The Content Centric Networking Packet Level Simulator
(CCNPL-Sim) [13] is another NDN simulator developed
at Orange Labs. CCNPL-Sim makes use of the Combined
Broadcast and Content-Based routing scheme (CBCB) [14]
implementation within the SSim simulator to handle event
management and name based forwarding and routing. De-
spite the effectiveness of the SSim simulation scheduler,
the mandatory usage of CCNB makes the evaluation of
other routing protocols, such as OSPFN [15] and NLSR [16],

impossible thus limiting the experimental scope of this
simulator.

Another recently introduced effort is Mini-CCNx [17].
Mini-CCNx is a fork of Mininet-HiFi specially customized
to support the emulation of CCNx-NDNx nodes. Its main
goal is to add a realistic behavior to the executed tests.
Mini-CCNx offers flexibility, because of the Container-Based
Emulation features of Mininet, and a simple configuration
GUI interface. However, it is based on the packet format of
NDNx, which is an outdated version of the NDN communi-
cation model. It also mainly focuses on emulating the node
hardware instead of the communication model itself.

The affluence of computing resources across the existing
research network testbeds/infrastructures (e.g., GENI [18],
Open Network Lab (ONL) [19], Emulab [20], etc.) also offers
a valuable option for the conduction of real-time research
experiments. These testbeds provide both the hardware and
the software systems needed by researchers to evaluate their
design. However, the complexity that is introduced in order
to configure and manage all the delegated resources along
with the limited experimental scale are two crucial reasons
that lead researchers to resort to simulations.

5 SUMMARY

In this updated simulator, we have focused our efforts
on providing a more realistic simulation behavior by inte-
grating the Named Data Networking Forwarding Daemon
(NFD) with ndnSIM and using directly the ndn-cxx library
and the latest NDN packet format. ndnSIM provides the
framework for large-scale experimentation, while its modu-
lar design offers the flexibility to the researchers to modify
its components with minimal, if any, changes to other parts
of its implementation. Detailed information about the cur-
rent release and additional documentation is available on
the ndnSIM webstite: http://ndnsim.net.

We really hope that the NDN community will find
ndnSIM a valuable tool and we are looking forward to
receiving the community’s priceless feedback in order to
further improve the simulator.

6 APPENDIX

In this section, we present the revision history of this docu-
ment.

6.1 Revision History

• Revision 2 (November 11, 2016): Updates for ndnSIM
2.1 and 2.2:
– Added description of the simulation of applications

written against the ndn-cxx library and the ndnSIM
specific ndn::Face.

– Renamed the AppFace and NetDeviceFace classes of
ndnSIM to AppLinkService and NetDeviceLinkSer-
vice and updated the description of each one.

– Added description on the configurability support of
the various parameters of NFD.

– Updated Table 1 and Figure 1 to add the
nfd::face::LinkService, ndn::AppLinkService and
ndn::NetDeviceLinkService classes.

http://ndnsim.net/guide-to-simulate-real-apps.html#requirements
http://ndnsim.net/guide-to-simulate-real-apps.html#requirements
http://ndnsim.net


8

– Revised the overall paper to refer to ndnSIM 2 in
general instead of ndnSIM 2.0.

• Revision 1 (January 27, 2015): Initial release

REFERENCES

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass,
N. H. Briggs, and R. L. Braynard, “Networking named
content,” in Proceedings of ACM CoNEXT, 2009.

[2] L. Zhang et al., “Named data networking (NDN)
project 2010 - 2011 progress summary,” PARC,
http://www.named-data.net/ndn-ar2011.html, Tech.
Rep., November 2011.

[3] L. Zhang et al., “Named data networking (NDN)
project,” PARC, Tech. Rep. NDN-0001, October 2010.

[4] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy,
P. Crowley, C. Papadopoulos, L. Wang, and B. Zhang,
“Named data networking,” ACM SIGCOMM Computer
Communication Review, July 2014.

[5] (2012, May) ns-3. [Online]. Available: http://www.
nsnam.org/

[6] A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM:
NDN simulator for NS-3,” NDN, Technical Report
NDN-0005, October 2012. [Online]. Available: http:
//named-data.net/techreports.html

[7] A. Afanasyev, J. Shi, B. Zhang, L. Zhang, I. Moi-
seenko, Y. Yu, W. Shang, Y. Huang, J. P. Abraham,
S. DiBenedetto, C. Fan, C. Papadopoulos, D. Pesavento,
G. Grassi, G. Pau, H. Zhang, T. Song, H. Yuan, H. B.
Abraham, P. Crowley, S. O. Amin, V. Lehman, , and
L. Wang, “NFD developers guide,” NDN Project, Tech.
Rep. NDN-0021, July 2014.

[8] NDN Project, “NFD - named data networking for-
warding daemon,” Online: http://named-data.net/
doc/NFD/0.2.0/, 2014.

[9] ——, “NDN Packet Format Specification,” Online: http:
//named-data.net/doc/ndn-tlv/, 2014.

[10] D. Rossi, G. Rossini, “Caching performance of content
centric networksunder multi-path routing (and more),”
Telecom ParisTech, Tech. Rep., 2011.

[11] G. Rossini and D. Rossi, “ccnSim: an highly scalable
CCN simulator,” in IEEE ICC, 2013.

[12] C. Scherb, M. Sifalakis, and C. Tschudin, “CCN-lite,”
Available: http://www.ccn-lite.net, 2013.

[13] L. Muscariello. (2011) Content centric net-
working packet level simulator. Orange Labs.
[Online]. Available: http://perso.rd.francetelecom.fr/
muscariello/sim.html

[14] A. Carzaniga, M.J. Rutherford, and A.L. Wolf, Ed., A
Routing Scheme for Content-Based Networking. IEEE
INFOCOM, March 2004.

[15] L. Wang, A. Hoque, C. Yi, A. Alyyan, and B. Zhang,
“OSPFN: An OSPF based routing protocol for Named
Data Networking,” NDN, Tech. Rep NDN-0003, 2012.

[16] NDN Project, “NLSR - Named Data Link State Rout-
ing Protocol,” Online: http://named-data.net/doc/
NLSR/0.1.0/, 2014.

[17] C. Cabral, C. E. Rothenberg, and M. F. Magalhães, “Re-
producing real NDN experiments using mini-CCNx,”
in Proceedings of the 3rd ACM SIGCOMM workshop on
Information-centric networking, 2013.

[18] (2015, January) GENI (Global Environment for
Network Innovations). [Online]. Available: http:
//www.geni.net

[19] (2015, January) Open Networking Lab. [Online].
Available: http://onlab.us

[20] (2015, January) Emulab - Network Emulation Testbed.
[Online]. Available: http://www.emulab.net

http://www.nsnam.org/
http://www.nsnam.org/
http://named-data.net/techreports.html
http://named-data.net/techreports.html
http://named-data.net/doc/NFD/0.2.0/
http://named-data.net/doc/NFD/0.2.0/
http://named-data.net/doc/ndn-tlv/
http://named-data.net/doc/ndn-tlv/
http://www.ccn-lite.net
http://perso.rd.francetelecom.fr/muscariello/sim.html
http://perso.rd.francetelecom.fr/muscariello/sim.html
http://named-data.net/doc/NLSR/0.1.0/
http://named-data.net/doc/NLSR/0.1.0/
http://www.geni.net
http://www.geni.net
http://onlab.us
http://www.emulab.net

	Introduction
	Design
	Design summary
	Core NDN protocol
	Named Data Networking Forwarding Daemon (NFD)
	NFD Internal Structure
	Challenges of NFD integration
	Face abstraction
	ndnSIM specific ndn::Face
	LinkService abstraction
	NFD's Content Store
	Pending Interest Table (PIT)
	Forwarding Information Base (FIB)
	Forwarding Strategy abstraction

	Application Link Service
	Network Device Link Service
	"Old" Content Store
	Basic NDN applications
	Trace helpers

	Limitations of current version and future plan
	Related Work
	Summary
	Appendix
	Revision History


