
NDN, Technical Report NDN-0054. http://named-data.net/techreports.html
Revision 1: March 19, 2017

1

NDN Certificate Bundle (Version 0.1)
Manika Mittal, Alex Afanasyev, Lixia Zhang

Abstract—The Certificate Bundle is designed for use in systems
that use the Named Data Networking (NDN) architecture. The
Certificate Bundle protocol provides a way to retrieve a set
of the certificates needed to authenticate a data packet within
one RTT and assures that the certificates for the authentication
can be retrieved from the same place as data packet (original
data publisher or a managed repo).

1 Introduction
Over the years, the use of computer networks has seen a ma-
jor shift: from resource sharing to content distribution, from
caring about “where” the resource is to caring about “what”
the content is. Named Data Networking (NDN) transforms
the current host-centric network architecture of IP to a
data-centric network architecture. Instead of delivering the
requested data packet to the desired destination address,
the data consumer can fetch the desired data by specifying
its unique name. At a very high level, the consumer will
send out an Interest packet specifying the name of the
desired data, and the network is responsible for finding the
corresponding Data packet and returning it to the consumer.

NDN architecture brings several advantages that pose con-
siderable issues in the current IP architecture. While some of
these advantages include making the content more available
and location independent, one major feature of NDN is its
built-in data authentication mechanism. NDN builds data
authentication into the network layer by requiring that all
the Data packets are signed.

Every NDN Data packet [2] consists of the following fields:
Name, MetaInfo, Content and Signature. The Signature field
is defined as two consecutive TLV blocks: SignatureInfo
and SignatureValue. The SignatureInfo block describes the
signature and consists of fields like SignatureType and
KeyLocator. The KeyLocator field specifies the Name (or
KeyDigest) that points to another Data packet containing
the certificate or the public key that is needed to validate
the Signature Value. Since the certificate is itself an NDN
data packet, it has a Signature field of its own.

The relationship between the data names and the key names,
which are used to validate the data signature, depends on
the application’s trust model. Trust schema [1] is a set of
linked trust rules and trust anchors that concisely describes
the trust model of an application and is used to determine
the authentication paths.

In order to authenticate a Data packet, it is first checked
against the trust schema (e.g., by an automated schema

interpreter). If the name of the Data and the name of the
key signed the data satisfy trust schema rules, one needs
to use key name to fetch the Data packet of the key and
check it recursively against the trust schema. When a trust
anchor (a key whose trust is pre-configured by some means)
is reached, one can follow the chain and verify correctness
of each signature.

The above procedure highlights the need to obtain a chain
of certificates to verify a signature poses several challenges,
including (1) the need for multiple non-parallelizable data
retrievals and (2) the need to ensure availability of certifi-
cates.

The Certificate Bundle protocol is designed to solve the
above mentioned issues with signature verification in NDN.
The idea is to allow data publisher to also publish all the cer-
tificates that are needed to authenticate the published Data
packet as a “bundle”. This way, instead of retrieving every
single certificate of the chain one by one, one can retrieve
the whole chain as a bundle Data packet(s). Moreover, since
all the certificates are kept together, it improves availability
of certificates as the bundle can be published/provisioned
together with the data packets they authenticate.

2 Overview
In order to understand the working of certificate bundle
let’s consider the data consumer and the data producer side
separately.

2.1 Consumer Side

At the data consumer side, the goal is to validate the
signature of a particular data [target data packet]. In order
to do that the consumer needs to fetch the certificate (to
validate the signature) as well as all the certificates needed
to validate the first certificate. With the help of a certificate
bundle, the consumer can retrieve all the certificates with a
single interest. More than one interest might be needed in
case the bundle has many segments and each segment can
be retrieved as needed (e.g., the second segment might not
be needed when the consumer previously validated a similar
data packet).

The retrieved certificate bundle is not guaranteed to contain
all the certificate needed for validation. Whenever a neces-
sary certificate is missing from the bundle, the client should
try to fetch the remaining certificates directly.

http://named-data.net/techreports.html


2

2.2 Producer Side

The goal of the bundle producer is to create the certificate
bundle to the best of it’s knowledge. It’s important to note
that the goal of a certificate bundle is merely to help with the
validation process by providing a collection of certificates
that are may needed for the validation of a data packet. It
is possible that not all of the certificates in the bundle are
used for validation. For example the bundle producer might
use the following procedure to create a bundle for single
hierarchy type trust models.

To create a bundle, the key locator field or the signing key
name of the data packet [for which the bundle is being
created] is needed. From this point on, the producer fetches
all the certificates required to validate the key till it reaches a
“dead-end”. The definition of “dead-end” is given below. On
the producer side, the concept of trust-anchor is undefined.
Currently we don’t assume that the producer knows the trust
anchor of the verifier as it’s possible under some trust model
that there is no fixed trust anchor.

The producer includes all the certificates in the bundle till it
reaches a “dead-end”. The producer reaches the “dead-end”
if any of the following conditions are satisfied:

1) If the producer reaches a self-signed certificate. This
certificate in currently included in the bundle. This
may change in future.

2) If the producer reaches a loop i.e it encounters a
certificate that has already been included in the bundle.
This certificate is NOT added to the bundle again.

3) If the producer reaches a maximum limit on the
number of certificates. This limit is currently set to
25 certificates.

4) If the producer reaches a malformed certificate. This
is NOT included in the bundle.

5) If the producer reaches a certificate that either doesn’t
have a Key locator field or has a key locator field
of a different type. This situation is probably rare.
Currently such a certificate is included in the bundle.
This may change in future.

Note it’s possible a bundle is created and published even if
the producer has not retrieved ALL the certificates till the
“dead-end”. In such a case, the later versions of bundle will
include the complete chain. It is the verifier’s responsibility
to fetch the latest version of the bundle or the remaining
certificates individually.

At any point the producer may refresh the current bundle
state which effectively fetches all the certificates again in
order to ensure the latest versions of all are included in the
bundle.

3 Functional Specification

3.1 Naming Conventions

The name of the Certificate Bundle is an extension of the
name of the target data packet which is to be verified.
It starts with the associated name followed by a special
name component _BUNDLE, indicating that the content is
a Certificate Bundle. After the _BUNDLE component, there
is a version number because it’s possible that the Certificate
Bundle is updated (in case some key in the chain is revoked).
The last component of the Certificate Bundle name is a
segment number in case the Certificate Bundle is too big
to fit in one data packet. Note that the segment number 0
is present in the name of the first segment of Certificate
Bundle even if there is only one segment of the bundle.

Hence the naming convention for the Certificate Bundle is
as follows:

/<derived(data_name)>/_BUNDLE/<trust-model>/
→˓<version>/<seg>

where the derived(data_name) is determined by the
naming rules.

The current specification defines the following rule:

1) If last name component is segment number, then:

derived(data_name) = data_name.getPrefix(-1)

Other rules will be defined in later versions of this specifi-
cation.

In the implementation, currently, the <trust-model> com-
ponent is the number 00 which signifies single hierarchy.
The current bundle can help with the certificate retrieval for
any trust schema that uses a single chain of certificates to
verify a data packet (a.k.a single hierarchy).

3.2 Certificate Bundle Packet Format

The Certificate Bundle is an encapsulation that consists of
a list of certificates needed to authenticate an NDN Data
packet.

A certificate bundle may have many segments if the list of
certificates exceed the maximum packet size. Each segment
must always have complete certificates.

A Certificate Bundle packet consists of multiple certificates
starting with the certificate needed to validate the original
data packet, followed by the certificate needed to validate
the previous certificate, and so on. The certificates in the
certificate bundle should appear in the order in which they
are needed for validation. The certificates in the bundle
are kept in a sorted order to avoid unnecessary fetching of
bundle segments. The bundle segments are fetched only if



3

more certificates are needed to validate a data packet, so if
the certificates are kept in a random order this might lead
to additional fetches which can be avoid if the certificates
are in sorted order.

The Certificate Bundle packet uses DigestSha256 signature
which provides no provenance of the packet and is intended
to protect against any unexpected modifications.

The Certificate Bundle Data packet is a TLV defined as
follows:

CertificateBundle ::= DATA-TYPE TLV-LENGTH
Name
MetaInfo
BundleContent
Signature

BundleContent ::= CONTENT-TYPE TLV-LENGTH
Certificate+

The list of certificates in the BundleContent SHOULD be
in the following order - the certificate to validate the target
data packet, followed by the certificate to validate the first
certificate and so on.

4 Known Limitations
1) The current limitation of the certificate bundle is the

lack of ensuring that the verifier has the latest version
of the certificate bundle. In case a certificate present
in the bundle expires or is revoked, ideally we would
like to supply the verifier with the latest bundle with
updated certificates. The current implementation uses
parameters like freshness period and must be fresh,
which merely mitigates and the problem and does
NOT guarantee that the verifier gets the latest version
of the bundle.

2) Currently, bundle fetching is only attempted for data
validation.

5 Acknowledgement
This work is partially supported by the National Science
Foundation under awards CNS-1345318 and CNS-1629922.

References

[1] Yingdi Yu, Alexander Afanasyev, David Clark, kc claffy, Van Jacobson,
and Lixia Zhang. Schematizing trust in Named Data Networking. In
Proceedings of 2nd ACM Conference on Information-Centric Net-
working. September 2015. URL: http://dx.doi.org/10.1145/2810156.
2810170.

[2] NDN Project Team. NDN packet format specification (version 0.2-2).
http://named-data.net/doc/ndn-tlv/, 2017.

https://www.nsf.gov
https://www.nsf.gov
http://dx.doi.org/10.1145/2810156.2810170
http://dx.doi.org/10.1145/2810156.2810170

	Introduction
	Overview
	Consumer Side
	Producer Side

	Functional Specification
	Naming Conventions
	Certificate Bundle Packet Format

	Known Limitations
	Acknowledgement
	References

