
NDN, Technical Report NDN-0071. http://named-data.net/techreports.html
Revision 1: Jan 11, 2020

A Pub/Sub API for NDN-Lite with Built-in Security
Tianyuan Yu

UCLA
tianyuan@cs.ucla.edu

Zhiyi Zhang
UCLA

zhiyi@cs.ucla.edu

Xinyu Ma
UCLA

xinyu.ma@cs.ucla.edu

Philipp Moll
UCLA

phmoll@cs.ucla.edu

Lixia Zhang
UCLA

lixia@cs.ucla.edu

ABSTRACT
Named Data Networking (NDN) is a new data-centric Inter-
net architecture design, and NDN-Lite is an IoT networking
framework that aims to enable end user controlled smart
homes. This paper presents NDN-Lite Pub/Sub’s design and
implementation. By using names that carry application se-
mantics to secure data and construct security policies directly,
NDN-Lite Pub/Sub provides a usable and high-level API that
enable developers to write NDN-Lite applications for home
IoT scenarios with built-in security support. We measured
the latency and memory overhead of NDN-Lite Pub/Sub on
resource-constrained devices, and the results show it can
e�ectively run on home devices.

KEYWORDS
Named Data Networking, Pub/Sub, API

1 INTRODUCTION
In the publish-subscribe messaging pattern (Pub/Sub), pro-
ducers of a message – referred to as publishers – do not
specify the message receivers, but assign a topic to every
message. Nodes that are interested in a topic – referred to as
subscribers – express their interest in the topic by subscrib-
ing to it and consequently receive all messages labeled with
the speci�ed topic. Our current Internet architecture does
not allow specifying semantic information, such as message
topics, on network level and packet forwarding is limited to
endpoint addresses only. This limitation requires the use of
higher-layer middleware when building Pub/Sub systems.
The novel networking architecture Named Data Network-
ing (NDN), however, utilizes semantic names as message
identi�ers and for forwarding purposes. This semantic name
information can be exploited directly on the network level
to realize Pub/Sub systems.
The NDN-Lite [18] framework is an IoT framework that

enables building user-controlled smart homes. One compo-
nent of NDN-Lite is the NDN-Lite Pub/Sub protocol, which
is the focus of this report. The key contributions of this paper
are:

• the development of a Pub/Sub design and API for NDN-
Lite with built-in security support,

• the implementation of NDN-Lite Pub/Sub integrated
in the NDN-Lite SDK,

• a measurement of the latency and memory overhead
of NDN-Lite Pub/Sub. The results show a minor foot-
print that allows executing it on resource-constrained
devices, such as found in IoT scenarios.

The rest of the paper is organized as follows: In Section 2
relevant background for the design of NDN-Lite Pub/Sub
is presented. Section 3 describes the design of NDN-Lite
Pub/Sub, including its API design and protocol details. Sec-
tion 4 provides additional information about the current
implementation as a part of NDN-Lite. An evaluation of the
implementation’s memory and latency overhead is presented
in Section 5. Section 6 describes related work with a focusing
on high-level APIs for NDN, and Section 7 concludes the
paper and addresses future work.

2 BACKGROUND
2.1 Named-Data Networking
2.1.1 Naming. Named Data Networking (NDN) [17] is a
data-centric Internet architecture, which directly uses application-
layer names for networking; there is no address in an NDN
network. Each data piece is identi�ed by the name given by
the application, and application naming generally follows a
set of established rules – noted as naming convention [16] –
agreed between data producer and consumer applications.
Naming data enables one to secure data directly: a producer
can uses its own key to cryptographically sign every data
packet it produces, binding the packet’s name to the content.
Therefore, an Data packet consists of Name, Content, and
Signature as shown in Figure 1, making the packet veri�able
by any consumer, independent of the underlying communi-
cation channels.

2.1.2 Interest-Data Exchange. In an NDN network, a con-
sumer can fetch Data by sending an Interest packet. Interests
contain either the exact data Name or a Name pre�x of the re-
quested Data. Once emitted, an Interest is forwarded through

Tianyuan Yu, Zhiyi Zhang, Xinyu Ma, Philipp Moll, and Lixia Zhang

INTEREST
Name

/home/temperature
Options

InterestLifetime = 4_s
MustBeFresh = True
……

DATA
Name

/room/temperature/sensor-
123/8AM
MetaInfo

FreshnessPeriod = 4_s
……

Content
70

Signature

Figure 1: Example for Interest and Data packets
the network based on its name on a hop-by-hop base until
it reaches a node holding a copy of the requested Data. The
Data travels back on the reverse path of the Interest, real-
ized by the Interest leaving breadcrumbs on each forwarding
node, implemented as an entry in the so-called Pending In-
terest Table (PIT). To preserve �ow-balance, one Interest can
retrieve at most one Data packet. The example provided in
Figure 1 shows the packet structure for Interest and Data
packets. Reliability in data delivery is consumer-driven in
NDN. The consumer de�nes a retransmission time for each
outstanding Interest; if an Interest’s lifetime expires without
receiving Data, the consumer may choose to re-express the
Interest.

2.1.3 Security. NDN’s security design contains four key
components to achieve secure communication. They are
trust anchors, identities, certi�cates, and security policies.
The trust anchor needs to be con�gured into all participants
in an NDN network in a secure out-of-band manner. Each
participant (which can be a device, an app, or a user) has a
name and a certi�cate issued by the trust anchor; we refer
to them as entities in the rest of this section [20]. Certi�cates
and security policies also possess semantically meaningful
names. Thus they are named, secured data, and can be re-
trieved via Interest-Data exchange. This allows automating
security work�ows, as done in our Pub/Sub security work-
�ow, as elaborated in Section 3.2.
Figure 2 visualizes the relation of the four security com-

ponents in an example application. In this example, a smart
homeowner Alice owns both a temperature sensor, which
produces temperature data, and an air-conditioner. The latter
is responsible for controlling the room temperature, there-
fore it needs to consume the sensor’s data.

• Trust Anchors: A trust anchor is the combination of
the name of a trusted entity and its pair of trusted
asymmetric keys [5]. A trust anchor certi�cate is a
self-signed certi�cate and installed on all entities via
an out-of-band channel. This certi�cate is the root of
trust for all the entities in the system under the trust

/alice-home

Self-signed Certificate

/alice-home/KEY/
222/self/001

Signature

/alice-home/temp/sensor-123

/alice-home/temp/sensor-123/KEY/
223/anchor/001

Signature

Sensor data

/alice-home/temp/8pm/…

Signature

Security Policies

issue

bind

produce

Content

Trust Anchor

Key Name PrefixData Name Prefix Policy

/alice-home/temp sign /alice-home/temp

Key Name PrefixData Name Prefix Policy

/alice-home/temp access /alice-home/aircon

/alice-home/aircon/aircon-456

/alice-home/aircon/aircon-456/KEY/
…

Signature

bind

/alice-home/temp/sensor-123/policy/…

sign
sign

/alice-home/aircon/aircon-456/policy/…

Figure 2: Relationship between /alice-home, /alice-
home/temp/sensor-123, and the data produced by the
sensor.

anchor, and is used to validate certi�cation chains in
public-key certi�cates. With the trust anchor’s certi�-
cate installed, an NDN entity can verify Data signa-
tures produced by other entities by validating their cer-
ti�cates along the certi�cation chain. In the example
application, Alice may generate a self-signed certi�-
cate named “/alice-home/KEY/222/self/001” as the
trust anchor certi�cate. This certi�cate is installed on
the temperature sensor and the air-conditioner eg. by
scanning a QR-code. This allows the veri�cation of
certi�cates issued by Alice and ultimately, to verify
Data produced by each other.

• Identities and Certi�cates: In NDN, every entity that
produces Data can be identi�ed by its identity. An iden-
tity is realized as a public-private key pair bound to a
name, where the public key is embedded in named cer-
ti�cates. The system’s trust anchor certi�es identities
by binding an entity’s public-key to a certi�cate name,
under which it becomes available for other entities.
Certi�cate names match the following naming conven-
tion “/<prefix>/KEY/<key-id>/<issuer-info>/<version>”.
In the example in Figure 2, the temperature sensor’s
certi�cate is issued by the trust anchor. The certi�cate
name conveys the temperature sensor as the certi�cate
owner and a key ID (ie. 223) identifying the public-
private key pair belonging to the certi�cate. Besides,
it indicates that the trust anchor is the signer of the
certi�cate and includes 001 as the certi�cate’s version
number.

• Security Policies: In order to authenticate Data and en-
able access control, trust rules [15] and named-based
access control [19] policies are also needed. Accord-
ingly, applications can de�ne security policies to 1�
restrict Data under speci�c namespace only allowed be
signed by speci�c keys. 2� restrict Data under speci�c
namespace only allowed be accessed by speci�c identi-
ties. Assuming Alice only wants to authenticate tem-
perature sensors to produce temperature data, and al-
low the air-conditioner to access the temperature data.

A Pub/Sub API for NDN-Lite with Built-in Security

Therefore, Alice speci�es a signing policy (the red box
in Figure 2) that Data under pre�x “/alice-home/temp”
can only be signed by keys under the same pre�x.
Meanwhile, an access policy (the green box in Figure 2)
is also de�ned to restrict Data under “/alice-home
/temp” can only be accessed by identities under pre�x
“/alice-home/aircon”, limiting them only accessible
by “aircon-456”. Then Alice can use the trust anchor
to sign two Data containing the above two policies
respectively, and let the the temperature sensor and
air-conditioner to fetch and install their policies.

The security policies, together with trust anchor, identities
and certi�cates enable NDN to achieve the data authenticity
goal. These four components have to be installed into an
NDN entity in its bootstrapping step. To achieve the data
con�dentiality goal and realize access control based on secu-
rity policies, NDN employs encryption keys to protect the
data content.

2.2 NDN-Lite
NDN-Lite is a lightweight version of the NDN implementa-
tion that �ts into resource-constrained devices, commonly
used in smart home environments. Its design aims to enable
a secure, local user-controlled home IoT system. NDN-Lite
uni�es home devices and applications as participants. When
using NDN-Lite, the homeowner sets up a controller as the
local trust anchor, which issues certi�cates for participants
and can control the whole system on behalf of the home
users. Besides, NDN-Lite implements high-level application
support, such as security bootstrapping, access control, trust
management. NDN-Lite’s design makes the following as-
sumptions.

• Broadcast Network: All system participants are con-
nected to a broadcast network (i.e., single-hop home
wireless network).

• Device capabilities: All home devices are capable of
being wireless connected, performing asymmetric key
signing (e.g., ECDSA), and keeping adequate memory
to store information for NDN-Lite.

• Security: The controller is trustworthy, and all system
participants can be securely bootstrapped.

New smart home participants are bootstrapped by the
homeowner through the controller using bootstrapping pro-
tocols, such as SSP [8] or NDNViber [12]. As indicated in
Section 2.1.3, participants obtain the trust anchor, the iden-
tity, and security policies from this bootstrapping step.

To restrict the participants’ access to Data under permitted
name pre�xes only, NDN-Lite uses named-based access con-
trol [19] and symmetric encryption. After the bootstrapping
process, participants request encryption and decryption keys
for speci�c name pre�xes from the controller. After verifying

that the security policies allow access, the controller grants
access by securely delivering the corresponding symmetric
keys to the participant.

3 DESIGN OF NDN-LITE PUB/SUB
In this section, we show how NDN-Lite Pub/Sub provides
a high-level API for NDN IoT with built-in security sup-
port. Among numerous messaging patterns, the Publish-
Subscribe (Pub/Sub) pattern allows decoupling publishers
and subscribers. Data is published by attaching it to resources
and notifying the system about the production of such data.
Intended recipients can subscribe to resources by asking the
system to deliver data of interest without actually know-
ing publisher addresses1. This property naturally �ts into
IoT applications’ need for data-centric many-to-many com-
munication. Therefore, we chose publish-subscribe as the
messaging pattern for our API.

How to realize Pub/Sub in NDN: To realize Pub/Sub with
NDN as the network layer, we rely on the application’s use of
semantic data naming. Semantic information in Data names
allows specifying resources as name pre�xes. Hence, sub-
scribers can express the resources they are interested in by
subscribing to a set of name pre�xes. Focusing on security,
NDN-based security models (cf. Section 2.1.3) provide the
foundation for automating security work�ows and make
them transparent for developers. Thus, an NDN-based Pub/-
Sub systems should embed name-based security models and
guarantee that the received Data is veri�ed and authenti-
cated.

Overview of NDN-Lite Pub/Sub: NDN-Lite organizes ap-
plication data with a name tree (cf. Section 3.1). Such a name
tree describes the low-level application logic so that develop-
ers can focus on implementing higher-level application com-
ponents. Security policies are expressed by the homeowner
in a controller application and specify trust relationships be-
tween name tree nodes (cf. Section 3.2). Home IoT functions
are categorized into collecting sensor readings and actuat-
ing commands. NDN-Lite Pub/Sub provides a uni�ed API
for these function categories (cf. Section 3.3). The network-
level realization of the API is described in Section 3.4. In
Section 3.5, we show NDN-Lite Pub/Sub’s built-in security
support. This security support is realized by automating
security work�ows for publishers and subscribers so that
low-level cryptographic primitives are hidden from develop-
ers.

Tianyuan Yu, Zhiyi Zhang, Xinyu Ma, Philipp Moll, and Lixia Zhang

Type Naming Convention

Device&Application Certi�cate /<home-pre�x>/<service>/<location>*/<participant-id>/KEY/<key-id>

Device&Application Policy /<home-pre�x>/<service>/<location>*/<participant-id>/POLICY/<timestamp>

Application Data /<home-pre�x>/<service>/<location>*/<data-id>/<timestamp>

Encryption Symmetric Key /<home-pre�x>/<service>/ACCESS/EKEY/<key-id>/<timestamp>
Decryption Symmetric Key /<home-pre�x>/<service>/ACCESS/DKEY/<key-id>/<timestamp>
Notation: A component with <> represent a variable, e.g., /<> can be /TEMP representing temperature service. A component with <>* represent a variable

that may consists of multiple name components, e.g., /<location>* can be /kitchen or /kitchen/sensor-123.
Table 1: Naming Conventions

alice-home

AUTOMATION

hub

app-1

LOCK

livingroom

front

set-lock state
……

…

ACCESS

EKEY DKEY

…

…

< LOCK, /livingroom/front >

PolicyCertificate

lock-1

KEY

…

POLICY

…

Figure 3: Sketch of an example name tree

3.1 Name Tree
In NDN-Lite Pub/Sub, we group smart home data based on
two high-level properties: service and location. The service
describes the abstract home service to which the Data is
related, while the location speci�es the physical scope the
Data is associated with.
With the above understanding, we design our name tree

with a functionality-driven principle in mind. Table 1 sum-
marizes the structure of names and the overall namespace
used by NDN-Lite Pub/Sub, and Figure 3 shows a sketch of
an example name tree based on the afore-mentioned naming
conventions.

The overall namespace in the example from Figure 3 starts
with alice-home as the system’s root pre�x. The name tree
has the branches AUTOMATION and LOCK to represent two
example services of the smart home2. The AUTOMATION -
service represents the control module of the smart home
and aggregates all home automation application data (eg.,
applications that trigger a �re alarmwhen smoke is detected).
Data of door locks is aggregated by the LOCK-service. Under
the LOCK name tree node, the name components livingroom
1In IP-based communication, the Pub/Sub systems we refer to here are often
realized using a rendezvous node. However, as discussed later, a Pub/Sub
system in NDN can be realized without such dependencies by semantically
naming data.
2One can have more branches if having more services (e.g., temperature,
motion) in the system.

and front represent locations3. A tuple <service, location> can
be used to specify a name tree node with which publishers
and subscribers may interact. For example, Data containing
self-state reports produced by the living room’s front door
lock can be considered under the name tree node speci�ed by
the tuple <LOCK, /livingroom/front> (cf. dashed red arrow).
The name tree nodes state and set-lock further di�eren-

tiate Data based on application semantics (cf. the subtrees
highlighted by the dashed green circle). The periodic self-
state report of door lock is published with state as data-id.
A command to control the door (eg. lock) uses set-lock as
data-id. A timestamp is attached as the last name component
to achieve uniqueness among all application data names.
Meanwhile, the lock-1 tree node represents the door lock’s
participant identi�er and is represented in another subtree
under the door lock’s location. This subtree holds certi�cates
and security policies for the participant lock-1.

The Data content produced by the door lock is encrypted
by symmetric encryption keys. These keys are provided by
the controller, and authorized subscribers are capable to
decrypt Data with decryption keys obtained from the con-
troller. Such encryption and decryption keys are held under
the EKEY and DKEY subtree in the ACCESS branch of the
LOCK service (highlighted by the dashed blue circle).

3.2 Security Policies
Security policies (Section 2.1.3) enable authorization, in addi-
tion to access control within the name tree structure. There-
fore, participants are limited to create or access Data only
under certain name tree nodes, speci�ed by the policies. A
security policy expresses the relationship between name tree
nodes and key names, where key names can again be seen
as nodes in the name tree. Formally, a security policy is de-
�ned as a triple <DataNamePre�x, PolicyType, KeyNamePre-
�x>, where the DataNamePre�x de�nes the targeted node
in the name tree. The PolicyType can either allow signing
data matching the targeted node, or allow access to a service

3A location consists of zero to two name components (e.g., “/”,
“/livingroom”, “/livingroom/front”), depending on the required
granularity.

A Pub/Sub API for NDN-Lite with Built-in Security

1 sign

2 access

alice-home

AUTOMATION

hub

app-1

LOCK

livingroom

front

set-lock state
……

…

ACCESS

EKEY DKEY

…

…

PolicyCertificate

lock-1

KEY

…

POLICY

…

Figure 4: Security policies over name tree nodes

de�ned by the node. The KeyNamePre�x de�nes the pre�x of
key names for which the policy applies. While the de�nition
of security policies is left to the application layer4, NDN-
Lite Pub/Sub supports integrity and authenticity protection
based on security policy de�nitions. Each participant fetches
its security policies, which include both signing and access
policies from the bootstrapping step. Security policies must
be signed by the controller thus veri�able with participants’
installed trust anchor by looking into the signing certi�cate
name and signature value.

The name tree in Figure 4 provides two cases as explained
below to show how our Pub/Sub automatically enforces secu-
rity policies leveraging names. Later, we show the realization
of automated security work�ow in Section 3.5.
Automatic signing policy enforcement:The security pol-
icy :

</alice-home/LOCK, sign, /alice-home/LOCK>
restricts the LOCK-service Data to be signed only by iden-

tity keys under the LOCK-service pre�x. The signing rela-
tionships of published Data can be automatically veri�ed by
examining the each step along the certi�cate chain. Later
when receiving newly published Data, subscribers can ex-
tract signers’ certi�cate name by looking the KeyLocator
�eld of Data, then check against fetched signing type policies
to determine if the signing key is authenticated to publish
with received Data name. If the signing key is authenticated,
subscribers fetch the signer’s certi�cate, and the retrieved
certi�cate is examined with KeyLocator �eld to see if signed
by the installed trust anchor, and later the public key of
installed trust anchor is used to validate the signer’s certi�-
cate. After, public keys contained in the validated signer’s
certi�cate is used to verify the signature of the published
Data.
Automatic access policy enforcement: The policy À:

4Eg. policy de�nition via the GUI of a controller, as envisioned by NDN-Lite.

</alice-home/LOCK, access,
/alice-home/AUTOMATION/hub/app-1>

allows all participants holding certi�cates under pre�x
“/alice-home/AUTOMATION/hub/app-1” to access Data of the
LOCK-service. Having learned the permission to access from
the policy de�nition, “app-1” fetches its decryption key to
get access. Guided by access policies and the identity in-
formation carried in the decryption key request, controller
chooses either accepting that request by returning the de-
cryption key or denying by returning the error code. The
decryption key follows the naming convention in Table 1. Af-
ter getting the Data, subscribers can extract the service name
LOCK from the published Data’s name components, and use
corresponding decryption key to access Data content.

3.3 Providing API for Di�erent
Applications

After designing the name tree where all application data are
organized, we now consider developing easy-to-use API to
enable developers interacting with the name tree. Our API
design starts with two observations on home IoT applica-
tions and ends up with uni�ed API that can serve diverse
applications.
A key observation is that IoT applications have two fun-

damental publishing behaviors when adopting a publish-
subscribe design pattern: publish periodically, or publish at
random times. Data publishing at random times are triggered
events (e.g., �re alarms and commands to turn the camera
o�/on). The publishing of such data is primarily triggered by
sudden changes in the physical environment and users’ input.
In contrast, periodically published data are periodic events.
For example, a temperature sensor might be scheduled to
report the sensing data on a minute basis. NDN-Lite Pub/Sub
provides a uni�ed API for both types of publishing behaviors
by letting publishers decide their publishing modes.
A second observation is applications have various real-

time requirements. For instance, the primary goal of tem-
perature monitoring application is to collect sensor readings
from various rooms, which has a relatively low real-time
requirement. In contrast, the smoke detection application,
which needs to promptly react to abnormal events (e.g., raise
alarms as soon as possible when smoke detected), has a rela-
tively high real-time requirement. Thus API design should
respond to this di�erence in real-time requirements with
easy-to-use interfaces.

Based on these two observations, along with the concept
of name tree, NDN-Lite Pub/Sub provides API as follows:

Publish API: publish(service, location, data-id, content, pattern)

Subscribe API: subscribe(service, location, callback, interval)

Tianyuan Yu, Zhiyi Zhang, Xinyu Ma, Philipp Moll, and Lixia Zhang

Pub/Sub

App

Publisher (in random publishing mode)

Forwarder

Pub/Sub

App

Subscriber (with interval=3_s)
Forwarder

publish(service, location, data-id,
 content, pattern=random)

subscribe(service, location, callback,
 interval=3_s)

1 Create Data and buffer in Pub/Sub module

2 Register Data name in forwarder

3 Send notification Interest

1 Register prefix for notification

2 Periodically send Interest
(interval=3_s)

Data flow direction

/<home-prefix>/<service>/DATA/<location>*/
<data-id>/<timestamp>

/<home-prefix>/<service>/DATA/<location>*/
NOTIFY/<data-id>/<timestamp>

/<home-prefix>/<service>/DATA/<location>*/NOTIFY

/<home-prefix>/<service>/DATA/<location>*

Local Network

Figure 5: Application-to-application work�ow show-
ing all layers involved in the Pub/Sub process.

Publish API: The Publish API allows publishers to spec-
ify a name tree node by using <service, location> tuple, and
attach Data with speci�ed names (derived from the input
parameters and naming convention) and content. It requires
publishers selecting their publishing modes (either periodic
or random) by pattern when calling.
Subscribe API: The Subscribe API allows subscribers to
specify a name tree node, and expressing Interest with call-
back and set the real-time requirement by interval. For ex-
ample, a 3_s interval means the subscriber expects to receive
data no later than 3s after its publishing time.

3.4 Protocol Design of the Pub/Sub API
While the previous section described our API’s design, this
section presents the proposed protocol used to realize Pub-
/Sub with Interest-Data exchange. Figure 5 visualizes the
work�ow from the application perspective, including the
tasks necessary in the lower layers of the protocol stack.

We begin by describing the protocol on the publisher-side
of the system. The publisher-side can choose among random
and periodic publishing, with the protocol design di�ering
only slightly. When a publisher application publishes new
Data using the publish API, the service and location param-
eters de�ne the Data’s name pre�x. The data-id is used as
an additional name component to uniquely identify the new
publication. The API creates and bu�ers the Data locally and
registers the Data’s exact name at the forwarder.

In random publishing mode (e.g., used for sending control
commands to devices), the publisher generates a Noti�cation
Interest to notify all subscribers about the new publication.
TheNoti�cation Interest’s name starts with the pre�x de�ned
by the service and location parameters and adds a /NOTIFY-
su�x, followed by the exact name of the published Data.
This Interest name allows subscribers to fetch the randomly

published Data on receipt of the Noti�cation Interest. To
preclude packet loss, Noti�cation Interests are repeated until
acknowledged by at least one subscriber5.
In periodic publishing mode (e.g., used when producing

sensor data), the Noti�cation Interest is omitted. In this case,
periodically sent Subscribe Interests from subscribers (ex-
plained in the following) are used to retrieve published Data.

When focusing on the subscriber-side of the system, sub-
scriber applications express interest to Data under a name
tree node by using the service and location parameters of the
subscribe API. Besides, the application provides a callback
method that de�nes the application’s action on receiving a
publication. The interval parameter de�nes the frequency
the applications want to receive updates. Calling the sub-
scribe API triggers two actions: First, to receive Data, the
subscriber emits periodic Subscribe Interests holding the ser-
vice and location parameters as name pre�x. The con�gured
interval de�nes the frequency of those Subscribe Interests6.
Whenever publishedDatamatches the service and location pa-
rameters, the Subscribe Interests initiate delivery of thereof.
Second, the subscribe API con�gures the forwarder to listen
to Noti�cation Interests matching the service and location
parameters. Therefore, the name pre�x holding the service
and location parameters is registered with the su�x /NOTIFY
appended. This enables the Noti�cation Interests sent by
publishers in random publishing mode be forwarded to the
subscriber applications.

Note that subscribers do not need to know the publisher’s
publishing behavior ahead of time. A subscriber may receive
a Noti�cation Interest that enables the subscriber to imme-
diately fetch randomly published Data, and additionally, ac-
tively pulls periodic publications by emitting Subscribe In-
terests. Active pulling, however, might not be reasonable
in all application use cases (eg. pulling infrequent control
commands) and, hence, can be disabled, eg. by setting the
interval parameter to zero. In this case, Data transmission is
triggered by Noti�cation Interests only.

3.5 Security Work�ow
The NDN-Lite Pub/Sub API provides built-in security sup-
port for applications by automating the security work�ows
required for Data publishing and subscribing. In this sec-
tion, we demonstrate the NDN-Lite Pub/Sub’s security work-
�ow by an example (cf. Figure 6), where an application
(“/alice-home/AUTOMATION/hub/app-1”) running on a home
controller subscribes to the self-state reports of the LOCK-
service at the living room’s front door. We assume that the

5A pre-set maximum number of repetitions prevents in�nite noti�cations
in the case of zero subscribers. When no acknowledgment is received, a
failure is reported to the calling application.
6Di�erent subscriber applications may have di�erent intervals set

A Pub/Sub API for NDN-Lite with Built-in Security

Set packet name according to the topic1

Look up access key in local key storage2

Encrypt content “locked” with the access key3

/alice-home/LOCK/livingroom/front/
state/<timestamp>

NDN-Lite
Pub

x
Fetch the
encryption key by
identity and
service/alice-home/LOCK/ACCESS/EKEY

Sign the packet with identity private key4
/alice-home/LOCK/livingroom/front/lock-1/KEY/123

Make available to the network5

 Local Network

Obtain signer identity name from signing key name1

Check against security policy2

Look up signer’s certificate in local key storage3

Verify signature4

Decrypt and deliver to application6

Look up access key in local key storage5
/alice-home/LOCK/ACCESS/DKEY

/alice-home/LOCK/livingroom/front/lock-1
NDN-Lite

Sub

✓

✓

x Drop

✓

x Fetch
Certificate by
signer’s identity

x Drop

x Fetch the
decryption key
by identity and
service

“state” “closed”

✓

✓

subscribe(LOCK, “/livingroom/front”, callback, 3_s)

publish(LOCK, “/livingroom/front”, “state”, “closed”,
 pattern=periodic)

✓
✓

Figure 6: Subscribe to periodically published Data

security policies and À from Figure 4 were retrieved by
the application during the bootstrapping phase.

The participant lock-1 periodically produces the self-state
report by calling the publish API with state as data-id and
the current status (eg. open, or closed) as value. The Pub/Sub
module constructs the Data name following naming conven-
tions, retrieve the encryption key, sign the Data packet with
the private key of its identity, and make it available on the
network.

The app-1 subscribes toData associatedwith LOCK-service
and /livingroom/front location with a callback and interval
being 3_s. Upon receiving newData, app-1’s Pub/Sub module
checks security policy to examine if allowed keys sign
the Data. Its Pub/Sub module will then verify the signature
carried in received Data against the fetched signer’s (i.e.,
lock-1) certi�cate. Afterwards, the Data content is decrypted
by Pub/Sub using corresponding decryption key since the
security policy À indicating app-1 has permission to access.
Pub/Sub module will only deliver received Data to the appli-
cation if it passes all security checks. In this example, data-id
state and content closed is the �nal result delivered to the
callback.

NDN Protocol and Network Forwarder Utilities

Adaptation to Platform-specific network interfaces,
crypto support, and time support

C
ore Library

Applications
Pub Sub

Service
Discovery

Access
Control

Security
Bootstrapping

High-level
Modules

N
D

N
-L

ite
 S

D
K Key Storage

Figure 7: NDN-Lite Architecture
Note that the use of application names for data and keys

enables NDN-Lite Pub/Sub, and the security work�ow is au-
tomated based on the reasoning of relations between names.

4 IMPLEMENTATION
While the NDN-Lite Pub/Sub protocol’s design is not limited
to speci�c application use-cases, the current implementation
focuses on IoT settings. NDN-Lite Pub/Sub is realized as part
of the NDN-Lite framework7. The focus of the codebase is
supporting constrained devices as well as conventional com-
puters as execution platforms. Therefore, the implementation
is built on C and uses static memory allocation only. To use
NDN-Lite Pub/Sub in home IoT development, developers can
download the NDN-Lite SDK (see Figure 7), build their ap-
plications with our API (Section 3.3), and �ash the compiled
binaries to their IoT devices. Figure 7 visualizes the structure
of NDN-Lite and shows how individual components work to-
gether. NDN-Lite Pub/Sub and security bootstrapping are the
only two components exposed to the application and make
primitives like Interest-Data exchange, or the use of cryp-
tography transparent to application developers. However,
NDN-Lite Pub/Sub assumes that the security bootstrapping
(eg. setup of the trust anchor and the de�nition of security
policies) has been completed before use. NDN-Lite Pub/-
Sub embeds security in terms of integrity protection and
authenticity. For accessing the required cryptographic keys,
the modules access control and key storage of the NDN-Lite
framework are used. These components are based on the
concept of name-based access control and securely retrieve
keying material if not yet available (cf. Section 2.1.3).

5 MEMORY AND LATENCY OVERHEAD
In this section, we evaluate NDN-Lite Pub/Sub’s performance
regarding latency and memory overhead. The results show
that NDN-Lite Pub/Sub only has a small memory usage and
acceptable latency in communication. These results mean
that it can e�ectively operate on constrained devices.
Latency of Common Operations: To assess the latency of
NDN-Lite Pub/Sub, the execution time of two typical home
IoT functions is compared to the popular IoT platform AWS
7https://github.com/named-data-iot/ndn-lite

Tianyuan Yu, Zhiyi Zhang, Xinyu Ma, Philipp Moll, and Lixia Zhang

Figure 8: User-perceived Latency of Common Opera-
tions in NDN-Lite Pub/Sub and Amazon AWS IoT Pub-
/Sub

IoT [1]. We measure the latency for collecting sensor read-
ings, and for actuating commands in both frameworks. In
AWS IoT, collecting sensor reading is implemented by one
device subscribing to a pre-de�ned MQTT [4] topic under
which another device publishes data. In the NDN-Lite im-
plementation, two devices, a publisher and a subscriber are
running in the same room. The publisher is evaluated in
random publishing mode for actuating commands and in
periodic publishing mode for collecting sensor readings. The
subscriber employs an interval setting of 4 seconds.
The comparison between NDN-Lite Pub/Sub and AWS

IoT was conducted on a Raspberry Pi 3B (ArM Cortex A53
@1.4GHz). The results, visualized in Figure 8, show that
NDN-Lite Pub/Sub reduces latency by 62% on collecting
sensor readings, and by 42% on command actuating. This is
because packets are exchanges locally, instead of exchanged
over cloud servers. Further, NDN-Lite broadcasts packets to
the local network. The local broadcast means that the sender
directly populates data to the receiver without going through
the broker �rst.
In addition, we evaluated NDN-Lite Pub/Sub’s latency

overhead on the resource-constrained nRF52840 chip (Arm
Cortex M4 @64MHz) with IEEE 802.15.4 link-layer broad-
cast [14]. Due to limited computation power, the latency
on the nRF52840 is larger compared to the more powerful
Raspberry Pi. However, a delay of 0.5 seconds for Pub/Sub
operations seems acceptable for common smart home sce-
narios.
Execution Time Breakdown: A breakdown of Pub/Sub’s
operation time into individual operations is provided in Fig-
ure 9. The breakdown is shown for devices having varying
computation power. The visualized operations include data
preparation before broadcasting to the network and data
processing after receiving. This includes digital signature

Figure 9: Breakdown of the execution time into indi-
vidual operations in NDN-Lite Pub/Sub

signing/veri�cation (ECDSA), content encryption/decryp-
tion (AES-128 CBC), checking security policies (regexmatch),
and NDN packet encoding/decoding. The results show that
asymmetric cryptography consumes most of the computa-
tion time. This trend is observable across all evaluated de-
vices.
ROM and RAM Footprint:We measured NDN-Lite Pub/-
Sub’s memory overhead on nRF52840 boards with 1MB ROM,
250KB RAM. In terms of memory con�guration, such boards
represent typical hardware setups found in smart home de-
vices.

Program/Modules ROM Use RAM Use
Subscriber in total 62KB 47.3KB
Publisher in total 52.4KB 38.2KB

Application 1.8% 7.3%
High-level Modules 20.7 % 34.2 %

Utilities 3.3% 14.4%
Crypto Tools 25.1% 0.2%

Network Forwarder 24.1% 25.0%
OS and Adaptation 25.1% 18.9%

Table 2: ROM and RAM Consumption

Table 2 shows the RAM and ROM footprint of a publisher
and a subscriber implementation deployed on the RIOT op-
erating system [3]. We detail the memory and �ash usage of
individual modules of NDN-Lite. Pub/Sub is considered as a
high-level module. When breaking the memory usage down
to module granularity, these high-level modules account for
20.7% of the total RAM usage and 34.2% of the total ROM
usage. In total, the publisher and subscriber implementa-
tions require below 70KB of memory and �ash space. This
indicates the ability to use NDN-Lite Pub/Sub on resource-
constrained devices in smart home environments.

A Pub/Sub API for NDN-Lite with Built-in Security

6 RELATEDWORK
There is only a few research focusing on providing high-level
APIs for NDN. The Consumer-Producer API [10] presents
a generic communication API for NDN applications. The
API provides multiple functions, such as reliable data trans-
mission, packet reassembly, and packet ordering. However,
this work focuses on data transmission functionality. The
Consumer-Producer API treats security as a plug-in solution.
Thus, additional e�orts from the developer-side are required
to secure Data.

TheNamedData Networking CommonName Library (NDN-
CNL) [13] o�ers an abstraction calledGeneralized Object. The
Generalized Object abstraction allows creating mutable ap-
plication objects (eg., image, video segment) over immutable
network layer Data packets. The NDN-CNL library synchro-
nizes the namespace of Generalized Objects with NDN syn-
chronization protocols [7]. NDN-CNL develops the name
tree concept to organize application data. NDN-Lite Pub/-
Sub adopts this name tree concept. In NDN-CNL’s design,
applications can attach/fetch a Generalized Object to/from
a speci�c name tree node. Therefore, applications interact
with the name tree over high-level mutable objects instead
of via low-level Interest-Data exchange. NDN-CNL includes
security-related operations for applications, such as Data
signing and encryption. However, compared to NDN-Lite
Pub/Sub, security in NDN-CNL is not natively supported and
depends on applications providing hooks to perform security
measures.

TheDistributed NetworkMeasurement Protocol (DNMP) [11]
is a distributed measurement framework for NDN. It o�ers
high-level APIs for conducting speci�c measurement com-
mands (e.g., probe an interface status). DNMP’s API is re-
alized by a system component called Shim and automates
the security work�ow with the runtime library called VerSec.
Trust schemas, speci�ed in a declarative language, are loaded
into VerSec during runtime and enable VerSec to validate
Data. When signing, VerSec locates appropriate signing keys
acceptable to the system’s trust schema. For veri�cation,
VerSec uses the trust schema to verify that the signature
was created using an authorized signing key for the given
Data packet’s name. DNMP uses the sync protocol syncps for
realizing as a lightweight publish-subscribe protocol. This
protocol enables topic-based communication between pub-
lishers and subscribers. The syncps module announces the
set of currently available publications in an Interest contain-
ing an invertible bloom �lter [6]. This data structure allows
consumers to infer whether new publications are available or
not. In contrast, subscribers in NDN-Lite are informed about
the availability of new publications by either periodically
emitting Subscribe Interests (Section 3.4), or by listening to

Noti�cation Interests that directly reveal the exact names of
published Data.

7 SUMMARY AND FUTUREWORK
This paper presents NDN-Lite Pub/Sub – a high-level pub-
lish/subscribe API for applications with security built-in.
Security is embedded by using name-based access control.
Application semantic in names allows de�ning security poli-
cies based on application names and enforcing �ne-granular
rules for access control. NDN-Lite Pub/Sub’s solutions for
encryption and authentication run on resource-constrained
devices with strict computation power limits. This makes
NDN-Lite suitable for a decentralized Internet of Things
deployment. Future work includes improving reliability by
adding networked Data repositories. Repositories reduce the
memory overhead and make it feasible to run NDN-Lite Pub-
/Sub on ultra-constrained devices that possess less than 32KB
of RAM (eg., SAMR21-XPRO). Further, we plan to compare
NDN-Lite Pub/Sub’s memory and latency overhead with
other existing platforms, such as Azure IoT Edge [9] and
AWS Greengrass [2]. Besides, a comparison between NDN-
Lite Pub/Sub’s energy consumption and regular IP-based
solutions is planned.

ACKNOWLEDGMENT
This work is partially supported by the National Science
Foundation under awards CNS-1629922 and CNS-1719403.

REFERENCES
[1] Amazon Inc. 2020. AWS IoT, Connected Home. https://

aws.amazon.com/iot/solutions/connected-home/. Accessed: 2020-12-
6.

[2] Amazon Inc. 2020. AWS IoT Greengrass. https://aws.amazon.com/
greengrass/. Accessed: 2020-12-6.

[3] Emmanuel Baccelli, Oliver Hahm, Mesut Gunes, Matthias Wahlisch,
and Thomas C Schmidt. 2013. RIOT OS: Towards an OS for the Inter-
net of Things. In 2013 IEEE conference on computer communications
workshops (INFOCOM WKSHPS). IEEE, 79–80.

[4] Andrew Banks, Ed Briggs, Ken Borgendale, and Rahul Gupta. 2019.
MQTT Version 5.0. OASIS Standard. https://docs.oasis-open.org/mqtt/
mqtt/v5 .0/os/mqtt-v5 .0-os.html (March 2019).

[5] Matt Cooper, Yuriy Dzambasow, Peter Hesse, Susan Joseph, and
Richard Nicholas. 2005. Rfc 4158-internet x. 509 public key infrastruc-
ture: Certi�cation path building. Online at ftp://www.ietf.org/rfc/rfc4158.
txt (2005).

[6] David Eppstein, Michael T Goodrich, Frank Uyeda, and George Vargh-
ese. 2011. What’s the di�erence? E�cient set reconciliation without
prior context. ACM SIGCOMM Computer Communication Review 41, 4
(2011), 218–229.

[7] Tianxiang Li, Wentao Shang, Alex Afanasyev, Lan Wang, and Lixia
Zhang. 2018. A brief introduction to ndn dataset synchronization (ndn
sync). InMILCOM 2018-2018 IEEE Military Communications Conference
(MILCOM). IEEE, 612–618.

[8] Y. Li, Z. Zhang, X. Wang, E. Lu, D. Zhang, and L. Zhang. 2019. A Secure
Sign-On Protocol for Smart Homes over NamedData Networking. IEEE

Tianyuan Yu, Zhiyi Zhang, Xinyu Ma, Philipp Moll, and Lixia Zhang

Communications Magazine 57, 7 (July 2019), 62–68. https://doi.org/
10.1109/MCOM.2019.1800789

[9] Microsoft Inc. 2020. Azure IoT Edge. https://azure.microsoft.com/en-
us/services/iot-edge/. Accessed: 2020-12-6.

[10] Ilya Moiseenko and Lixia Zhang. 2014. Consumer-Producer API for
Named Data Networking. In Proceedings of the 1st ACM Conference on
Information-Centric Networking. 177–178.

[11] Kathleen Nichols. 2019. Lessons learned building a secure network
measurement framework using basic ndn. In Proceedings of the 6th
ACM Conference on Information-Centric Networking. 112–122.

[12] Sanjeev Kaushik Ramani, Proyash Podder, and Alex Afanasyev. 2020.
NDNViber: Vibration-Assisted Automated Bootstrapping of IoT De-
vices. In 2020 IEEE International Conference on Communications Work-
shops (ICC Workshops). IEEE, 1–6.

[13] Je� Thompson, Peter Gusev, and Je� Burke. 2019. Ndn-cnl: A hierar-
chical namespace api for named data networking. In Proceedings of the
6th ACM Conference on Information-Centric Networking. 30–36.

[14] Wireless Personal Area Network (WPAN) Working Group. 2016. IEEE
Standard for Low-Rate Wireless Networks. IEEE Std 802.15.4-2015
(Revision of IEEE Std 802.15.4-2011) (April 2016), 1–709. https://doi.org/
10.1109/IEEESTD.2016.7460875

[15] Yingdi Yu, Alexander Afanasyev, David Clark, KC Cla�y, Van Jacobson,
and Lixia Zhang. 2015. Schematizing trust in named data network-
ing. In Proceedings of the 2nd ACM Conference on Information-Centric
Networking. 177–186.

[16] Yingdi Yu, A Afanasyev, Z Zhu, and L Zhang. 2014. Ndn technical
memo: Naming conventions. NDN, NDN Memo, Technical Report NDN-
0023 (2014).

[17] Lixia Zhang, Alexander Afanasyev, Je�rey Burke, Van Jacobson, Patrick
Crowley, Christos Papadopoulos, Lan Wang, Beichuan Zhang, et al.
2014. Named data networking. ACM SIGCOMM Computer Communi-
cation Review 44, 3 (2014), 66–73.

[18] Zhiyi Zhang, Edward Lu, Yanbiao Li, Lixia Zhang, Tianyuan Yu, Davide
Pesavento, Junxiao Shi, and Lot� Benmohamed. 2018. NDNoT: a
framework for named data network of things. In Proceedings of the 5th
ACM Conference on Information-Centric Networking. 200–201.

[19] Zhiyi Zhang, Yingdi Yu, Sanjeev Kaushik Ramani, Alex Afanasyev,
and Lixia Zhang. 2018. NAC: Automating access control via Named
Data. In MILCOM 2018-2018 IEEE Military Communications Conference
(MILCOM). IEEE, 626–633.

[20] Zhiyi Zhang, Yingdi Yu, Haitao Zhang, Eric Newberry, Spyridon Mas-
torakis, Yanbiao Li, Alexander Afanasyev, and Lixia Zhang. 2018. An
overview of security support in Named Data Networking. IEEE Com-
munications Magazine 56, 11 (2018), 62–68.

