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ABSTRACT

The global Internet routing infrastructure is a large scale dis-
tributed system where routing changes occur all the time.
While prior work on Internet routing dynamics examined
routing stability to individual destinations, in this paper we
study the routing stability of the Internet as a whole. We use
the observed changes in the number of routes over each AS-
AS link as a metric and measure such changes from multiple
vantage points over a period of one year. We then apply Prin-
cipal Component Analysis to identify those AS links that
were most involved in routing changes. Our work is the first
to combine measurement data collected from multiple moni-
tors to gauge the overall routing stability in the Internet. Our
results show that very few routing events impact the entire
Internet, and those events were due to announcement of new
prefixes either in the form of route leakages or address space
de-aggregation. We also find that the impact of most rout-
ing events is confined to a small scope, and the existence of
unstable AS links over long periods of time. We believe our
approach represents a new direction in routing stability mea-
surement and our findings shed new insight into the routing
system performance.

1. INTRODUCTION

The Internet routing infrastructure is composed of a
large number of independently administrated networks
called Autonomous Systems or ASes, with Border Gate-
way Protocol (BGP) as the global routing protocol. In
a system as big, complex and distributed as the Inter-
net, routing changes are known to happen all the time.
Routing instabilities in the Internet can affect data de-
livery often resulting in longer latencies or even dropped
packets, thus degrading end to end performance. While
prior studies have focused on the routing stability of
individual destinations [20], the dynamics of individual
prefixes are often not representative of what is going on
in the Internet. To the best of our knowledge, no study
has been done on the routing stability of the Internet
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as a whole. The difficulty to capture routing dynamics
across multiple prefixes using a single metric, as well
as the need to combine such information from multi-
ple vantage points presents challenges in carrying out
such a study. A study of routing stability would pro-
vide a good understanding of the limitations of current
Internet routing as well as help in the design of future
routing protocols.

There are many challenges one faces in conducting
such a study of routing stability. First is the sheer num-
ber of routes that exist in the global routing table. A
BGP router may contain routes to as many as 250,000
BGP prefixes, with tens of thousands of unique routes
to these destinations. Thus, examining paths to indi-
vidual prefixes simply does not scale. Further, routes
are constantly changing resulting in tens of thousands
of BGP updates processed by each BGP router every
day, and this high volume of route changes over time
presents another challenge. Most importantly different
parts of the Internet see very different routing changes.
Some events may only affect a small portion of the Inter-
net, while others may cause a disturbance that is more
globally felt. To tell which is which, requires painting
a complete picture by combining routing changes ob-
served at different portions of the Internet.

In this paper, we propose a new methodology for un-
derstanding routing instabilities affecting multiple pre-
fixes. To scale with prefixes, we first need a metric, and
our metric is motivated by the concept of link weight
proposed in [9, 10], that represents the number of routes
carried over an AS-AS link as computed from the rout-
ing table of a BGP router. By measuring the changes
in these number of routes on each link seen by this
BGP router, we can naturally capture aggregate behav-
ior across multiple prefixes and provide a quantitative
metric for routing stability. Ideally by looking at rout-
ing changes over each link, we would like to identify
the links that stand out in terms of routing changes
from the rest. One can imagine each monitor as a di-
mension, and examining changes along the individual
vantage points can be cumbersome and may not pro-
duce desired result. For example, a link that stands out



in terms of routing changes from one monitor may be
very different from a link that stands out when look-
ing at multiple vantage points together. Our next big
challenge is to be able to collectively examine the rout-
ing changes observed by BGP routers in different parts
of the Internet. For this purpose, we use a statistical
technique called Principal Component Analysis (PCA)
to transform the original dimension to a new dimen-
sion space where individual axes are the combinations
of different vantage points, thus making the examina-
tion of the routing changes more meaningful in terms of
commonality as well as diversity observed by different
vantage points.

We apply our scheme on BGP data collected from
different vantage points over a period of one year from
January 2007 to December 2007. Our goal is to find how
often large scale routing instabilities occur and what is
the scope or spread of these instabilities. We found
quite a few cases of large scale routing problems that
impacted a significant portion of the Internet. We found
that the most widespread impact is caused when rout-
ing changes involve a link close to the origin AS an-
nouncing lots of prefixes. In particular, we found that
the most widespread impacts were caused by routes be-
ing de-aggregated or internal AS routes being leaked
out to the rest of the Internet. We also observed quite
a few instances of the same routing instability repeat-
ing many times over our observation period. While a
majority of them are restricted in their scope, a few
impact a significant portion of the Internet. Overall,
we find that Internet routing is pretty stable in terms
of globally routing instabilities, but there are lots of
instabilities that affect different small portions of the
Internet. We would like to emphasize that in this paper
we do not attempt to perform root cause analysis of
routing instabilities. Rather, we focus on understand-
ing how routes shift due to any routing events. In some
sense, one can think of this as understanding the effect
of routing events on the Internet, rather than what is
the root cause or origin of the observed updates.

The rest of the paper is organized as follows. In Sec-
tion 2, we briefly describe the basics in BGP routing
and the metric of link weight. Section 3 describes how
we apply PCA on our data set, and explains how we
pick outlier links and interpret the results. In Section 4,
we provide a basic validation of our scheme using sim-
ulation experiments under controlled settings. In Sec-
tion 5, we describe preparation of the BGP data set
spanning one year, in particular how we pick a good set
of vantage points. In Section 6, we present our results
on routing stability. Section 7 presents some open is-
sues and limitations of our results. Finally, Section 8
presents related work, and Section 9 concludes the pa-
per.

2. CAPTURING INTERNET ROUTING
CHANGES

The Internet consists of a large number of administra-
tive domains called autonomous systems (AS). Each AS
is identified by an AS number and contains one or mul-
tiple destination networks. Each destination network
is represented by an IP address prefix (e.g. M.I.T. an-
nounces 18.0.0.0/8). As of Dec 2007, the Internet rout-
ing system includes over 28,000 autonomous systems
and over 250,000 prefixes.

Border Gateway Protocol (BGP) [19] is the de-facto
routing protocol used between ASes to exchange infor-
mation about prefixes reachability. Whenever a new
prefix is announced in the Internet, BGP update mes-
sages are used to propagate routes to this prefix. For ex-
ample in Figure 1a, AS 11 announces prefix P1 to its up-
stream (service provider) AS 88 and AS 77, who in turn
prepend its own AS number to the path and propagates
this path to its own neighbors. Route selection and
propagation in BGP are determined by networks’ rout-
ing policies, where the business relationship between
two connected ASes plays a major role. AS relation-
ship can be generally classified as customer-provider or
peer-peer. In a customer-provider relationship, the cus-
tomer AS pays the provider AS for routing traffic. The
peer-peer relationship does not usually involve mone-
tary flow; The two peer ASes exchange traffic between
their respective customers only. In Figure 1, AS 11 is
a customer of AS 77, and hence even though AS 77
receives a peer route via AS 88, it prefers to use the
customer route to AS 11. The routing table at AS 77
in Figure la shows that AS 77 reaches prefix P2 using
AS 88 as the next hop.

Note, two autonomous systems may connect at mul-
tiple physical locations through different BGP routers.
For simplicity we refer to the routing table of a particu-
lar router in an AS as the routing table of that AS, and
abstract the parallel connections between two ASes as
a single logical connection.

2.1 Routing Instabilities

Whenever a BGP router’s route to any destination
prefix changes, it sends a BGP update to its neigh-
bours. Routing changes can be caused by various rea-
sons, such as link failures, BGP session resets[23], or
policy changes. In Figure la, assume the BGP peer-
ing between 77 and 88 fails. As a result, AS 77 cannot
use AS 88 as next hop to reach a bunch of prefixes, i.e.
P,...P;. AS 77 then switches to using AS 99 to reach
these prefixes and sends BGP update messages to AS
55, AS 66 and AS 11 communicating the new route to
reach prefixes P;..P; as shown in Figure 1b. Similarly,
AS 88 will also send updates to its neighbors since its
route to prefixes P5 and P6 will not be valid after failure
of 77-88.
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Figure 1: Internet routing and BGP monitoring

Public data collection projects like RouteViews [18]
and RIPE NCC’s Routing Information Service (RIS)
[17] connect to BGP routers in different autonomous
systems and passively collect BGP updates from them.
These BGP routers serve as vantage points and in the
rest of this paper we refer to them as monitors. In Fig-
ure 1b, AS 77, AS 99 and AS 44 are connected to a
collection box and receive BGP updates for this partic-
ular event. Note, that in this case, AS 88 sends updates
for a different set of prefixes than that sent by AS 77.
On the other hand AS 99 does not use the link 77-88
and though it receives updates from AS 77 and AS 88,
it does not send any updates to its neighbors. Clearly,
even for the same event, different ASes may see a dif-
ferent effect. From Figure 1b, we can see that while
monitors inside AS 77 and AS 44 sent BGP updates to
the Collection box following failure of link 77-88, AS 99
did not send any updates for the same event. Next, we
discuss the metric which helps us capture the shifting
of routes over AS links.

2.2 Link Weight Changes

As seen in Figure 1, when multiple routes are affected,
it is difficult to aggregate them by their prefix identi-
fiers. However, usually the affected routes share com-
mon AS links, and we take advantage of this fact to

aggregate routing changes. We use the measure of link
weight similar to that proposed in [9, 10] where each
link is weighed by the number of AS routes carried as
seen by an observation point. In this case, initially link
77-88 carried 3 routes as seen by AS 77, and hence had
wt(77,88) = 3. Similarly, wt(77,99) = wt(99,88) = 0
as seen by AS 77. When the link 77-88 breaks down,
routes use AS 99 as the next hop to reach AS 88, and
hence wt(77,88) = 0, but wt(77,99) = wt(99,88) = 3.
We can now think of the routing changes involved here
as changes in link weights of the links 77-88, 77-99 and
99-88 without going into details of which exact routes
changed. More specifically we can say weight change
§(77,88) = 3, since a maximum of 3 routes were lost
during that event. As another example, if both P1
and P2 were withdrawn from AS 77’s table from the
state shown in Figure reffig:mpsetupa, then the changes
would be §(88,11) =1, §(88,22) =1 and 6(77,88) = 2.
Thus looking at weight changes gives us a way to cap-
ture aggregate routing changes that affect multiple pre-
fixes.

Though fundamentally, we also weigh links by the
number of routes carried, how we measure link weight
change is different from [9, 10], as outlined below. In
particular, we first group BGP updates into time bins
of T minutes each. For each bin, we compute the max-
imum change in the link weight for each AS-AS link
observed by each monitor.

Algorithm 1: ComputeLinkWeightChange
Data: BGP RIB and updates from a monitor
Result: Link weight changes seen by the monitor
begin
foreach prefix p in RIB do
| record current path to p

pset — ()
foreach prefix p in UPDATES do
foreach added or lost link | do
pset[l] « pset[l]Up
L update path to p

lwe «— 0
foreach Ilink [ in pset do
| lwe[l] < member-count(pset[l])

return [wc
end

For example, if wt(a,b) = 1000 at the start of the bin,
and within the time interval has a lowest and highest
value of wt(a,b) = 900, and wt(a,b) = 1100 respec-
tively, then weight change d(a, b) = 200, thus capturing
the range of link weight change during that interval.
We use this measure of link weight change to capture
the effect in terms of which links are observing route
changes to how many prefixes. Note, that link weight



changes are relative to the observation point or moni-
tor, and we capture the link weight changes for multiple
monitors. Next, we show how we use PCA to combine
the information from multiple monitors to identify the
outlier links.

3. APPLYING PRINCIPAL COMPONENT
ANALYSIS

From previous section, we saw that our metric of
weight change gives us an aggregate measure of the
route changes on each link seen by each monitor. We ar-
gue that examining these weight changes along the orig-
inal dimension of individual monitors not only presents
too many dimensions to examine, but also cannot cap-
ture changes that are common across different monitors.
We use Principal Component Analysis to transform the
original dimensions into the new dimensional space, and
show how analyzing the route changes along this space
can be much more meaningful.

3.1 PCA Introduction

Principal Components Analysis (PCA) is a well-known
statistical technique used for understanding the vari-
ance of a multi-dimensional data set. PCA maps a set
of points from a n-dimensional space into a new or-
thogonal n-dimensional space, where the variance of the
original data along each axis is maximized. The axes of
the new space are called principal components abbrevi-
ated as PCs. The coefficients of the new reference axes
are called loadings, and the projections of the original
data onto these axes are called scores.

Given a m X n matrix X, where each row repre-
sents a point, and each column represents the origi-
nal dimension, PCA computes n principal components
v;"_, defined as follows: vj, = argmaxHV”:lH(XT -
Zi.:ll XTviva)vH. The principal components are the
n eigenvectors of the estimated covariance matrix and
are ranked according to the amount of variance they
capture in the original data. The variance of each com-
ponent is described by the corresponding eigenvalue.
When the input matrix is zero-mean, the first princi-
pal component contains the most variance in the origi-
nal data, and any other k" principal component - with
k = 2,...n - identifies the maximum variance in the re-
maining data, i.e. the original data after removing the
contributions of the previous k — 1 components.

The original purpose of PCA was to reduce a large
number of variables to a smaller number of principal
components without losing much of the variance in the
data. In addition to dimensionality reduction, if the
resulting principal components can be meaningfully in-
terpreted, then PCA can also provide useful insight into
how original variables relate to each other.

3.2 Applying PCA on link weight changes
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Figure 2: Outlier links from PCA output

Before delving into details, we use a simple example
highlighting the need to combine information from mul-
tiple monitors. We present an example from real BGP
data collected from a set of multiple monitors. If we ex-
amine the weight changes along individual monitors, we
find different links having the highest weight changes.
For example, the links 1237-1299 and 14608-4323 have
the highest changes respectively from two sampled mon-
itors. What we want to find out is which link stands out
when information from monitors is combined together.

Without going into details, lets see how applying PCA
on this data set of weight changes can help. With PCA
we get a new set of components, and we project the
links onto these top two components as shown in Fig-
ure 2. We can see here that the links 6453-4788 and
1273-1299 clearly stand out from the rest and can be
easily identified as an outliers. While many monitors
saw these links change routes, they did not stand out
as the highest routing changes from that monitor. Fig-
ure 3 shows links involved in weight changes seen by two
monitors M1 and M2. We can see that link 6453-4788
has a weight change of 1722 seen by M1, but the high-
est weight change is 3967 routes on the link 1237-1299.
This is because, the weight change in 1237-1299 is also
affected by changes on other links. Similar situation can
be observed for monitor M2, where the link 6453-4788 is
not the highest in terms of routing changes. When PCA
takes the data from all monitors into account and aligns
the principal components to account for the maximum
variance in the data, the link 6453-4788 stands out, thus
making outlier detection more meaningful. However, in
general the inference of the nature of the outlier de-
pends on the interpretation of the PC, and we explain
that towards the end of this section.

More formally, to apply PCA on link weight changes,
we construct a data matrix X of link weight changes
seen by different monitors, where columns represent the
monitors, rows represent the links, and an entry (i, )
represents the weight change on link ¢ seen by monitor



b. Weight changes from M2

Figure 3: Weight changes seen by individual
monitors for case in Figure 2

j. Before applying PCA, we adjust the data so that
it has zero mean. This ensures that the first principal
component captures the true variance in the data.

Prior work like [25] often incorporated time as an in-
herent dimension for the PCA input matrix. We are
primarily interested in understanding which links stand
out from the rest in terms of routing changes as viewed
from different monitors at a given point of time. Over
time, monitors will be affected differently for different
events and incorporating time in the input would make
the interpretation of results more complex. Our ap-
proach is different in that we slice time into fixed size
bins and analyze the bins independently of each other.
By treating each time bin independently, we are able to
gauge the impact of a routing change, by understanding
how monitors are affected.

Next we look at some characteristics of our data set
that influence what we can get out of PCA.

3.2.1 Multivariate Normalcy

Some proponents of PCA argue that the input data
should follow a multivariate normal distribution. Oth-
ers claim that the condition of multivariate normalcy
makes the application of PCA too narrow, and that
PCA can be more generally applied than that. [7] ex-
plains that if PCA is applied for descriptive purposes
then it can be applied even if the data set does not fol-
low a multivariate normal distribution. We performed
tests on our data set for about 200 different randomly
selected time intervals, and our results show that while
some time bins show multivariate normalcy, others do

not and we cannot conclusively say anything about whether

multivariate normalcy exists in general. To be on the
conservative side, we assume that multivariate normalcy
does not exist in our data set, and we apply PCA to
reduce the data set dimensionality and describe the ex-

isting variance rather than for inferences.

3.2.2 Covariance versus Correlation Matrix

In general, PCA uses two kinds of matrices as input,
i.e. the covariance matrix and the correlation matrix.
Correlation matrix is especially recommended when the
dimensions (columns) represent measures in different
units (e.g. centimeters versus millimeters) or the scales
of the dimensions are very different. Using a covariance
matrix in such cases will cause higher absolute values
to dominate. However, since our columns are monitors
with each containing a full routing table (same scale
of 250k prefixes), higher absolute values (link weight
changes) are important in our analysis and hence, we
use a covariance matrix for PCA.

3.3 Analyzing data in New Dimensional Space

After applying PCA on the matrix described above,
we get a set of principal components (new dimension)
with each principal component as a linear combination
of the monitors (old dimension). Our claim is that ana-
lyzing the data along the new dimension is much more
beneficial than the older dimension of individual moni-
tors. Our first task to evaluate how many PCs we need
to retain. To achieve this, we use the parallel analy-
sis technique to select the principal components that
account for most of the variance.

3.3.1 Component Selecting using Parallel Analysis

There are many different techniques to decide how
many components to retain. We use a technique called
parallel analysis [15] where the obtained eigenvalues are
compared to those one would expect to obtain from
random data. If the first m eigenvalues are those which
have values greater than what would be expected from
random data, then one adopts a solution with m factors.

3.3.2  Outlier Link and Change Magnitude

Once, we decide to retain a set of principal com-
ponents, the resulting data set consists of each point
represented by k co-ordinates, where k is the number
of components retained. Our goal is to identify out-
liers in this representation. In general for k — variate
data, the definition of outlier implies that the points
are a long way from the rest of the observations in the
k-dimensional space. Since each principal component
represents a linear combination of the original moni-
tors, we examine outliers by looking in the directions of
the selected principal components.

We define the outlier link as the link that is farthest
away from the origin when projected on a principal com-
ponent. We find outlier links for each of the selected
principal components, since different principal compo-
nents may capture potentially different routing effects.
Note, we use a very simple outlier link detection tech-



nique, and we realize that we may capture more infor-
mation by capturing more than one outlier link based on
distances from the rest of the links. However, our pri-
mary aim here was to explore this direction of analysis
to see if its beneficial and then use more sophisticated
outlier detection techniques during the next stage.

Note, also that each link has a score assigned to it
along each principal component, representing the point’s
coordinates in the new dimensional space. For exam-
ple, in Figure 2, the link 6453-4788 is an outlier on PC1
and the link 1273-1299 is an outlier on PC2. The co-
ordinates of the links on the PCs are called scores. We
define change magnitude of a principal component as
the score of the outlier link on that component. Note
that score values can be negative or positive, and as
such the signs are completely arbitrary based on which
direction the component goes. We consider absolute
value of the score as the change magnitude.

3.3.3 Interpreting the Principal Components

In addition to observing outlier links on a principal
component, we also need to interpret the principal com-
ponents. Each principal component captures some vari-
ability in the data, and hence its important to under-
stand the interpretation of each PC in order to put the
observations on the principal component in context of
the original monitors. Note, that the sign of any PC is
completely arbitrary, and what matters in the interpre-
tation is the relative signs across different coefficients.
Also, if one considers all coefficients including the ones
with really low value, then the interpretation of the PC
can be difficult. One way to simplify as suggested in
[7] is to consider values above a quarter of the highest
absolute value. We call the coefficients thus selected
as chosen coefficients. Broadly, there are two classes of
principal components based on the relative signs of the
monitors coefficients.

1. Uniform Effect: Here we observe the chosen co-
efficients of the principal components to have the
same sign, either positive or negative. The coeffi-
cient value of each monitor indicates the amount of
influence that particular monitor has on the com-
ponent and with multiple monitors influencing the
PC, there must be link changes that are common
to these monitors.

2. Contrasting Effect: Here we observe the influential
coefficients of the principal components to have op-
posite signs. This indicates a contrast in the obser-
vations of sets of monitors, with the PC aligning
somewhere between the directions of the two sets
of monitors, ones with positive coefficients, and
ones with negative coefficients.

Clearly, interpreting the components is much easier
when we observe a uniform effect. In these cases, by ob-

serving the monitors corresponding to the chosen coef-
ficients, one can estimate how many monitors influence
the PC, and hence establish how global the effect of the
changes on the selected outlier link. The interpretation
is trickier with contrasting effect, and this usually oc-
curs in the presence of multiple independent events of
similar magnitude in the same time interval, and thus
the contrasting effect on the principal component. In
the vast majority of our cases, the principal components
fall into the uniform effect category.

4. VALIDATION THROUGH SIMULATIONS

In this section, we use Internet scale simulations to
provide a basic validation of our scheme. In particu-
lar, we are interested in knowing if the outlier links as
captured by our scheme involve heavy routing changes.

4.1 Setup and Route Computation

For our simulations, we use an AS topology inferred
from BGP routing tables and updates, representing a
snapshot of the Internet as of Feb 2006 (available from
[26]). The details of how this topology was constructed
are described in [27]. The topology consists of 22,467
AS nodes and 63,883 links. We classified each link as
either customer-provider or peer-peer using the PTE al-
gorithm[5] and used the no valley prefer customer rout-
ing policy to infer routing paths. We randomly picked
30 nodes and designated them as monitors. We can ob-
serve the routes from these monitors to all destinations.
The resulting monitor set represents a set of monitors
mostly from the edge of the network, and does not share
high path overlap among themselves.

We modeled each AS as a single node and used the
routing tables collected from RV [18] from the time of
topology snapshot to get a mapping of how many pre-
fixes were announced by each origin AS at that time.
After this step we had a total of about 180,000 prefixes
announced. We abstracted the router decision process
into the following priorities (1) local policy based on
relationship, (2) AS path length, and (3) lowest ID tie-
breaker. We applied our decision process to compute
the routes from each monitor to all prefixes in the topol-
ogy and record these routes as the initial set of routes.
A similar setup and decision process was used in pre-
vious works such as [4]. Later work [16] reported the
inaccuracies in path predictions resulting from abstract-
ing AS as a single node. However, such a setup is still
useful for basic validation and can provide an important
sanity check.

4.2 Simulating Routing Events

Once the initial set of routes was computed, we sim-
ulated various problem scenarios, recomputed the new
set of routes, computed link weight changes and applied
PCA on this data set. Note that we do not simulate



the propagation of BGP updates in the network, but
rather remove links from the topology and recompute
the routes. As a result, in this setup, we do not have
to worry about timing issues. Instead we have the set
of initial routes, a set of final routes, and can compute
the resulting link weight changes. We understand that
the possibility of multiple peerings between ASes means
that our setup of link failure where the link vanishes
completely is a simplification. In order to pick links to
fail, we computed the weight of links by counting the
number of routes that every monitor routes through it.
We simulated two kinds of events described below.

Local link event In this case, we failed heavy weight
links mainly seen by one monitor. We failed a total
of 80 heavy weight links.

Non-local link event We failed links with heavy weight

that are seen by multiple monitors a single link be-
tween two tier-1 ASes. We picked the top 20 most
used links in addition to the top 10 tier-1 links,
and failed a total of 30 links.

Note, one may argue that detecting local events on
a single monitor does not require PCA. However, the
fact is that in BGP data, local events do occur, and its
important that we know whether our technique is able
to prove that they are indeed local. Also, our goal is
to not detect link failures, rather to detect outliers in
terms of most routing changes from multiple monitors.
Since we fail a link, that link will observe lots of route
losses, and this is useful for our validation.

4.3 Simulation Results

We now present the result of our PCA analysis on
the link weight changes seen by our set of monitors.

4.3.1 Local link events

The local link events are more straightforward than
the global link events. In all the cases, the failed link
appeared as the outlier link. Importantly, we found that
the first principal component was strongly influenced
only by the monitor adjacent to the failed link.

4.3.2 Global link events

We found that in all the cases, the failed link appears
as the most variant link on the first principal compo-
nent. We also found that the first principal component
is influenced by more than one monitor indicating as
discussed in Section 3.3.3 a uniform effect seen by mul-
tiple monitors.

As a representative we discuss the failure of the link
between 1273 and 6663. Figure 4 shows the score plot
with the first 2 principal components with the X axis
being the first principal component and hence where
maximum variance is captured. We can see from this
plot that the link 1273-6663 is the outlier link on the
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Figure 4: Outlier link seen via PCA

first principal component, as it is farthest away from
the origin. The PC1 also shows a uniform effect with
all coefficients as negative and the top-5 coefficients be-
ing {—0.28, —0.27,—0.25, —0.23, —0.23} suggesting that
multiple monitors influence this component. Notice, the
second component has 702-12301 as an outlier, but un-
like PC1, on analyzing the PC2, it shows a heavy influ-
ence of one monitor on the PC.

Summary

The simulation results show that the failed links show
up as outliers in our analysis after applying PCA. Also,
the scope of the failure is reflected in the interpretation
of the PCA based on the coeflicients of the monitors.
We would like to stress that the aim of the simulation
setup is not to see whether we can capture failed links
or not, but rather to provide a basic validation of our
scheme to check whether the links that appear as out-
liers indeed have lots of route changes. As it happens,
the failed links lose most routes in our setup and hence
appear as outliers.

S. DATA SET PREPARATION

We prepare PCA input data by computing link weight
changes from BGP updates collected from multiple mon-
itors across the Internet. We now go into details of
how we collect and process the BGP updates in our
approach.

5.1 BGP Monitor Selection

When applying PCA on link weight changes, its im-
portant to avoid two or more monitors seeing very sim-
ilar changes because of their connectivity. For example,
if two monitors have the same providers, then its very
likely that they will observe common dynamics. Thus,
before we apply PCA, we carefully select a set of mon-
itors that represent as diverse views as possible.

As of October 2007, there are 557 monitors available
from RouteViews and RIPE. We start by looking at
routing tables from 3 routing tables spanning different



dates in the month of May 2007. Before we apply our
algorithm, we first prune out monitors that belong to
the same AS or that do not export full routing tables
1 leaving us with a set of 80 monitors. Specifically we
use two metrics to evaluate the monitor set.

e Neighbor ratio of M; with Ms: Indicates what
fraction of Ms’s routing table uses M, as the im-
mediate next hop.

e Sibling ratio of My with Ms: Indicates what frac-
tion of M;’s routing table shares the same next
hop with other monitors.

Thus, imagine a case where monitor M; is a provider
of another monitor Ms. The neighbor ratio will be high
for My if My uses M; as a next hop to reach a high
percentage of the prefixes. The neighbor ratio is inten-
tionally defined this way to prefer monitors towards the
edge instead of the core.

We construct a neighbor ratio matrix, R,,, where the
value in the matrix, R%7 at row i and column j, is
the direct ratio of mon; with mon;. Each value in the
matrix has the maximum value of 1 in the case where
all prefix entries of mon; has mon; as the next hop
and the minimum value of 0 when none of the prefix
entries of mon; has mon; as the next hop. We sum up
all R%7 values across the rows to obtain view-overlap,
vo; = Y r_, RFJ, values which represent the overall
view overlap for mon; in terms of every other monitors
in the set.

From the matrix R,, we iteratively eliminate mon;
with highest vo; until the highest value in max(vo; )
is less than a threshold. Note, after each removal, we
have to recompute the matrix, since ratios change. We
use a threshold of 0.1, indicating that in our residual set
no two monitors have a neighbor ratio of more than 0.1.
After this step, we are left with a set of 62 monitors.

Computing the sibling ratio is done in the similar
fashion by constructing a matrix R, and the summa-
tion of the rows indicates the sibling overlap for each
monitor. We then iteratively remove monitors with high
sibling overlap. Figure 5 shows the residual max sibling
ratio after each removal. We carry out the removal until
the threshold of 0.3, is reached indicating that no two
monitors have a sibling ratio higher than 0.3. After the
sibling removal we are left with a set of 30 monitors that
we use for results. We verified that this selected set of
monitors cover a large enough portion of the Internet
by checking for the presence of tierl-tierl links as well
as other well known links between large ISPs.

5.2 BGP Data

We analyzed the BGP routing updates from the set
of 30 monitors for a 12 month period from Jan 1, 2007

1Some BGP routers export only partial routing tables to the
data collectors
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to Dec 30, 2007. Over this period, there were some
known outages with RouteViews collection boxes and
we believe these outages only result in data missing for
short periods and do not affect our results in a major
way.

We use a time interval of 10 minutes to group updates
together. This time interval is small enough to reduce
the probability of multiple events occurring in the same
time interval, and at the same time long enough to allow
BGP routes to converge. Prior work has suggested that
most cases of BGP routing convergence due to the same
do not last more than 5 minutes [8]. Other related work
using BGP updates to identify network wide disruptions
[6] has also used a similar value of 10 minutes to group
updates into bins. For each 10 minute period, we ap-
plied Algorithm 1 to compute the link weight changes
for each of the 30 monitors on each time bin.

6. RESULTS

We now present results from the application of our
scheme on BGP data over a period of one year. We
first identify large scale routing instabilities and inves-
tigate what kinds of events can cause such large scale
routing instabilities. In the later part, we identify rout-
ing instabilities that repeat over long periods of time.

6.1 Large Scale Events

Recall from Section 3 that we define change magni-
tude on a principal component as the variance of the
outlier link on that principal component. In principal,
the higher the magnitude the bigger the event as seen in
the new sub-space. So our first task is to identify a set
of high magnitude events from all the events. Ideally we
would like to compare the change magnitudes across dif-
ferent time intervals to separate out small events from
big events. However, since we apply PCA indepen-
dently on each time bin, one has to be careful while com-
paring change magnitudes across different time slots.
We discuss this next.
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6.1.1 Separating High Magnitude Events

In order to better understand how comparable the
change magnitudes are, we first study the correlation

between the change magnitude and the link weight changes

that serve as input to our scheme. Figure 6 shows
the correlation plot with X axis as sum of link weight
changes for all monitors in a time slot, and the Y-axis
as the sum of the change magnitudes on the top 10 com-
ponents. Note, typically about 1-3 components capture
most of the variance in the data, but we use 10 com-
ponents to be on the conservative side, even though
from our observation, the last few components only
marginally add to the variance.

We found that the correlation coefficient for Figure 6
to be 0.93. Note, that the sum of weight changes is a
collective effect of lots of routes changing, and a cer-
tain number of monitors observing the change. Our
objective in presenting Figure 6 is to establish a trend
that high weight changes generally result in high mag-
nitudes, and this is used just to help us draw a line to
separate large events from smaller events.

For each time bin over the one year period, we pick
the change magnitude of outlier link on the top com-
ponent to represent the change magnitude of that bin.
Figure 7 shows the cumulative distribution of the change
magnitudes for all the bins. The increase in magnitude
is fairly linear until about y = 0.9 where curve changes
shape. We use this point as the cutoff and treat all the
change magnitudes above this point as high magnitude
events. This gives us a total of 5310 bins to investi-
gate for high magnitude events. We now study these
5310 bins in more detail to understand the scope of the
high magnitude events, namely what percentage of the
Internet is impacted by these events.

6.1.2 Identifying Events with Local scope

Defining scope of a large scale event is not trivial
and there are two main issues. First, even for a single
prefix, we do not have access to BGP routers in ev-
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Figure 7: CDF of change magnitude

ery AS, and can at best estimate what percentage of
the Internet might have been affected by looking at the
sample of monitors involved. Second, during a routing
event involving multiple prefixes, each monitor may see
changes to a different number of prefixes, thus making
simple counts difficult.

We follow a two level procedure to scope. First we
classify events into purely local and non-local. Then, we
concentrate on understanding the distribution of events
in the non-local category. Recall that each PC is a lin-
ear combination of original monitors, and by looking at
the load values of original monitors on a component, we
can see which monitors are influencing the component
and by how much. For the first level of classification,
we start by looking at the highest load value on the first
component, representing how influential is the most in-
fluential monitor on that component. Figure 8 shows
the distribution of the top 2 monitors influencing the
first principal component. We see that for over 95% of
the events, the highest load value is very close to 1, and
the 2nd highest load value on the first principal compo-
nent is less than 0.1, indicating that the component is
influenced very strongly by a single monitor. We treat
all events above z = 0.9 in Figure 8 as local events.
Thus, we can say that most high magnitude events are
local in scope, i.e. occurring close to one monitor but
not affecting other monitors. We investigated some of
these local events by looking at routing updates and
found that it typically involves an AS switching lots of
routes from one provider to another provider.

By looking at events below y = 0.9, we are thus left
with a total of 126 events that are non-local in scope
and we examine these cases in detail next.

6.1.3 Non-local High Magnitude Events

For events classified as non-local, we first establish a
way to understand the scope of the event. We are pri-
marily interested in trying to establish how many moni-
tors from our set of monitors are impacted by the route
change seen on the outlier link. Recall that each princi-
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pal component is a linear combination of monitors. For
each principal component, we identify the median load
value of the monitors and the standard deviation. The
median load value indicates the typical influence of a
monitor on that component. By examining the stan-
dard deviation, we can gauge how much the influence
differs among all the monitors. Figure 9 shows the me-
dian load values of the monitors, along with standard
deviation. To show the trend of changes in the highest
load value for these events, we also include the expo-
nentially smooth highest load value in Figure 9.

Based on Figure 9, we break down the non-local events
into three categories. From 0 < x < 70, the median is
very close to 0 and standard deviation is close to 0.2.
We call these class of events low scope non-local events.
From 100 < x < 126, we can see the median values close
to about 0.2, and the standard deviation around 0.1.
We call this region as the high-scope non-local events.
Finally, we call the events in the area in between from
70 < x < 100 as medium scope non-local events. When
we look at the unique links appearing in this set of 126
events, we observe that a lot of links appear twice and
this is because the first appearance is when there is a
problem, while the second appearance is when things
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Figure 10: Link types in non-local events

return to normal. Next we see where in the topology
these links appear.

To categorize the outliers, we use a simple classifica-
tion of AS nodes based on connectivity. We use the AS
link information collected from BGP routing tables and
updates, available from [26]. We only consider ASes
seen between Jan 1, 2007 and Dec 31, 2007. We classify
AS nodes into three tiers: Tier-1 nodes, transit nodes,
and stub nodes. To choose the set of Tier-1 nodes, we
started with a well known list, and added a few high
degree nodes that form a clique with the existing set.
Nodes other than Tier-1s but provide transit service to
other AS nodes, are classified as transit nodes, and the
remainder of nodes are classified as stub nodes. Fig-
ure 10 shows the types of links involved in each of the
three bins. For the high scope events, most of them
involve new prefixes, so in some sense we cannot read
much into which links are involved. For the medium
and lower scope events, we observe that tier-1 links (be-
tween themselves or to transits) are involved in many
of the cases.

6.2 Case Studies of Non Local Events

We now investigate the events that caused global dis-
turbance by looking at BGP updates. We find that
except for one, all the other events in the high scope
category of non-local events involve new prefixes being
announced by one end of the outlier link.

6.2.1 Involving New Prefixes

First, we analyzed the set of prefixes whose route
changed during each event. Then, we classified the
events into the following categories. Given a set of
prefixes P; usually announced by AS,, when AS, an-
nounces a set of prefixes Py, s.t. |P2] >> |Py| for a
limited time interval, we identify
Announcement of deaggregated prefixes, if P, cov-
ers (almost) the same prefix space as in P;.
Announcement of new uncovered prefixes, if there
is (almost) no overlap in the address space between pre-
fixes in P; and prefixes in P,. This category includes



events occurring when ASes announce their “private”
address space, likely because of some misconfigurations.

Table 1 describes the events analyzed, along with
their categories.

AS-link Count | Origin AS category
7018-7015 4 7015

2200-3356 3 3356

3549-11456 2 11456 new uncovered
1237-2200 1 2200 prefixes
28513-8151 1 8151

6453-4788 2 4788

7018-4788 1 4788

3257-5486 2 5486 de-aggregation
1239-209 2 209

17622-9394 1 9394

7018-33650 1 33650

Table 1: Summary of cases involving new pre-
fixes

Note that all links that appeared only once were cases
where the original state was restored in the same time
bin, i.e. lasting less than 10 minutes.

6.2.2 Link Problems causing Global Disturbance

Besides the cases involving new prefixes, we observed
one case where a link problem caused global distur-
bace. On September 19, 2007, around 17:00 GMT,
all monitors observed over a thousand routes switch-
ing away from the link 3356-6395 to different alter-
nate links. Again, we see that most monitors see this
change because they use this link to reach the prefixes
announced by AS 6395, and hence are affected.

For other links in the medium and low scope category,
where a portion of the monitors are affected, in most
cases, the affected set includes the monitors somewhere
in the customer tree of the two transit ASes. Depending
on the connectivity and type of relationship (i.e. cus-
tomer or peer), the scope varies. We analyzed AS paths
from routing tables and found that very few links carry
a heavy weight as seen by a majority of monitors, and
such links are usually ones that are lower in the topol-
ogy tier hierarchy (e.g. a large regional ISP connecting
to global ISPs). This explains why we do not see a truly
global disturbance due to link instabilities.

Summary

Our results here show that events that have truly global
impact usually involve announcements and withdrawals
of prefixes carried out by the origin AS or its provider.
On the other hand, events where link instabilities affects
transit routes are usually constrained to a smaller num-
ber of monitors, somewhere along the customer base of
the end points of the link.

6.3 Repeated Routing Instabilities

11

Having analyzed the events along the magnitude di-
mension and examining the highest magnitude events,
we now look at the events along the frequency dimen-
sion. In particular, we are interested in identifying links
that appear repeatedly as outliers. Instead of looking
at all the link events, we consider events above y = 0.5
in the distribution of change magnitude shown in Fig-
ure 7. Since we run PCA on each time bin, we want
to avoid bins where very few aggregate routing changes
were observed. For the selected events, we find out how
many times a link appeared as an outlier. Figure 11
shows the distribution of the number of appearances of
a link as an outlier. Clearly there are a few links that
appear quite often as outliers. We use a threshold of
y = 0.8 corresponding to x = 15 to separate the more
frequently appearing from the lesser one. We have a
total of 212 links with x > 15 appearances.

We now investigate the scope of the appearance of
these outlier links, i.e. whether they are seen by small
set of monitors or globally observed. Recall from our
analysis of high magnitude events, that for each appear-
ance, we use median load value and standard deviation.
Each appearance of a link could potentially have dif-
ferent scope. To understand the scope over multiple
appearances for a link, we assign the link scope as the
median of the median load values over all the appear-
ances for that link, and the standard deviation of all
the median load values. Thus, a low standard deviation
indicates that the median value is more or less consis-
tent over all the appearances. Figure 12 shows the dis-
tribution of the computed link scope with smoothened
standard deviation to show the trend. We can see that
almost all the repeated outliers have very low scope. We
are interested in the small few that cause a more global
disturbance. Based on the link scope, we study events
above z = 190. Figure 13 shows the types of links in-
volved in the low and high scope categories. We can
clearly see here that links between tier-1s are quite sta-
ble in general and observe only 5 instances where they
appear more than 15 times, and they show low scope.
We now examine the most global repeated appearances
to understand where they occur.

6.3.1 AS4637-AS 4761

The link between AS 4637 (Reach) and AS 4761 (In-
dosat) appears as an outlier 31 times from January 2007
to Febrary 2007 with the highest scope among repeat-
edly appearing outlier links. By examining BGP data,
we found that the routes using link 4637-4761 switched
to using either to 1239-4637, 7473-4637, or 3491-4637
for about 10 to 30 minutes. This phenomenon was ob-
served from January 2007 to Febrary 2007 only, and
from March 2007 to December 2007, the link never
shows up as an outlier again.
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6.3.2 AS 6453-AS 30890

The link between AS 6453 (Teleglobe Inc) and AS
30890 (Evolva Telecom) appears 83 times throughout
the one year period with the second highest scope in
our repeatedly appearing outlier link set. We found
that about 500 routes to AS 30890 or using AS 30890
as an intermediate node in AS-PATH switched to the
alternate longer route 6453-5588-5606-30890 for the in-
stability duration of about 10 to 30 minutes.
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Figure 13: Link types in repeated events
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Summary

We find many cases of links appearing repeatedly as
outliers. However, most of the repeatedly appearing
links have a low scope. In the few cases where the effect
is more widely observed, some have a short bursty pe-
riod of instability, while others show up more routinely
as outliers throughout our study period. Further, the
duration of the change usually lasted about 30 minutes
or less, indicating that this was less likely to be inten-
tional changes.

7. DISCUSSION

The Internet routing infrastructure is a large scale
distributed system, not only it maintains the routes
to hundreds of thousand destination prefixes, but also
different monitors have different views on the routing
state. The sheer scale of the system makes assessing
the overall Internet routing stability a difficult prob-
lem. In this paper, we tackle this problem with two
new approaches, the use of link weight to measure the
aggregate routing changes over each AS link, and the
use of PCA to process link weight changes as seen from
multiple monitors.

The outcome of PCA enables us to gauge each routing
event’s effects on all the monitors, so that we can iden-
tify the scope of impact of each event. This result sets
our work apart from previous efforts on routing dynam-
ics measurements like [2] , where one is interested in the
cause or location [4] of observed routing stabilities. Our
effort also differs from previous work in applying PCA
to BGP data analysis [25], where only data collected
from a single monitor is used.

We would also be the first to admit that, in taking the
first step towards gauging the global routing stability,
our results are preliminary and a number of issues need
to be further explored. First, we would like to refine
our use of link weight changes in the analysis. Recall
that we find the absolute value of the maximum weight
change seen by a link in each time bin, without knowing
whether routes were lost or gained. We plan to investi-
gate the use of signed weight changes, which can show
whether a link appears as an outlier with routes gained
or lost. This information may help in the analysis of
events, especially when doing temporal correlation on
the same link: Observing an outlier link with a neg-
ative change followed shortly by the same link with a
positive change can be looked at as a failure followed by
recovery or vice versa. Of course we must be aware of
the possibility that such failure and recovery cycle may
occur within the same time bin, thus the signed weight
changes could cancel each other, leading to a missed
event.

We would also like to acknowledge the limitations
of our basic outlier detection scheme. Note, that we
only choose one link per component, and there could be



links which are very close to the outlier link. This can
happen especially when the links involved in routing
changes have a chain like topology with similar rout-
ing changes. This can also occur when the event is
purely local and close to an observation point. We are
currently investigating alternative methods for picking
outlier links based on distance estimation. Neverthe-
less, even looking at a single outlier link for each prin-
cipal component gives us a good start to understand
Internet routing stability.

Finally, we believe it is important to be able to re-
produce research results and enable others to be able
to compare our approach with others. To this end, we
have made our scripts and a small part of our data set
publicly available [1] in order to make our results com-
pletely reproducible.

8. RELATED WORKS

8.1 Identifying origins of routing changes

In a seminal works regarding network instability, Labovitz

et. al.[8] identifies several causes of routing instabilities
in the Internet, without however diagnosing their topo-
logical origin. Later efforts [3, 2, 4, 24] analyze BGP
updates by aggregating data along one of the three di-
mensions: time, monitors and prefixes, to obtain the
candidate sets of routing instability origins. Both [4]
and [10] identify the origin of the routing instabilities,
the former adopts a greedy approach based on removing
links, while the latter uses a min-cut on a flow graph
connecting links involved in the changes. Teixeira et.
al.[22] describe a framework to detect the cause of a
routing change using a coordinated diagnostic mecha-
nism among several ISPs, requiring a special server in
each ISP that replies to diagnose queries from other
domains.

8.2 Applying PCA to Internet data analysis

Principal Component Analysis has been applied to
both traffic and routing information to help understand
network dynamics. [12, 11, 14, 13] first proposed an
approach based on PCA for detecting volume anoma-
lies in traffic data collected by several monitors within
a network. A volume anomaly denotes unusual traffic
load levels. They observed that, although traffic data
is high-dimensional (in terms of number of links), nor-
mal traffic patterns are intrinsically low-dimensional.
Thus, they separated network traffic into a normal sub-
space, and an anomalous subspace, and they used the
minor components of PCA to identify volume anoma-
lies. [21] showed that tuning PCA to operate effectively
is nontrivial. [28] introduced the temporal PCA, which
exploits temporal correlation to identify dominant pat-
tern across time. In contrast, [12, 11, 14, 13] analyzed
the correlation between traffic on different links (spacial
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PCA).

The work that is most relevant to ours is by Xu et
al. [25] who applied PCA to routing data to analyze
Internet-wide events. Given a stream of BGP updates
collected by a single monitor over time, they group pre-
fixes that are likely affected by the same network event.
[6] focused on diagnosis of network disruptions within
a single network, and used PCA to combine multiple
BGP updates streams coming from distinct observation
points. Both [25, 6] used time-series matrices, which
count the number of BGP updates received by a single
router in each time slot. In contrast, our work exploits
the topology dimension. For each given time slot, we
measure the number of routing changes over each link
or AS as observed by multiple monitors.

Overall, applying techniques like PCA on routing data
is a relatively unexplored direction, and ours is the first
that applies it on an aggregate metric using multiple
monitors.

9. CONCLUSIONS AND FUTURE WORK

Due to complex interconnects among ASes and pri-
vate routing policies, different vantage points in the In-
ternet routing infrastructure observe different routings
changes, creating a challenge in utilizing data from mul-
tiple vantage points to measure the scope of routing
changes. In this paper we first capture aggregate rout-
ing changes using link weight changes, and then use
Principal Component Analysis to combine information
from multiple vantage points. Our work is the first of
its kind that analyzes routing stability of the Internet as
a whole, rather than the stability of individual routes,
using information from multiple monitors and over a
long period of time.

Using our scheme we found a number of instances of
routing changes that were observed within a large scope.
We further discovered that these routing changes with
global effect were usually caused by the appearance of
new prefixes, which were caused by either route leakages
or de-aggregation. We also found that link instabilities
do not cause a disturbance throughout the Internet in
general. Our analysis of the AS paths shows that very
few links carry a heavy weight as seen by a majority of
monitors, and such links are usually ones that are lower
in the topology tier hierarchy (e.g. a large regional ISP
connecting to global ISPs). Overall, our measurement
results over a one year period show that while routing
changes do occur frequently, their scope is usually lim-
ited to a small portion of the global Internet. This may
be attributed to the increasingly meshy nature of the
AS topology. At the same time, this observation raises
a new question: if most routing changes are confined
to local scope, and routing events of global scope occur
infrequently, then what may be the causes of the high
volume routing updates that one frequently observes?



We plan to look into this problem next.
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